Page 30-43

Habeeb.K/Inam.F

Strongly regular Palais proper G – space

Habeeb Kareem Abdullah	Inam Farhan Adhab
Department of Mathematics	Department of Mathematics
College of Education for Girls	The Open Educational
University of Kufa	College –OEC-

 Recived :26\3\2012
 Revised : 14\5\2014
 Accepted :8\7\2014

<u>Abstract</u>

The main goal of this work is to create a general type of proper G – space , namely, strongly regular Palais proper G - space and to explain the relation between st – r – Bourbaki proper and st – r – Palais proper G – space and studied some of examples and propositions of strongly regular Palais proper G - space.

Mathematics Subject Classification: 54XX

Introduction:-

Let B be a subset of a topological space (X,T). We denote the closure of B and the interior of B

by **B** and B° , respectively. The subset B of (X, T) is called regular open (r - open) if $B = \overline{B}^{\circ}$. The complement of a regular open set is defined to be a regular closed (r - closed) Then the family of all r – open sets in (X,T) forms a base of a smaller topology T^r on X , called the semi – regularization of T.

In section one of this work, we include some of results which needed in section two, section two recalls the definition of Palais proper G – space, gives a new type of Palais proper G – space (to the best of our Knowledge), namely, strongly regular Palais proper G – space, studies some of its properties and is given the relation between st – r – Bourbaki proper and st – r – Palais proper G – space. (where G- space is meant T_2 – space topological X on which an r – locally r– compact, non – compact, T_2 – topological group G acts continuously on the left).

<u>1. Preliminaries</u>

First ,we present some fundamental definitions and proposition which are needed in the next section.

<u>1.1 Definition</u> [15]: <u>A</u> subset *B* of (*X*, *T*) is called regular open (r – open) if $B = \overline{B}^{\circ}$. The complement of regular open set is defined to be a regular closed (r – closed). If $B = \overline{B}^{\circ}$ then the family of all r – open sets in (*X*,*T*) forms a base of a smaller topology T^ron *X* , called the semi – regularization of *T*

1.2 Proposition [2]:

Let X and Y be two spaces. Then $A_1 \subseteq X$, $A_2 \subseteq Y$ be an r – open (r – closed) sets in X and

Y, respectively if and only if $A_1 \times A_2$ is r – open(r– closed) in $X \times Y$.

Habeeb.K/Inam.F

<u>1.3 Definition[2]</u>: A subset *B* of a space *X* is called regular neighborhood (r – neighborhood) of $x \in X$ if there is an opens subset *O* of *X* such that $x \in O \subseteq B$.

<u>1.4 Definition [2]</u>: Let *X* and *Y* be spaces and $f: X \rightarrow Y$ be a function. Then:

(i) f is called regular continuous (r- continuous) function if $f^{-1}(A)$ is an r – open set in X for

every open set A in Y.

(ii) f is called regular irresolute (r – irresolute) function if $f^{-1}(A)$ is an r – open set in X for every r- open set A in Y.

1.5 Proposition [2]:

Let $f: X \rightarrow Y$ be a function of spaces. Then f is an r - continuous function if and only if $f^{-1}(A)$ is an r - closed set in X for every closed set A in Y.

<u>1.6 Proposition :</u>

Let *X* and *Y* be spaces and let $f: X \rightarrow Y$ be a continuous, open function. Then *f* is r – irresolute function.

Proof:

Let A be an r-open set of Y, then $A = \overline{A}^{\circ}$. Since f is continues and open then

$$f^{-1}(A) = f^{-1}(\overline{A}^{\circ}) = \left[f^{-1}(\overline{A})\right]^{\circ} = \left[\overline{f^{-1}(A)}\right]^{\circ}, f^{-1}(A) \text{ is an r-open set of X.}$$

1.7 Definition [2]:

- (i) A function $f: X \rightarrow Y$ is called strongly regular closed (st r closed) function if the image of each r closed subset of X is an r closed set in Y.
- (ii) A function $f: X \rightarrow Y$ is called strongly regular open (st -r open) function if the image of each r open subset of X is an r open set in Y.

1.8 Remark :

(i) A function $f:(X, T) \rightarrow (Y,\tau)$ is r-continuous function if and only if $f:(X, T') \rightarrow (Y,\tau')$ is continuous.

(ii) A function $f: (X, T) \to (Y, \tau)$ is r – irresolute function if and only if $f:(X, T') \to (Y, \tau')$ is

continuous.

.<u>1.9 Definition [2]:</u>Let X and Y be spaces. Then a function $f: X \to Y$ is called a st – r – homeomorphism if:

- (i) f is bijective.
- (ii) f is continuous.
- (iii) f is st -r closed (st -r open).

