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A B S T R A C T 

Differential geometry, a branch of mathematics that studies the geometry of 

curves, surfaces, and manifolds (the higher-dimensional analogs of 

surfaces). Curve is a smoothly flowing line (non sharp changes) or a curve 

must bend (change direction) but in Mathematics a straight line also a curve. 

We will present new definitions and theorems. 

 
MSC. 16D10; 16D70; 16D99 

https://doi.org/10.29304/jqcm.2022.14.1.1004 

 

1. Introduction  

We will present the racing of differential geometry and evolution since BC to reach such incredible development in our 
time and its relation to other scientific branches and its applications in the areas of life. It shows how the concept of 
geometry appeared in the works of both Riemann and Lobachevski [1] and [2]., which later proved the important of 
this geometry to many of life problems. At the end, we focus on the subject of the study of differential geometry because 
of its close link to other mathematic fields. 

Definition, Postulates and Axioms: The geometric history back to the very early time, not only what we have of 
geometry facts, so that in this period directed to collect at the result together to be in logical order. Also the Greeks did 
a lot of work to develop geometry no thing appeared for us specially after Euclid’s famous work appeared that named 
Euclid’s famous elements. 

2. Curve 

We develop the mathematical tools needed to model and study a moving object. 

The object might be moving in the plane[3] and [4]. 

Curve is a smoothly flowing line (non sharp changes) or a curve must bend (change direction) but in Mathematics a 
straight line also a curve. 

2.1. A parameterized Curve in ℝ𝒏. 

Definition 2.1. A parameterized curve in ℝ𝑛 is a smooth1 function2 𝜓: 𝐼 → ℝ𝑛 , where 𝐼 ⊂ ℝ is 

an interval. 
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Definition 2.2.  The function y = f (x) is continuous at the point 𝑥𝑜  if 𝑓(𝑥𝑜) is defined and 

lim
𝑥→𝑥𝑜

𝑓(𝑥) = 𝑓( 𝑥𝑜).  

The function y = f (x) is continuous in the interval (a, b) = x; a < x < b if f (x) is continuous 

at every point in that interval. 

Definition 2.3 (1). If 𝜓: 𝐼 → ℝ𝑛 is a curve with components 𝜓(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)), 

then its derivative 𝜓′: 𝐼 → ℝ𝑛, is the curve defined as𝜓′(𝑡) = (𝑥1
′ (𝑡), 𝑥2

′ (𝑡), … , 𝑥𝑛
′ (𝑡)).

Higher-order derivatives are defined analogously 

 

Definition 2.4.  Let 𝜓: 𝐼 → ℝ𝑛  be a curve.  It is called regular if its speed is always nonzero 

(|ψ(t)| = 0 for all t ∈ I). It is called unit-speed or parameterized by arc length if its speed is 

always equal to 1 (|ψ(t)| = 0 for all t ∈ I). 

Proposition 2.5. The derivative of a curve 𝜓: 𝐼 → ℝ𝑛 at time t I is given by the formula 

𝜓′(𝑡) = 𝑙𝑖𝑚
ℎ→0

 
𝜓(𝑡 + ℎ) − 𝜓(𝑡)

ℎ
 

Proof. 𝑠𝑙𝑜𝑝 =
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝜓

𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑡
 , where t changes from t to t + h and ψ changes fron 𝜓(𝑡) to 𝜓(𝑡 + ℎ)

Δ𝜓

Δ𝑡
=

𝜓(𝑡 + ℎ) − 𝜓(𝑡)

ℎ
⟹ 𝜓′(𝑡) = 𝑙𝑖𝑚

ℎ→0
 
𝜓(𝑡 + ℎ) − 𝜓(𝑡)

ℎ
 

Definition 2.6. A set I of ℝ is an interval if I contains two real numbers, so it’s contains all 

the numbers between them. 

Example 2.7.  An interval means a nonempty connected subset of ℝ.  Then that every interval has 

one of the following forms: 

(a, b), [a, b], (a, b], [a, b), (−∞, b), (−∞, b], (a, ∞), [a, ∞), (−∞, ∞)? 

Solution. If an interval is a bounded and contains two element 𝑎 and 𝑏 we denoted by 𝑎 = inf (𝐼) 

(I) and 𝑏 = sup(𝐼) by the definition of 𝑠𝑢𝑝 and 𝑖𝑛𝑓 every element 𝑥 ∈ 𝐼 is between 𝑎 and 𝑏 

and (a < x < b). 

 

Now we prove that every (a < x < b) is in I, if x is not upper bound or lower bound then, 

there exists two elements y and z in I such that y < x < z. So by the definition x in I, according 

to 𝑎 and 𝑏 belong to I we obtain the fourth types. 

Now, let I an interval has lower bounded but not upper bounded. Let a be the 𝑖𝑛𝑓 of I, every 

element in I is ≥ a. We are going to prove that I contains all real numbers x > a, hence x is not 

a lower bounded and I contain y such that y < x by the same way, we have there exist z such 

that z > x hence y < x < z, so x belongs to I. According to 𝑎 belongs to I or not we obtain two 

types of non-upper bounded intervals. 

Finally, if an interval I is not upper bounded or lower bounded and for every element x we 

can find two elements y and z in I such that y < x < z, that lead to x in I. Hence I = R.  

Example2.8. A logarithmic spiral means a plane curve of the form 

𝜓(𝑡) = 𝑐(exp(𝜆𝑡) cos(𝑡) , exp(𝜆𝑡) sin(𝑡)), 

and 𝑡 ∈ ℝ, where 𝑐, 𝜆 ∈ ℝ with 𝑐 ≠ 0. It shows the restriction to [0, ∞) of a logarithmic 

spiral with 𝜆 < 0. Use an improper integral to prove that such a restriction has finite arc 

length it makes infinitely many loops around the origin.  
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Solution. 

𝜓(𝑡) = 𝑐(exp(𝜆𝑡) cos(𝑡) , exp(𝜆𝑡) sin(𝑡)) 

The arc length between 0 and ∞ equals ∫ |𝜓′| 𝑑𝑡
∞

0
. 

𝑡ℎ𝑒 𝑎𝑟𝑐 𝑙𝑒𝑛𝑔𝑡ℎ = ∫ 𝑐2 exp (𝜆𝑡)
∞

0

=  𝑐2 [
exp (𝜆𝑡)

𝜆
]

0

∞

= −
𝑐2 

𝜆
= ∞.  

 

Example2.9. Let 𝜓(𝑡) = (sin(𝑡) , cos(𝑡) + ln ( 𝑡𝑎𝑛 (
𝑡

2
))) ,    𝑡 ∈ (

𝜋

2
, 𝜋), be a curve. 

Demonstrate that for every point p of its image, the segment of the tangent line at p between p 

and the y-axis has length 1. 

Solution. The first we want to prove that [𝜓′(𝑡) = 0 ↔ cos(𝑡) = 0]  

𝜓(𝑡) = (cos(𝑡) , − sin(𝑡) + 1/ sin(𝑡)) ,  so it is differentiable at (π/2, π). It is zero if  and 

only if cos(t) = 0, i.e. when t = π/2. 

The tangent line at ψ(t) is 

y − cos(𝑡) − ln ( 𝑡𝑎𝑛 (
𝑡

2
)) =

cos(𝑡)

sin(𝑡)
(𝑥 − sin(𝑡)) . 

So the intersection with y-axis is (0, ln(tan(t/2))). 

Hence the distance between the point and tangency to intersection of tangent line with y-axis is 

𝑠𝑖𝑛2(t) + (cos(𝑡) + ln ( 𝑡𝑎𝑛 (
𝑡

2
)) − ln ( 𝑡𝑎𝑛 (

𝑡

2
)))

2

= 1. 

Example 2.10. Use a computer graphing application to plot the following plane curves (all with 

domain [0, 2π]) 

(1) The lemniscate of Bernoulli 

(2) The deltoid curve 

(3) The astroid curve 

The epitrochoid 

 

                        

Solution.  

2.2. The inner product. 

Definition 2.11. The inner product of a pair of vectorsx, y ∈ ℝ𝑛 (with components denoted by x 

= (x1, x2, ..., xn) and y = (y1, y2, ..., yn) is⟨ x, y⟩ = x1y1 + x2y2 + ... + xnyn ∈ ℝ𝑛. 
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Lemma 2.12. If x, y, z ∈ ℝ𝑛, and λ, µ ∈ ℝ then 

1-  ⟨𝑥, 𝑦⟩ =  ⟨𝑦, 𝑥⟩ . 

2-  ⟨𝑥, 𝑥⟩= |x|2, which equals zero if and only if x = 0. 

3- ⟨ λx + µy, 𝑥⟩ = λ ⟨𝑥, 𝑧⟩ + µ ⟨𝑦, 𝑧⟩. 

4-  ⟨ x, y⟩ ≤ | ⟨ x, y⟩| ≤ |x||y|. 

Proof. 1- ⟨𝑥, 𝑦⟩ = 𝑥1𝑦1 + 𝑥2𝑦2 + ⋯ + 𝑥𝑛𝑦𝑛 = 𝑦1𝑥1 + 𝑥2𝑦2 + ⋯ + 𝑦𝑛𝑥𝑛 = ⟨𝑦, 𝑥⟩ 

2 − ⟨𝑥, 𝑥⟩ = 𝑥1𝑥1 + 𝑥2𝑥2 + ⋯ + 𝑥𝑛𝑥𝑛 = 𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛
2 = |𝑥|2 

3 − ⟨𝜆(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛) + 𝜇(𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛), (𝑧1 + 𝑧2 + ⋯ + 𝑧𝑛)⟩ = (𝜆𝑥1 + 𝜇𝑦1)𝑧1 + (𝜆𝑥2 +

𝜇𝑦2)𝑧2 + ⋯ + (𝜆𝑥𝑛 + 𝜇𝑦𝑛)𝑧𝑛 = 𝜆(𝑥1𝑧1 + 𝑥2𝑧2 + ⋯ + 𝑥𝑛𝑧𝑛) + 𝜇(𝑦1𝑧1 + 𝑦2𝑧2 + ⋯ + 𝑦𝑛𝑧𝑛) =
𝜆⟨𝑥, 𝑧⟩ + 𝜇⟨𝑦, 𝑧⟩

 