Habeeb.K/Inam.F

<u>1.10 Proposition[2]</u>: Every r-homeomorphism is st – r – homeomorphism

<u>1.11 Proposition [2]</u>: Let *X*, *Y* be spaces and $f: X \rightarrow Y$ be an r - homeomorphism function. Then *f* is a st – r – closed function **<u>1.12 Definition [2]</u>:** Let $(\chi_d)_{d \in D}$ be a net in a space *X*, $x \in X$. Then :

i) $(\chi_d)_{d \in D}$ is called r – converges to x (written $\chi_d \xrightarrow{r} x$) if $(\chi_d)_{d \in D}$ is eventually in every r –

neighborhood of x. The point x is called an r – limit point of $(\chi_d)_{d\in D}$, and the notation " χ_d

 $\xrightarrow{r} \infty$ " is mean that $(\chi_d)_{d \in D}$ has no r – convergent subnet.

ii) $(\chi_d)_{d\in D}$ is said to have x as an r – cluster point [written $\chi_d^{\alpha} x$] if $(\chi_d)_{d\in D}$ is frequently in every r - neighborhood of x.

<u>1.13 Theorem[2]</u>: Let $(\chi_d)_{d\in D}$ be a net in a space (X, T) and x_o in X. Then $\chi_d \propto x_o$ if and only if there exists a subnet $(\chi_{dm})_{dm\in D}$ of $(\chi_d)_{d\in D}$ such that $\chi_{dm} \xrightarrow{r} \chi_o$.

1.14 Remark:

Let $(\chi_d)_{d\in D}$ be a net in a space (X, T) such that $\chi_d \alpha x, x \in X$ and let A be an r – open set in X which contains x. Then there exists a subnet $(\chi_{dm})_{dm\in D}$ of $(\chi_d)_{d\in D}$ in A such that $\chi_{dm} \xrightarrow{r} x$.

<u>1.15 Proposition [2]</u>: Let X be a space and $A \subseteq X$, $x \in X$. Then $x \in \overline{A}^r$ if and only if there exists a net $(\chi_d)_{d \in D}$ in A and $\chi_d \xrightarrow{r} X$.

<u>1.16 Remark [1]</u>: Let *X* be a space, then:

- (i) If $(\chi_d)_{d \in D}$ is a net in $X, x \in X$ such that $\chi_d \longrightarrow x$ then $\chi_d \xrightarrow{r} x$.
- (ii) If $(\chi_d)_{d \in D}$ is a net in *X*, $x \in X$ such that $\chi_d \stackrel{\alpha}{\sim} x$ then $\chi_d \stackrel{\alpha}{\sim} x$.
- (iii) If $(\chi_d)_{d\in D}$ is a net in $X, x \in X$. Then $\chi_d \xrightarrow{r} x$ in (X, T) if and only if $\chi_d \to x$ in (X, T'), and $\chi_d \stackrel{'}{\alpha} x$ in (X, T) if and only if $\chi_d \alpha x$ in (X, T').

<u>1.17 Proposition</u>: Let $f: X \rightarrow Y$ be a function, $x \in X$. Then:

(i) f is r – continuous at x if and only if whenever a net $(\chi_d)_{d \in D}$ in X and $\chi_d \xrightarrow{r} X$

then $f(\chi_d) \longrightarrow f(x)$.

(ii) f is r – irresolute at x if and only if whenever a net $(\chi_d)_{d \in D}$ in X and $\chi_d \xrightarrow{r} X$

then $f(\chi_d) \xrightarrow{r} f(x)$.

Habeeb.K/Inam.F

<u>Proof:</u> (i) \Rightarrow Let $x \in X$ and $(\chi_d)_{d \in D}$ be a net in X such that $\chi_d \xrightarrow{r} x$ (To prove that $f(\chi_d) \longrightarrow f(x)$). Let V be a open neighborhood of f(x). Since f is r – continuous, then $f^{-1}(V)$ is r – neighborhood of x, but $\chi_d \xrightarrow{r} x$, then there is $\beta \in D$ such that $\chi_d \in f^{-1}(V)$,

 $\forall d \ge \beta$. Then $f(\chi_d) \in f(f^{-1}(V)) \subseteq V$. Thus $f(\chi_d)$ is eventually in every open neighborhood of f(x), then $f(\chi_d) \longrightarrow f(x)$.

 \Leftarrow Suppose that f is not r – continuous. Then there exists $x \in X$ such that f is not r – continuous at x. Then there exists an open set B in Y such that $f(x) \in B$ and $f(A) \not\subset B$ for each A is an r – open in X such that $x \in A$. Thus there exists $\chi_A \in A$ and $f(\chi_A) \notin B$ for each A is r – open in X. Then $\chi_A \xrightarrow{r} x$. But $f(\chi_A) \notin B$ for each $A \in N_r(x)$, then $f(\chi_A)$ is not convergent to f(x) and this is a contradiction. Then f is r – continuous.

(ii) \Rightarrow Let $x \in X$ and $(\chi_d)_{d \in D}$ be a net in X such that $\chi_d \xrightarrow{r} x$. Then by Remark(1.16,iii) $\chi_d \longrightarrow x$ in (X, T^r) . Since $f: (X, T) \longrightarrow (Y, \tau)$ is r – irresolute then by Remark(1.8,ii)

 $f: (X, T') \longrightarrow (Y, \tau')$ is continuous. Thus $f(\chi_d) \longrightarrow f(x)$ in (Y, τ') , so by Remark (1.16,iii) $f(\chi_d) \xrightarrow{r} f(x)$.

⇐By Remark (1.16,iii) and Remark (1.8,ii) we have $f: (X, T^r) \longrightarrow (Y, \tau^r)$ is continuous, then f is r – irresolute.

<u>1.18 Definition [2]</u>: A subset *A* of space *X* is called r - compact set if every r - open cover of *A* has a finite sub cover. If *A*=*X* then *X* is called a r - compact space.

<u>1.19 Proposition [2]</u>: A space (*X*, T) is an r – compact space if and only if every net in *X* has r – cluster point in *X*

<u>1.20 Proposition [2]</u>: Let X be a space and F be an r - closed subset of X. Then $F \cap K$ is r - compact subset of F, for every r - compact set K in X. **1.21 Definition :**

(i) A subset A of space X is called r-relative compact if A is r - compact.

(ii) A space X is called r-locally r-compact if every point in X has an r-relative compact r-neighborhood.

Habeeb.K/Inam.F

<u>1.22 Definition [2]</u> Let $f: X \rightarrow Y$ be a function of spaces. Then:

- (i) f is called an regular compact (r compact) function if $f^{-1}(A)$ is a compact set in X for every r compact set A in Y.
- (ii) *f* is called a strongly regular compact(st r compact) function if $f^{-1}(A)$ is an r compact set in *X* for every r compact set *A* in *Y*.

<u>1.23 Definition [6]</u>: A topological transformation group is a triple (G,X,φ) where G is a T_2 -topological group, X is a T_2 -topological space and $\varphi : G \times X \to X$ is a continuous function such that:

(i) $\varphi(g_1, \varphi(g_2, x)) = \varphi(g_1g_2, x)$ for $allg_1, g_2 \in G$, $x \in X$.

(ii) $\varphi(e, x) = x$ for all $x \in X$, where *e* is the identity element of *G*.

We shall often use the notation g.x for $\varphi(g,x) g.(h,x) = (gh).x$ for $\varphi(g, \varphi(h,x)) = \varphi(gh,x)$. Similarly for $H \subseteq G$ and $A \subseteq X$ we put $HA = \{ga | a \in H, a \in A\}$ for $\varphi(H, A)$. A set *A* is said to be invariant under *G* if GA = A.

1.24 Remark [6]:

(i) The function φ is called an action of G on X and the space X together with φ is called a G – space (or more precisely left G – space).

(ii) The subspace $\{g.x | g \in G\}$ is called the orbit (trajectory) of x under G, which denoted by Gx [or $\gamma(x)$], and for every $x \in X$ the stabilizer subgroup G_x of G at x is the set $\{g \in G / gx = x\}$. (iii) The continuous function $l_g: G \to G$ defined by $y \to gy$ is called the left translation by g. This function has inverse l_g^{-1} which is also continuous, moreover l_g is a homeomorphism. Similarly all right translation $r_g: G \to G$ are homeomorphism for every $g \in G$.

(ix) $Ag = r_g(A) = \{ag: a \in A\}; Ag$ is called the left translate of A by g, where $A \subseteq G$, $g \in G$. (x) $gA = l_g(A) = \{ga: a \in A\}; gA$ is called the right translate of A by g, where $A \subseteq G$, $g \in G$.

2 - Strongly regular Bourbaki Proper Action

<u>2.1 Definition [2]</u>: Let X and Y be two spaces. Then $f: X \rightarrow Y$ is called a strongly regular proper (st – r - proper) function if :

(i) f is continuous function.

(ii) $f \times I_Z: X \times Z \rightarrow Y \times Z$ is a st -r - closed function, for every space Z.

<u>2.2 Proposition [2]</u>: Let *X*, *Y* and *Z* be spaces, $f: X \rightarrow Y$ and g: $Y \rightarrow Z$ be two st -r - proper function. Then $gof: X \rightarrow Z$ is a st -r - proper function.

<u>2.3 Proposition [2]</u>: Let $f_1: X_1 \rightarrow Y_1$ and $f_2: X_2 \rightarrow Y_2$ be two function. Then $f_1 \times f_2: X_1 \times X_2 \rightarrow Y_1 \times Y_2$ is st – r- proper function if and only if f_1 and f_2 are st – r – proper functions.

<u>2.4 Proposition[2]</u>: Let $f: X \rightarrow P = \{w\}$ be a function on a space X. Then f is a st -r - proper function if and only if X is an <math>r - compact, where w is any point which dose not belong to X. **<u>2.5 Lemma:[2]</u>** Every r-irresolute function from an r - compact space into a Hausdorff space is st-r-closed.

Habeeb.K/Inam.F

<u>2.6 Proposition [2]</u>: Let *X* and *Y* be a spaces and *f*: $X \rightarrow Y$ be a continuous function. If Y is T₂-space. Then the following statements are equivalent:

- (i) f is a st -r proper function.
- (ii) f is a st r closed function and f^{-1} ({y}) is an r compact set, for each $y \in Y$.
- (iii)) If $(\chi_d)_{d\in D}$ is a net in X and $y \in Y$ is an r cluster point of $f(\chi_d)$, then there is an r cluster point $x \in X$ of $(\chi_d)_{d\in D}$ such that f(x) = y.