4- ⟨𝑥, 𝑦⟩ = 𝑥1𝑦1 + 𝑥2𝑦2 + ⋯ + 𝑥𝑛𝑦𝑛 ≤ |𝑥1𝑦1 + 𝑥2𝑦2 + ⋯ + 𝑥𝑛𝑦𝑛| ≤ |𝑥1𝑦1| + |𝑥2𝑦2| +

⋯ + |𝑥𝑛𝑦𝑛| = |𝑥1||𝑦1| + |𝑥2||𝑦2| + ⋯ + |𝑥𝑛||𝑦𝑛| ≤ |𝑥||𝑦| 
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Definition 2.13. The angle between nonzero vectors x and y is defined as: 

∠(x, y) =𝑐𝑜𝑠−1 ⟨𝑥,𝑦⟩

|𝑥||𝑦|
 ∈  ℝ.  

Recall that x and y are called orthogonal if ⟨𝑥, 𝑦⟩ = 0 . They are called parallel if one of them 

is a scalar multiple of the other. 

Definition 2.14. If 𝑋, 𝑌 ∈  ℝ with |𝑌| ≠ 0 , then there is a unique way to write x 

as a sum of two vectors: 

𝑋 = 𝑋∥ + 𝑋⊥, 

the first of which is parallel to y and the second of which is orthogonal to y. The vector𝑋∥ is called 

the projection of X in the direction of Y . The signed length of 𝑋⊥ (that is, the scalar λ ∈ ℝ such 

that 

𝑋⊥ = 𝜆
𝑌

|𝑌|
 

is called the component of X in the direction of Y . 

Definition 2.15. A set Y  = {y1, ..., yk} ⊂ ℝ is called orthonormal if 

⟨𝑌𝑖 , 𝑌𝑗⟩ = 1if i = j 

Definition 2.16. Let 𝑌 = (𝑌1, … , 𝑌𝑘) be a nonempty subset of a vector space ℝ𝑛. The span of 

Y , denoted by span(Y), is the set containing of all linear combinations of vectors in Y . 

span(𝑌) = {∑ 𝜆𝑖𝑌𝑖 ∣ 𝑘

𝑘

𝑖=1

∈ ℕ, 𝑌𝑖 ∈ 𝑌, 𝜆𝑖 ∈ ℝ}. 

 

Notation 2.17. A basis B of a vector space V over a field F is a linearly independent subset 

of V that spans V. 

Notation 2.18.  The vector in the set 𝑌 = {𝑌1, … , 𝑌𝑛}   are said to be linearly independent if 

the equation 

                                  a1Y1 + a2Y2 + ... + anYn = 0, 
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can only be satisfied by ai = 0 for i = 1, 2, ..., n. 

 

Example 2.19. Prove that every orthonormal set in ℝ𝑛 must be linearly independent. 

Solution.  Suppose 𝑋 = {𝑥1, … , 𝑥𝑛} ⊂ ℝ𝑛 , let 

                             λ1x1 + λ2x2 + ... + λnxn = 0, 

from som λ1, ..., λn ∈ ℝ. 

Then for any index 1 ≤ i ≤ k we have by orthonormal that 

⟨λ1x1 + λ2x2 + ... + λnxn, xi⟩ = λi⟨xi, xi⟩ = 0 ⇒ λi = 0. 

Example 2.20.  Let V = ℝ𝑛, ⟨X, Y ⟩ = X.Y V1 = (3, 5, 4), V2 = (3, −5, 4), 

V3(4, 0, −3). 

V1.V2 = 0, V1V3 = 0, V2V3 = 0 

V1.V1 = 50, V2V2 = 50, V3V3 = 25. 

Thus the set {V1, V2, V3} is orthogonal but not orthonormal. 

Lemma 2.21. If 𝛽𝛾: 𝐼 → ℝ𝑛 is a pair of curves, and 𝑐: 𝐼 → ℝ is a smooth function then: 

(1) −
𝑑

𝑑𝑡
⟨𝛾(𝑡), 𝛽(𝑡)⟩ = ⟨𝛾′(𝑡), 𝛽(𝑡)⟩ + ⟨𝛾(𝑡), 𝛽′(𝑡)⟩. 

(2) −
𝑑

𝑑𝑡
(𝑐(𝑡)𝛾(𝑡)) = 𝑐′(𝑡)𝛾(𝑡) + 𝑐(𝑡)𝛾′(𝑡). 

Proof. (1) - Let define γ(t) and β(t) as in the definition [2.3] 

𝑑

𝑑𝑡
⟨𝛾(𝑡), 𝛽(𝑡)⟩ =

𝑑

𝑑𝑡
(𝑥1(𝑡)𝑦1(𝑡) + 𝑥2(𝑡)𝑦2(𝑡) + ⋯ + 𝑥𝑛(𝑡)𝑦𝑛(𝑡)) =

𝑑

𝑑𝑡
𝑥1(𝑡)𝑦1(𝑡) +

𝑑

𝑑𝑡
𝑥2(𝑡)𝑦2(𝑡) + ⋯ +

𝑑

𝑑𝑡
𝑥𝑛(𝑡)𝑦𝑛(𝑡) = 𝑥1(𝑡)𝑦1

′ (𝑡) + 𝑥1
′ (𝑡)𝑦1(𝑡) + ⋯ + 𝑥𝑛(𝑡)𝑦𝑛

′ (𝑡) + 𝑥𝑛
′ (𝑡)𝑦𝑛(𝑡) =

[𝑥1
′ (𝑡)𝑦1(𝑡) + ⋯ + 𝑥𝑛

′ (𝑡)𝑦𝑛(𝑡)] + [𝑥1(𝑡)𝑦1
′ (𝑡) + ⋯ + 𝑥𝑛(𝑡)𝑦𝑛

′ (𝑡)] = ⟨𝛾′(𝑡), 𝛽(𝑡)⟩ + ⟨𝛾(𝑡), 𝛽′(𝑡)⟩.