<u>2.7 Proposition [2]</u>: Let X and Y be a spaces, such that Y is a T_2 – space and $f: X \rightarrow Y$ be continuous,r– irresolute function. Then the following statements are equivalent: (i) f is a st – r– compact function.

(ii) f is a st -r proper function.

<u>2.8 Proposition:[3</u>]: Let X, Y and Z be spaces, $f: X \rightarrow Y$ is an st-r – proper functions and g: $Y \rightarrow Z$ is homeomorphism function. Then $gof: X \rightarrow Z$ is an st-r – proper function.

<u>2.9 Proposition</u>: Let X be a Hausdorff-spase then the diagonal function $\Delta : X \longrightarrow X \times X$ is st-r-

proper function

<u>Proof:</u> Since Δ is continuous and X is T_2 Let $(\chi_d)_{d\in D}$ be a net in X and $y = (x_1, x_2) \in X \times X$ be an $r - cluster point of <math>\Delta(\chi_d)$. Then $\Delta(\chi_d) = (\chi_d, \chi_d) \xrightarrow{r} (x_1, x_2)$, so by Proposition (1.13) there exists a subnet of (χ_d, χ_d) , say itself, such that $(\chi_d, \chi_d) \xrightarrow{r} (x_1, x_2)$, then $\chi_d \xrightarrow{r} x_1$ and $\chi_d \xrightarrow{r} x_2$, since X is a T_2 – space, then $x_1 = x_2$. Then there is $x_1 \in X$ such that $\chi_d \xrightarrow{r} x_1$ and $\Delta(x_1) = y$. Hence by Proposition (2.6.iii) Δ is a st -r – proper function.

<u>2.10 Proposition</u>: Let $f_1: X \to Y_1$ and $f_2: X \to Y_2$ be two st -f - proper functions. If X is a Hausdorff space, then the function $f: X \to Y_1 \times Y_2$, $f(x) = (f_1(x), f_2(x))$ is a st -r-proper function

<u>Proof:</u> Since X is Hausdorff, then by Proposition (2.9) Δ is a st -r - proper function. Also by Proposition (2.3) $f_1 \times f_2$ is a st-r-proper function. Then by Proposition (2.2) $f=f_1 \times f_2 \circ \Delta$ is a st-r - proper function.

<u>2.11 Proposition</u>: Let *G* be a topological group and $(g_d)_{d \in D}$ be a net in *G*. Then:

(i) If $g_d \xrightarrow{r} e$, where *e* is identity element of *G*, then $gg_d \xrightarrow{r} g$ (or $g_d g \xrightarrow{r} g$) for each $g \in G$.

- (ii) If $g_d \xrightarrow{r} \infty$, then $gg_d \xrightarrow{r} \infty$ (or $g_d g \xrightarrow{r} \infty$) for each $g \in G$.
- (iii) If $g_d \xrightarrow{r} \infty$, then $g_d^{-1} \xrightarrow{r} \infty$.

Habeeb.K/Inam.F

Proof:

i) Since $r_g: G \to G$ is continuous and open, where r_g is right translation by g. then r_g is r – irresolute.

Thus by Proposition (1.17,ii) $g_d g \xrightarrow{r} g$ for each $g \in G$.

ii) Let $g_d \xrightarrow{r} \infty$ and $g \in G$. suppose that $g_d g \xrightarrow{r} g_1$, for some $g_1 \in G$. Since r_g is r-irresolute, then

by Proposition(1.17,ii) $r_g^{-1}(g_d g) \xrightarrow{r} r_g^{-1}(g_1)$. Then $g_d \xrightarrow{r} g_1 g^{-1}$, a contradiction. Thus $g_d g \xrightarrow{r} \infty$.

iii) Let $g_d^{-1} \xrightarrow{r} g$. Since the inversion map of a topological group G, $v: G \to G$ is r – irresolute, then $g_d \xrightarrow{r} g^{-1}$. Thus if $g_d \xrightarrow{r} \infty$, then $g_d^{-1} \xrightarrow{r} \infty$.

<u>2.12 Proposition:</u> If (G, X, φ) is a topological transformation group, then φ is r – irresolute.

<u>Proof:</u> Let $A \times B$ is an open set in $G \times X$, then $\varphi(A \times B) = AB$. Since $AB = \{ x \in X / x = ab, a \in A, b \in B \} = \bigcup_{a \in A} aB = \bigcup_{a \in A} \varphi(B)$. Since $\varphi_a: X \to X$ is homeomorphism from X on itself such that

 $a \in G$. Then aB is an open set in X, so $\bigcup_{a} B = AB$ is open. Since φ is continuous and open

function, then it's clear that the action φ is an r – irresolute

<u>2.13 Definition</u>: A *G* – space *X* is called a strongly regular Bourbaki proper *G* – space (st – r – proper *G* – space) if the function θ : *G*×*X*→*X*×*X* which is defined by θ (*g*, *x*) = (*x*, *g.x*) is a st – r – proper function.