  

(2)- Direct from the definition of the derivative. 

Proposition 2.22. Let If 𝛾, 𝛽: 𝐼 → ℝ𝑛be a pair of curves. 

(1) If γ has constant norm (that is |γ(𝑡)|, = 𝐶 , for all t ∈ I), then 𝛾′(𝑡) is orthogonal to 

γ(𝑡)for all t ∈ I. 

(2) If γ(𝑡) is orthogonal to β(t) for all t ∈ I, then 

⟨𝛾′(𝑡), 𝛽(𝑡)⟩ = −⟨𝛾(𝑡)′(𝑡), 𝛽(𝑡)⟩, 

for all t ∈ I. Notice that the hypotheses of (1) and (2) are both true if {γ(t), β(t)} is 

orthonormal for all t ∈ I. 
'
 

(3) If 𝛾(𝑡): 𝐼 → ℝ𝑛 is a curve with constant speed, then γ (t) is orthogonal to 

If 𝛾′′(t) for all t ∈ I. 
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→ 

Proof. (1) We have ⟨γ(𝑡), 𝛾(𝑡)⟩ =  |γ(t)|2 = C, the derivative is zero. 

0 =
𝑑

𝑑𝑡
⟨𝛾(𝑡), 𝛾(𝑡)⟩ = ⟨𝛾′(𝑡), 𝛾(𝑡)⟩ + ⟨𝛾(𝑡), 𝛾′(𝑡)⟩. 

 

Thus ⟨𝛾(𝑡), 𝛾′(𝑡)⟩ = 0, which mean it is orthogonal. 

(2) Let γ(t) is orthogonal to β(t) for all t ∈ I , which means ⟨𝛾(𝑡), β(𝑡)⟩ = 0, and also the 

derivative must be zero. 

0 =
𝑑

𝑑𝑡
⟨𝛾(𝑡), 𝛽(𝑡)⟩ = ⟨𝛾′(𝑡), 𝛽(𝑡)⟩ + ⟨𝛾′(𝑡)(𝑡), 𝛽(𝑡)⟩. 

(3) We have ⟨𝛾′(𝑡), 𝛾′(𝑡)⟩ =  |𝛾′(𝑡)|2 = C, the derivative is zero. 

0 =
𝑑

𝑑𝑡
⟨𝛾′(𝑡), 𝛾′(𝑡)⟩ = ⟨𝛾′(𝑡), 𝛾′′(t)⟩ + ⟨𝛾′′(t), 𝛾′(𝑡)⟩. 

Thus ⟨𝛾′(𝑡), 𝛾′′(t)⟩ = 0, which mean it is orthogonal 

Example 2.23. Is the converse of part (1) of Proposition 2.22 true? 

 Proof. Let 𝛾′(𝑡) is orthogonal to γ(t) for all t ∈ I. 

0 = ⟨𝛾′(𝑡), 𝛾(𝑡)⟩ = ⟨𝛾′(𝑡), 𝛾(𝑡)⟩ + ⟨𝛾(𝑡), 𝛾′(𝑡)⟩ ==
𝑑

𝑑𝑡
⟨𝛾(𝑡), 𝛾(𝑡)⟩. 

Thus ⟨γ(𝑡), 𝛾(𝑡)⟩ =  |γ(t)|2 = C, then 𝛾(𝑡) has constant norm. 

Example 2.24. If 𝛾(𝑡): 𝐼 → ℝ𝑛 is a regular curve, prove that 

𝑑

𝑑𝑡
|𝛾(𝑡)| = ⟨𝛾′(𝑡),

𝛾(𝑡)

|𝛾(𝑡)|
⟩.

Solution.
dt 

|γ(t)| = ⟨γ (t). 
|γ(t)| 

⟩ 

𝑑

𝑑𝑡
|𝛾(𝑡)| =

𝑑

𝑑𝑡
⟨𝛾(𝑡), 𝛾(𝑡)⟩

1
2 = 1/2⟨𝛾(𝑡), 𝛾(𝑡)⟩−

1
2{⟨𝛾′(𝑡), 𝛾(𝑡)⟩ + ⟨𝛾(𝑡), 𝛾′(𝑡)⟩} =

2⟨𝛾(𝑡), 𝛾′(𝑡)⟩

2⟨𝛾(𝑡), 𝛾(𝑡)⟩
1
2

= ⟨𝛾′(𝑡),
𝛾(𝑡)

|𝛾(𝑡)|
⟩.

2.3. Acceleration. 

Definition 2.25. Acceleration is a vector quantity that is defined as the rate at which an 

object changes its velocity. An object is accelerating if it is changing its velocity. Velocity is 

defined as a vector measurement of the rate and direction of motion or, in other terms, the 

rate and direction of the change in the position of an object. The following notational 

convention from physics: If 𝛾(𝑡): 𝐼 → ℝ𝑛, is a regular curve. 

v(t) = 𝛾′(𝑡)   (the velocity function) 

 

a(t) = v
' 
(t) = 𝛾′′(t)   (the acceleration function). 

Also we have by the physics interpretation of a(t) comes from the vector version of Newton’s law: 

                                               F (t) = ma(t), 

where m is the objects mass, and F (t) is the vector-valued force acting on the  object at time t. 

Example 2.26. Find velocity, acceleration and speed of particle described by 

γ(t) = ⟨t, t2, t3⟩, at t = 1. 

Solution. 𝑣(𝑡) = 𝛾′(𝑡) = ⟨1, 2t, 3𝑡2⟩ ⟹ 𝑣(1) = ⟨1, 2, 3⟩     



Ahmed Mohson Mahdi,                                   JCM - Vol.14(1) 2022 , pp  Math.  1–7                  8

 

speed:| 𝑣(𝑡)| = √1 + 4 + 9 = 2√3.  

𝑎(𝑡) = 𝑣′(𝑡) = 𝛾′′(t) = ⟨0, 2, 6t⟩ = ⟨0, 2, 6⟩.  

Example 2.27. L e t  𝛾(𝑡) = ⟨(1, −2𝑡2), 𝑡2, (−2 + 2𝑡2)⟩. 

1- Compute velocity, speed, acceleration and find the unit-tangent vector. 

2- Compute the arc length. 

Solution. 1-v(t) = ⟨−4t, 2t, 4t⟩. 

|𝑣(𝑡)| = √16𝑡2 + 4𝑡2 + 16𝑡2 = 6𝑡

𝑎(𝑡) = ⟨−4,2,4⟩.
  

The unit-tangent: 
𝑣(𝑡)

|𝑣(𝑡)|
=

1

6𝑡
⟨−4𝑡, 2𝑡, 4𝑡⟩ = ⟨−

2

3
,

1

3
,

2

3
⟩. 

2- The arc length = ∫  
2

0
|𝑣(𝑡)|𝑑𝑡 = ∫  

2

0
(6𝑡)𝑑𝑡 = 12 units. 

Proposition 2.28. 
𝒅

𝒅𝒕
|𝑣(𝑡)| =

⟨𝑎(𝑡),𝑣(𝑡)⟩

|𝑣(𝑡)|
 = the component of a(t) in the direction

of v(t). 
 |v(t)| 

Proof.  Similarly as example 2.24.  

Example 2.29. If γ is a curve in ℝ𝑛  with |γ(t)| = c (a constant), prove that 

⟨𝑎(𝑡), −𝛾(𝑡)⟩ = |𝛾(𝑡)|2. Rewrite this as ⟨𝑎(𝑡), −
𝛾(𝑡)

|𝛾(𝑡)|
⟩ =

|𝛾(𝑡)|2

𝑐
,  and  notice  that the left side is 

the component of a(t) in the direction of the center-pointing vector. Interpret this physically in 

terms of centripetal force. 

Solution. The expression ⟨𝛾(𝑡), 𝛾(𝑡)⟩ = |𝛾(𝑡)|2 = 𝑐2 , is constant, the derivative of this 

expression must be zero: 

0 =
𝑑

𝑑𝑡
⟨𝛾(𝑡), 𝛾(𝑡)⟩ = ⟨𝛾(𝑡), 𝑣(𝑡)⟩ + ⟨𝑣(𝑡), 𝛾(𝑡)⟩ = 2⟨𝛾(𝑡), 𝑣(𝑡)⟩ , which means ⟨𝛾(𝑡), 𝑣(𝑡)⟩ = 0. 

0 =
𝑑

𝑑
⟨𝛾(𝑡), 𝑣(𝑡)⟩ = ⟨𝑣(𝑡), 𝑣(𝑡)⟩ + ⟨𝛾(𝑡), 𝑎(𝑡)⟩ ⟹= ⟨𝑣(𝑡), 𝑣(𝑡)⟩ = −⟨𝛾(𝑡), 𝑎(𝑡)⟩ ⟹ |𝑣(𝑡)|2 =

⟨𝑎(𝑡), −𝛾(𝑡)⟩.   
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Example 2.30. Find a space curve γ(t) = ℝ → ℝ𝑛 with acceleration function 

a(t) = (t2 − 1, t3, t2 + 1). How unique is the solution? 

Solution. 

𝑣(𝑡) = ∫ 𝑎(𝑡)𝑑𝑡 = ∫ (𝑡2 − 1, 𝑡3, 𝑡2 + 1)𝑑𝑡 = ((
𝑡3

3
− 𝑡 + 𝑐,

𝑡4

4
+ 𝑑, (

𝑡3

3
+ 𝑡 + 𝑒))), 

the velocity at time t. 