2.14 Example:

The topological group $Z_2 = \{-1, 1\}$ (as Z_2 with discrete topology) acts on the topological spaceSⁿ (as a subspace of R^{*n*+1} with usual topology) as follows: 1. $(x_1, x_2, ..., x_{n+1}) = (x_1, x_2, ..., x_{n+1})$

 $-1. (x_1, x_2, \dots, x_{n+1}) = (-x_1, -x_2, \dots, -x_{n+1})$

Since Z_2 is an compact, then by Proposition (2.4) the constant function $Z_2 \rightarrow P$ is an r – proper. Also the identity function is an r – proper, then by Proposition (2.3) the function of $Z_2 \times S^n$ into $P \times S^n$ is an r – proper.

Since $P \times S^n$ is homeomorphic to S^n , then by Proposition (2.8), the composition $Z_2 \times S^n \to S^n$ is an r – proper function, hence $Z_2 \times S^n \to S^n$ is a st-r – proper function. Let φ be the action of Z_2 on S^n . Then φ continuous,. Since S^n is T_2 – space. Then by Proposition (2.4) φ is st-r – proper function. Thus by Proposition (2.9) $Z_2 \times S^n \to S^n \times S^n$ is a st – r – proper function, thus S^n is st-r – proper Z_2 - space.

Habeeb.K/Inam.F

<u>2.15 Proposition [6]</u>: Let *X* be a *G* – space then the function θ : *G*×*X*→*X*×*X* which is defined by $\theta(g, x) = (x, g.x)$ is continuous function and $\theta^{-1}(\{(x, y)\})$ is closed in *G*×*X* for every (*x*, *y*)∈*X*×*X*.

3 – Strongly regular Palais proper action:

in this section by G – space we mean a topological T_2 – space X on which an r – locally r – compact, non – compact, T_2 – topological group G continuously on the left (always in the sense of st – r - Palais proper G – space), definitions, propositions, theorems and Example of a strongly regular Palais proper G – space (st – r - Palais proper G – space) is given and the relation between st – r – Bourbaki proper and st – r – Palais proper G – space is studied.

3.1 Definition:

Let X be a G – space .A subset A of X is said to be regular thin (r - thin) relative to a subset B of X if the set $((A, B)) = \{g \in G / gA \cap B \neq \phi\}$ has an r – neighborhood whose closure is r – compact in G. If A is r – thin relative to itself, then it is called r – thin.

<u>3.2 Remark:</u> The r – thin sets have the following properties:

- (i) Since $(gA \cap B) = g(A \cap g^{-1}B)$ it follows that if A is r thin relative to B, then B is r thin relative to A.
- (ii) Since $(gg_1A \cap g_2B) = g_2(g_2^{-1}g_1g_1A \cap B)$ it follows that if A is r thin relative to B, then so are any translates gA and gB.
- (iii) If A and B are r relative thin and $K_1 \subseteq A$ and $K_2 \subseteq B$, then K_1 and K_2 are r –relatively thin.
- (iv) Let X be a G space and K_1 , K_2 be r compact subset of X, then ((K_1 , K_2)) is r closed in G.
- (v) If K_1 and K_2 are r compact subset of G space X such that K_1 and K_2 are r relatively thin, then ((K_1, K_2)) is an r compact subset of G.

<u>Proof:</u> The prove of (i), (ii), (iii) and (v) are obvious.

(iv) Let $g \in \overline{((K_1, K_2))}^r$. Then there is a net $(g_d)_{d \in D}$ in $((K_1, K_2))$ such that $g_d \stackrel{r}{\longrightarrow} g$. Then we have net $(k_d^1)_{d \in D}$ in K_1 , such that $g_d k_d^1 \in K_2$, since K_2 is r – compact, then by Theorem (1.10) there exists a subnet $(g_{d_m} k_{d_m}^1)$ of $(g_d k_d^1)$ such that $g_{d_m} k_{d_m}^1 \stackrel{r}{\longrightarrow} k_o^2$, where $k_o^2 \in K_2$. But $(k_{d_m}^1)$ in K_1 and K_1 is r – compact, thus there is a point $k_o^1 \in K_1$ and a subnet of $k_{d_m}^1$ say itself such that $k_{d_m}^1 \stackrel{r}{\longrightarrow} k_o^1$. Then $g_{d_m} k_{d_m}^1 \stackrel{r}{\longrightarrow} g k_o^1 = k_o^2$, which mean that $g \in ((K_1, K_2))$, therefore $((K_1, K_2))$ is r – closed in G.

Habeeb.K/Inam.F

3.3 Definition:

A subset S of a G – space X is an regular small (r – small) subset of X if each point of X has r – neighborhood which r – thin relative to S.

3.4 Theorem:

- Let X be a G space. Then:
- (i) Each r small neighborhood of a point x contains an r thin neighborhood of x.
- (ii) A subset of an r small set is r small.
- (iii) A finite union of an r small sets is r small.
- (iv) If *S* is an r small subset of *X* and *K* is an r– compact subset of *X* then *K* is r thin relative to *S*.