Space curve: 

𝛾(𝑡) = ∫ 𝑣(𝑡)𝑑𝑡 = ((
𝑡4

12
−

𝑡2

2
+ 𝑐𝑡 + 𝑐1) , (

𝑡5

20
+ 𝑑𝑡 + 𝑑1) (

𝑡4

12
+

𝑡2

2
+ 𝑒𝑡 + 𝑒1)), 

the position at time t. 

2.4. Reparametrization. During the previous week, i studied the section reparameterization 

and i read: 

Definition 2.31. Suppose that  : I → ℝ𝑛 is a regular curve.  A reparametrization of  𝛾  is  a  

function  of  the  form   𝛾= 𝛾 o φ → ℝ𝑛,  where  Ĩ is  an  interval  and  φ : Ĩ → I 

is a smooth bijection with nowhere-vanishing derivative (φ
' 
(t) 0 for all t ∈ I˜). And 𝛾 

is called orientation-preserving if φ̃ > 0, and orientation-reversing if φ̃ < 0. 

Proposition 2.32. A regular curve 𝛾: 𝐼 → ℝ𝑛can be reparametrized by arc length. That is, there 

exists a unit-speed reparametrization of γ. 

Definition 2.33.  A closed curve means a regular curve of the form 𝛾: [𝑎, 𝑏]  → ℝ𝑛 such that 

γ(a) = γ(b) and all derivatives match: 

𝛾(𝑎)′ = 𝛾(𝑏)′,        𝛾(𝑎)′′ = 𝛾(𝑏)′′   𝑒𝑙𝑐. 

If additionally is one-to-one on the domain [a, b), then it is called a simple closed curve ( 

Proposition 2.34.  A regular curve 𝛾: [𝑎, 𝑏] → ℝ𝑛  is a closed curve if and only if there exists a periodic 

regular curve 𝛾: 𝑅 → ℝ𝑛with period ba such that  𝛾 for all t ∈ [a, b]. 

Definition 2.35.  Let 𝛾: [𝑎, 𝑏] → ℝ𝑛 be a closed curve. A reparametrization of γ is a function of the 

form 𝛾  = 𝛾𝜆  o φ:  [c, d] → ℝ𝑛, where 𝜆 ∈ ℝ and φ:  [c, d] →   [a +, b +] is a smooth bijection with now 

here vanishing derivative, whose derivatives all match at c and d; that is, 

𝜙(𝑐)′ = 𝜙(𝑑)′,        𝜙(𝑐)′′ = 𝜙(𝑑)′′   𝑒𝑙𝑐. 

Proposition 2.36. Two simple closed curves have the same trace  if  and  only  if each is a 

reparametrization of the other.. 

1.5. Curvature. To date. I have studied in this section the curvature and its properties 

and I read some theorems that connect between the unit tangent, unit normal and the curvature 

through the rate of change of velocity (Acceleration). 

Definition 2.37. Let 𝛾: 𝐼 → ℝ𝑛 be a regular curve.  Its curvature function 

κ : I → [0, ∞), is define as 

𝜅(𝑡) =
|𝑎⊥(𝑡)|

|v(𝑡)|2
 . 

Proposition 2.38. If γ is parameterized by arc length, then κ = |a(t)|. 

Definition 2.39. Let 𝛾: 𝐼 → ℝ𝑛 be a regular curve. Define the unit tangent and the unit 

normal vectors at t ∈ I as 

𝑇(𝑡) =
𝑣(𝑡)

|𝑣(𝑡)|
,    𝑁(𝑡) =

𝑎⊥(𝑡)

|𝑎⊥(𝑡)|
 . 
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Proposition 2.40. If 𝛾: 𝐼 → ℝ𝑛 is a regular curve (not necessarily of unit speed), then for all 

t ∈ I, 

𝜅 =
|T′(𝑡)|

|v(𝑡)|
 . 

Proposition 2.41. If 𝛾: 𝐼 → ℝ𝑛 is a regular curve (not necessarily of unit speed), then at 

every time when κ≠ 0, we have 𝑇′ = 𝜅|𝑣|𝑁. Consequently, 

−⟨𝑁′, 𝑇⟩ = ⟨𝑇′, 𝑁⟩ = 𝜅|𝑣|. 

Definition 2.42. (A critical Point). We say that x = t is a critical point of the function γ(x). If 

γ(t)- exists and if the following are true γ
' 

(t) = 0 or γ
' 

(t) does not exist. 

Notation 2.43. The n-th degree of Taylor Polynomials of γ(x) is define as 

𝑇𝑛(𝑥) = ∑  

𝑛

𝑖=0

𝛾𝑖(𝑥)

𝑖!
(𝑥 − 𝑎)𝑖 . 

 

Example 2.44. For constant a, b, c > 0, consider the generalized helix define as 

                              γ(t) = (a cos t, b sin t, ct) t ∈ R. 

Where is the curvature maximal and minimal?  

1.6. Plane Curve. [A plane curve is any curve, which can be drawn on the plane. Some 

curves are fairly simple, like a circle, and will have fairly simple algebraic equations. Some are 

very complex, like your signature, and may be very difficult to describe with an equation. Plane 

curves were studied intensively from the seven- tenth through the nineteenth centuries.] In This 

section, I studied some specialized properties of regular plane curve (regular curves in the plan 

ℝ2). Let as first con- sider the linear isomorphism [An isomorphism between two vector space V 

and W is a map f : V→ W such that: 
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1- f is one to one. 

2- f (v1 + v2) = f (v1) + f (v2) for all v1, v2 ∈ V . 

 3- f (rv) = rf (v) for r ∈ ℝ. 

R90 : ℝ2 → ℝ2  defined as 

                                             R90(x, y) = (−y, x) 

whose effect is to rotate the vector (x, y) by 90 degrees counterclockwise 

Definition 2.45. Let γ  : I → ℝ2 is a unit-speed plane curve. At any time t ∈ I. We call κs : 

I → ℝ the signed curvature function which define as 

𝜅(𝑡) =
𝑎(𝑡)

𝑅90(𝑣(𝑡))
 , 

its negative if the curve is turning clockwise at t, and its positive if counterclockwise. 

Lemma 2.46. Let γ  : I → ℝ2 is a unit-speed plane curve. At any time t ∈ I With 

κs : I → ℝ then |κs(t)| = |κ(t)| 

Definition 2.47. If  : I → ℝ2 is a regular plane curve (not necessarily parameterized by arc 

length), then for all t ∈ I, 

𝜅𝑠(𝑡) =
⟨𝑎(𝑡), 𝑅90 (

𝑣(𝑡)
|𝑣(𝑡)|

)⟩

|𝑣(𝑡)|2
=

⟨𝑎(𝑡), 𝑅90(𝑣(𝑡))⟩

|𝑣(𝑡)|3
. 

 

Proposition 2.49. If γ : I → ℝ2  is a unit-speed plane, then there exists a smooth angle 

function, θ : I → ℝ, such that for all t ∈ I, we have 

                             v(t) = (cos θ(t), sin θ(t)). 

This function is unique up to adding an integer multiple of 2π. 

Definition 2.50.  The rotation index of a unit-speed closed plane curve γ : [a, b] → ℝ2  equals 
1

2𝜋
(𝜃(𝑏) − 𝜃(𝑎)), where is the angle function from Proposition 3.5. The rotation index of a 

regular closed plane curve (not necessarily of unit speed) means the rotation index of an 

orientation preserving unit-speed re parameterization of it. 

 

2.7. Space Curves. In this short subsection we concern a smooth curve γ in the standard 

three dimensional Euclidean space E. Let this curve be defined (up to translations and 

rotations of E) by its curvature κ(s) and its torsion τ (s), the arguments is the arc-length 

parameter.
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Definition 2.51. If a = (a1, a2, a3), b = (b1, b2, b3) ∈ ℝ3, then 

                     a × b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) ∈  ℝ3. 

Lemma 2.52. Let a, b ∈  ℝ3 

. (1) 𝑎 × 𝑏 is orthogonal to both a and b. 

. (2)   |𝑎 × 𝑏| = |𝑎||𝑏| sin(𝜃) = √|𝑎|2|𝑏|2 − 〈𝑎, 𝑏〉2 = the area of the parallelogram spanned by 

𝑎 𝑎𝑛𝑑 𝑏 (where 𝜃 = ∠(𝑎, 𝑏)). 

.  (3) The direction of a × b is given by the right-hand rule. 

Lemma 2.53. If a, b, c ∈ ℝ3  and µ, λℝ, then : 

(1) a × b = −(b × a). 

(2) (λ + µb) × c = λ (a × c) + µ(b × c), 

      a × (λ b + µc) = λ (a × b) + µ(a × c). 

Lemma 2.54. If γ, β → ℝ3  is a pairs of space curves, then 

𝑑

𝑑𝑡
(𝛾(𝑡) × 𝛽(𝑡)) = 𝛾′(𝑡) × 𝛽(𝑡) + 𝛾(𝑡) × 𝛽′(𝑡). 

Proposition 2.55. If γ : I → ℝ3 is a regular space curve, then for all t ∈ I, 

                                             κ(t) = 
|v(t) × a(t)| 

.
 

                                                              |v(t)|3 

Definition 2.56.  Let γ : I→ ℝ3 be a regular space curve. Let 𝑡 ∈I with κ(t) ≠ 0. Then the 

frenet frame at t is the basis T (t), N (t), B(t) of ℝ3 define as 

𝑇(𝑡) =
𝑣(𝑡)

|𝑣(𝑡)|
, 𝑁(𝑡) =

𝑎⊥(𝑡)

|𝑎⊥(𝑡)|
=

𝑇′(𝑡)

|𝑇′(𝑡)|
, 𝐵(𝑡) = 𝑇(𝑡) × 𝑁(𝑡) 

Individually they are called the unit tangent, unit normal, and unit binormal vectors at t. 

Definition 2.57.  Let γ : I→ ℝ3  be a regular curve. Let t ∈ I with κ(t) ≠ 0. The 

torsion of γ at t, denoted by τ (t), is 

 

𝜏(𝑡) =
−⟨𝐵′(𝑡), 𝑁(𝑡)⟩

|𝑣(𝑡)|
. 