Proof:

i) Let S is an r – small neighborhood of x. Then there is an r – neighborhood U of x which is r – thin relative to S. Then ((U, S)) has r – neighborhood whose closure is r – compact. Let $V = U \cap S$, then V is r – neighborhood of x and $((V, V)) \subseteq ((U, S))$, therefore V is r – thin neighborhood of x.

ii) Let *S* be an r – small set and $K \subseteq S$. Let $x \in X$, then there exists an r – neighborhood *U* of *x*, which is r – thin relative to *S*. Then $((U, K)) \subseteq ((U, S))$, thus ((U, K)) has r – neighborhood whose closure is r – compact. Then *K* is r – small.

iii) Let $\{S_i\}_{i=1}^n$ be a finite collection of r – small sets and $y \in X$. Then for each *i* there is r – neighborhood K_i of *y* such that the set $((S_i, K_i))$ has r – neighborhood whose closure is r – compact. Then $\bigcup_{i=1}^n ((S_i, K_i))$ has r – neighborhood whose closure is r – compact. But $((\bigcup_{i=1}^n S_i, \bigcap_{i=1}^n (S_i, K_i)))$

 $(K_i) \subseteq \bigcup_{i=1}^n ((S_i, K_i)), \text{ thus } \bigcup_{i=1}^n S_i \text{ is an } r - \text{ small set.}$

iv) Let *S* be an r – small set and *K* be r – compact. Then there is an r – neighborhood U_k of *K*, $\forall k \in K$, such that U_k is r – thin relative to *S*. Since $K \subseteq \bigcup_{k \in K} U_k$.i.e., $\{U_k\}_{k \in K}$ is r – open cover of *K*, which is r – compact, so there is a finite sub cover $\{U_{k_i}\}_{i=1}^n$ of $\{U_k\}_{k \in K}$, since ((U_{k_i}, S)) has r– neighborhood whose closure is r – compact, thus $((\bigcup_{i=1}^n U_{k_i}, S))$ so is . But $((K,S)) \subseteq ((\bigcup_{i=1}^n U_{k_i}, S))$ therefore *K* is r – thin relative to *S*.

3.5 Definition:

A G – space X is said to be a strongly regular Palais proper G - space (st – r – Palais proper G – space) if every point x in X has an r – neighborhood which is r – small set.

Habeeb.K/Inam.F

3.6 Examples:

(i) The topological group $Z_2 = \{-1, 1\}$ act on itself (as Z_2 with discrete topology) as follows:

 $r_1.r_2 = r_1 r_2 \quad \forall r_1.r_2 \in \mathbb{Z}_2.$

for each point $x \in \mathbb{Z}_2$, there is an r – neighborhood which is r – small U of x where $U=\{x\}$, i.e., for any point y of \mathbb{Z}_2 , there exists an r – neighborhood V of y such that $V=\{y\}$ and ((U, V)) = $\{r \in \mathbb{Z}_2 \mid rU \cap V \neq \phi\} = \mathbb{Z}_2$, then ((U, V)) has r – neighborhood whose closure is compact.

(ii) $R - \{0\}$ be r – locally r – compact topological group (as $R - \{0\}$ with discrete topology) acts on the completely regular Hausdorff space R^2 as follows:

 $r.(x_1, x_2) = (rx_1, rx_2)$, for every $r \in \mathbb{R} - \{0\}$ and $(x_1, x_2) \in \mathbb{R}^2$.

Clear \mathbb{R}^2 is $(\mathbb{R} - \{0\})$ – space . But $(0,0) \in \mathbb{R}^2$ has no r – neighborhood which is an r – small. Since for any two r- neighborhood *U*, *V* of (0,0) then $((U,V)) = \mathbb{R} - \{0\}$. Since R is not r – compact . Thus \mathbb{R}^2 is not a st – r – Palais proper $(\mathbb{R} - \{0\})$ – space.

3.7 Proposition:

Let *X* be a G – space . Then:

(i) If X is st -r Palais proper G – space, then every compact subset of X is an r – small set.

(ii) If X is a st -r - Palais proper G - space and K is a compact subset of X, then ((K,K)) is an r - compact subset of G.

Proof:

i) Let *A* be a subset of *X* such that *A* is an compact. Let $x \in X$, since *X* is a st -r - proper G- space then there is an r - neighborhood *U* which is r - small of *x*. Then for every $a \in A$ there exist an r- neighborhood U_a which is r - small , then $A \subseteq \bigcup_{a \in A} U_a$, since *A* is compact then A is

r – compact, then there exists $a_1, a_2, ..., a_n \in A$ such that $A \subseteq \bigcup_{i=1}^n U_{a_i}$, Thus by Theorem

(3.4.iii.ii) *A* is an r – small set in *X*.

ii) Let X be a st -r - proper G - space and K is compact, then by (i) K is an r - small subset of X, and by Theorem (3.4.iv) K is r - thin, so ((K,K)) has r - neighborhood whose closure is r - compact. Then by Remark (3.2.iv) ((K,K)) is r - closed in G. Thus ((K,K)) is r - compact.

<u>3.8 Definition</u>: Let X be a G – space and $x \in X$. Then $J^r(x) = \{y \in X: \text{ there is a net } (g_d)_{d \in D} \text{ in } G$ and there is a net $(\chi_d)_{d \in D}$ in X with $g_d \xrightarrow{r} \infty$ and $\chi_d \xrightarrow{r} x$ such that $g_d x \xrightarrow{r} y\}$ is called regular first prolongation limit set of x.

<u>3.9 Proposition</u>: Let X be a G – space. Then X is a st – r – Bourbaki proper G – space if and only if $J^r(x) = \phi$ for each $x \in X$.

Habeeb.K/Inam.F

<u>Proof:</u> \Rightarrow Suppose that $y \in J^r(x)$, then there is a net $(g_d)_{d \in D}$ in G with $g_d \xrightarrow{r} \infty$ and there is a net $(\chi_d)_{d \in D}$ in X with $\chi_d \xrightarrow{r} x$ such that $g_d\chi_d \xrightarrow{r} y$, so $\theta((g_d,\chi_d))=(x_d, g_d\chi_d) \xrightarrow{r} (x, y)$. But X is a st -r – Bourbaki proper, then by Proposition (2.6) there is $(g, x_1) \in G \times X$ such that (g_d, x_d) $\stackrel{\sim}{\alpha} (g, x_1)$. Thus $(g_d)_{d \in D}$ has a sub net (say itself). such that $g_d \xrightarrow{r} g$, which is contradiction, thus $J^r(x) = \phi$.

 \leftarrow Let $(g_d, \chi_d)_{d \in D}$ be a net in $G \times X$ and $(x, y) \in X \times X$ such that $\theta((g_d, \chi_d)) = (\chi_d, g_d \chi_d) \alpha (x, y)$,

so $(\chi_d, g_d\chi_d)_{d\in D}$ has a sub net, say itself, such that $(\chi_d, g_d\chi_d) \xrightarrow{r} (x, y)$, then $\chi_d \xrightarrow{r} x$ and $g_d\chi_d$ $\xrightarrow{r} y$. Suppose that $g_d \xrightarrow{r} \infty$ then $y \in J^r(x)$, which is contradiction. Then there is $g \in G$ such that $g_d \xrightarrow{r} g$, then $(g_d, \chi_d) \xrightarrow{r} (g, x)$, since θ is an r-irresolute then $\theta((g_d, \chi_d)) \xrightarrow{r} \theta(g, x)$, i.e $(\chi_d, g_d\chi_d) \xrightarrow{r} (x, g. x)$, but $(\chi_d, g_d\chi_d) \xrightarrow{r} (x, y)$, since $X \times X$ is T_2 space then (x, g. x) = (x, y) i.e $\theta(g, x) = (x, y)$. Thus by Proposition (2.6) X is a st - r - Bourbaki proper G - space.

<u>3.10 Proposition</u>: Let X be a G – space and y be a point in X. Then y has no r – small whenever $y \in J^r(x)$ for some point $x \in X$.

Proof:

Let $y \in J^r(x)$, then there is a net $(g_d)_{d \in D}$ in G with $g_d \xrightarrow{r} \infty$ and a net $(\chi_d)_{d \in D}$ in

X with $\chi_d \xrightarrow{r} x$ such that $g_d\chi_d \xrightarrow{r} y$. Now, for each r- neighborhood S of y and every r - neighborhood U of x there is $d_o \in D$ such that $\chi_d \in U$ and $g_d\chi_d \in S$ for each $d \ge d_o$, thus $g_d \in ((U,S))$, but $g_d \xrightarrow{r} \infty$, thus ((U,S)) has no r – compact closure . i.e., S is not an r – small neighborhood.

<u>3.11 Proposition</u>: Let *X* be a st – r – Palais proper *G* – space. Then $J^r(x) = \phi$ for each $x \in X$. **Proof**:

Suppose that there exists $x \in X$ such that $J^r(x) \neq \phi$, then there exists $y \in J^r(x)$. Thus there is a net $(g_d)_{d \in D}$ in G with $g_d \xrightarrow{r} \infty$ and a net $(\chi_d)_{d \in D}$ in X with $\chi_d \xrightarrow{r} X$ such that $g_d\chi_d \xrightarrow{r} Y$. y. Since X be a st -r Palais proper G - space, then there is an r - small (r - thin) r neighborhood U of x. Thus there is $d_o \in D$ such that $g_d\chi_d \in U$ and $\chi_d \in U$ for each $d \ge d_o$, so $g_d \in ((U,U))$, which has an r - compact closure , therefore $(g_d)_{d \in D}$ must have an r - convergent subnet , which is a contradiction. Thus $J^r(x) = \phi$ for each $x \in X$.

In general, the definition of a st -r - Palais proper G - space implies that st -r - Bourbaki proper G - space, which is review in following proposition.

<u>3.12 Proposition</u>: Every st -r - Palais proper G - space is st -r - Bourbaki proper G - space.