Proposition 2.58.  Let γ : I → ℝ3 be a regular curve.  Let t ∈ I with κ(t) ≠ 0. The trace of γ is 

constrained to a plane if and only if τ (t) = 0 for all t ∈ I. 
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Proposition 2.59. (The Frenet Equations.) Let γ : I → ℝ3  be a regular curve. At every time 

t ∈  I with κ(t) ≠ 0, the derivatives of the vectors in the Frenet frame are 

(1) 𝑇′ = |𝑣|𝜅𝑁. 

(2) 𝑁′ = −|𝑣|𝜅𝑇. 

(3) 𝐵′ = −|𝑣|𝜏𝑁. 

 

T
' 

= |v|κN N
' 

= −|v|κT B
' 

= −|v|τ N. 

2.8.  Rigid Motion. A Rigid Motion (motions are the orientation preserving isometrics.) is 

the action of taking an object and moving it to a different location without altering its shape or 

size. For examples of a Rigid motion are translation and rotation . But reflection and glide 

reflection are isometrics, but are not motions. Where, 

 

Translation: It is a shifting of a shape, where all the shapes are moved in the same direction 

and the same distance. Shapes are simply translated in a direction without loss of orientation. 

 

Reflection occurs when an image is flipped over along an axis. A way to en- visage this is by 

placing a small mirror along an object to act as an axis of reflection. 

 

Rotation To understand rotation, imagine sticking a pin through the duplicate copy of tracing 

paper and moving it around the pin, which serves as the center of rotation. 

 

Glide reflection A glide reflection is a reflection around an axis, combined with a translation 

along the same axis. 

 

3. ADDITIONAL TOPICS IN CURVE 

This section studied more deeply into the geometry of curves, including some of the famous 

theorems in the field. The theory of curves is an old and extremely well developed mathematical 

topic. 

3.1. Theorems of Hopf and Jordan. 

Definition 3.1.  Let γ : [a, b] → ℝ3  be a simple plane curve .  Let C  = γ([a, b]), denote its 

trace, Then the rotation index of γ is define 

 

ind(𝛾) =
1

2𝜋
(𝜙(𝑏) − 𝜙(𝑎)).
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Theorem 3.2. (Hopf’s Umlaufsatz) Let γ be a regular simple close plane curve. Then 

ind(𝛾) = ±1 . 

Theorem 3.3. (The Jordan curve theorem) 

ℝ2 − 𝐶 = {𝑝 ∈ ℝ2 ∣ 𝑃 ∉ 𝐶} 

has exactly two path-connected components. Their common boundary is C. One component (which 

we call the interior) is bounded, while the other (which we call the exterior) is unbounded. 

Definition 3.4.  A simple closed plane curve γ :[a, b] → ℝ2  is called positively oriented if it 

satisfies the following equivalent conditions: 

(1) The rotation index of γ equals 1. 

(2) The interior is on ones left as one traverses γ; more precisely, for each t ∈ [a, b], 

R90(γ(t)′) points toward the interior in the sense that there exists δ  > 0 such that γ(t) + 

sR90(γ)′lies in the interior for all s ∈ (0, δ). Otherwise, γ is negatively oriented, in which case its 

rotation index equals 1, and R90(γ)
' 

points toward the exterior for all t ∈ [a, b]. 

Proposition 3.5. If f : [a, b] → S
' 

is a continuous function with f (a) = f (b), then there exists a 

continuous angle function φ : [a, b]  →  ℝ such that for all t  ∈  [a, b], we have 

                                    f (t) = (cos φ(t), sin φ(t)). 

This function is unique up to adding an integer multiple of 2π. The degree of f is defined as the 

integer 
1

2𝜋
(𝜙(𝑏) − 𝜙(𝑎). 

Definition 3.6.  A piecewise-regular curve in R
'  

is a continuous function γ :  [a, b] → ℝ𝑛 with a 

partition, a = t0 < t1 < ... < tn = b, such that the restriction, γi, of γ  to  each  subinterval  [ti, 

ti+1]  is  a  regular curve. It is called closed if  additionally γ(a) = γ(b), and simple if γ is one-to-

one on the domain [a, b). It is said to be of unit speed if each γi is of unit speed. 

Theorem 3.7. (Generalized Hopf s Umlaufsatz) Let : [a, b]→ ℝ2be a unit-speed positively oriented 

piecewise-regular simple closed plane curve. Let s denote its signed curvature function, and let i be 

the list of signed angles at its corners. Then 

∫  
𝑏

𝑎

𝑘𝑠(𝑡) + ∑  

𝑖

𝛼𝑖 = 2𝜋.

Definition 3.8. Let γ  : [a, b] → ℝ2  be a piecewise-smooth simple closed plane curve with signed 

angles denoted by  ℵi. The ith  interior  angle  of γ,  denoted  by βi ∈ [0, 2π], is defined as 

𝛽𝑖 = {
𝜋 − 𝛼     if 𝛾 is positively oriented 
𝜋 + 𝛼     if 𝛾 is negatively oriented 

 

In theorem 3.7, γ is assumed to be positively oriented, so the theorem becomes 
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∫  
𝑏

𝑎

𝑘𝑠(𝑡) = ∑  

𝑖

𝛽𝑖 − (𝑛 − 2)𝜋, 

 

where n is the number of corners. 

If the smooth segments of γ are straight-line segments, then this becomes 

 

∑  

𝑖

𝛽𝑖 = (𝑛 − 2). 
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