Proof:

By Propositions (3.11) and (3.9).

The converse of Propositions (3.12), is not true in general as the following example shows.

Habeeb.K/Inam.F

3.13 Example:

Let *G* be a topological group where *G* is not r - locally r - compact, then *G* is acts on itself translation. The map $\theta : G \times G \rightarrow G \times G$, which is defined by $\theta (g_1, g_2) = (g_2, g_1g_2)$, $\forall (g_1, g_2) \in G \times G$ is a st -r - homeomorphism , hence it is st -r - Bourbaki proper *G* - space . But it is not st -r - Palais proper *G* - space, because *G* is not r - locally r - compact.

<u>3.14 Lemma[2]</u>: Let X be an r – locally r – compact G – space. Then $J^r(x) = \phi$ for each $x \in X$ if and only if every pair of point of X has r– relatively thin r– neighborhood.

<u>3.15 Proposition</u> Let X be an r – locally r – compact G – space. Then the definition of st – r – Palais proper G – space and the definition st – r – Bourbaki proper G – space are equivalent.

Proof:

The definition of st -r - Palais proper G - space implies to the definition st -r - Bourbaki proper G - space. by Propositions (3.12).

Conversely, let X be a st -r - Bourbaki proper G – space, then by Proposition (3.9) $J^r(x) = \phi$ for each $x \in X$. Let $x \in X$, we will how that x has a r – small r – neighborhood. Since X is r – locally r – compact, then there is a r – compact r – neighborhood U_x of X, we claim that U_x is an r – small r – neighborhood of x. Let $y \in X$, we may assume without loss of generality, that U_y is an r – compact r – neighborhood of y such that U_x and U_y are r – relative thin i.e., $((U_x, U_y))$ has r – compact closure, therefore U_x is an r – small r – neighborhood of x. Thus X is st – r – Palais proper G – space.

Habeeb.K/Inam.F

References

[1] AL-Badairy, M. H. ,"on Feebly proper Action" . M.Sc. ,Thesis, University of Al-Mustansiriyah,(2005).

[2] Fadhila , K.R. , "On Regular proper Function", M.Sc., Thesis, University of Kufa,(2011).

[3] Bredon, G.E., "Introduction to compact transformation Groups" Academic press, N.Y., 1972.

[4] Galdas, MGeorgiou, D.N. and Jafari, S. ,"Characterizations of Low separation axiom via α -open sets and α -closer operator", Bol. Soc. paran. Mat., SPM, Vol. (21), (2003).

[5] Habeeb K. A. and Ahmed T. H." Feebly Limit Sets" University of Al – Muthana(2010)

[6] Habeeb K. A. and Ahmed T. H." Strongly feebly Bourbaki proper Actions" University of Al-

Muthana(2010)

[7] Jankovic, D. S. and Reilly, I.L.," On semi – separation properties", Indian J. pur Appl. Math. 16(9), (1985), 957 – 964.

[8] Maheshwari, S. N. and Tapi, U. "On α – irresolute mappings" ,Ann. Univ. Timisoara S. sti. math. 16 (1978), 173 – 77.

[9] Maheshwari, S. N. and Thakur, S.S. "On α – irresolute mappings", Tamkang math. 11 (1980), 209 – 214.

[10] Maheshwari, S. N. and Thakur, S.S. "On α – compact spaces", Bulletin of the Institute of Mathematics, Academia Sinica, Vol. 13, No. 4, Dec. (1985), 341 – 347.

[11] Navalagi, G.B., "Definition Bank in General Topology", (54) G (1991).

[12] Navalagi, G.B., "Quasi α – closed , strongly α – closed and weakly α – irresolute mapping", National symposium Analysis and its Applications, Jun. (8 – 10), (1998). [15] Dugundji,J."Topology", Allyn and Bacon, Boston, (1966).

[14] Reilly, I.L. and Vammanamurthy, M.K.," On α – continuity in Topological spaces", Acta mathematics Hungarica, 45, (1985), 27 – 32.

[13] Saddam, J.S.," On Strongly proper Actions", M.Sc., Thesis, University of Al-Mustansiriyah,(2000).

Habeeb.K/Inam.F

فضاء-G باليه المنتظم القوي

Habeeb Kareem Abdullah Department of Mathematics College of Education for Girls University of Kufa Inam Farhan Adhab Department of Mathematics The Open Educational College –OEC-

المستخلص

أن الهدف الرئيسي من هذا البحث هو تقديم نوع جديد(حسب علمنا) من فضاءات – G سمي فضاء – G باليه و أعطينا خصائص وبعض المبرهنات الخاصة بهذا الفضاء ثم بينا العلاقة بين فضاء –G باليه و بين المجموعة J^r(x) و كذلك العلاقة بينه وبين فضاء -G السديد المنتظم القوة لبورباكي.

Strongly regular Palais proper G – space

Abstract

The main goal of this work is to create a general type of proper G – space , namely, strongly regular Palais proper G – space and to explain the relation between st – r – Bourbaki proper and st – r – Palais proper G – space and is studied some of examples and propositions of strongly regular Palais proper G – space.