

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Nearly Quasi Primary-2-Absorbing Submodules

Omar A. Abdullah^a, Mohmad E. Dahash^b, Haibat K. Mohammadali^c

^aDirectorate General of Education Salahaddin, Ministry of education, Salahaddin, Iraq. Email: omer.a.abdullah35383@st.tu.edu.iq

bDirectorate General of Education Salahaddin, Ministry of education, Salahaddin, Iraq. Email: mohmad.e.dahash35391@st.tu.edu.iq

^cDepartment of Mathematics, College of Computer Science and Mathematics, Univ. of Tikrit, Iraq . Email: H.mohammadali@tu.edu.iq

ARTICLEINFO

Article history: Received: 27 /07/2022 Rrevised form:25 /08/2022 Accepted : 31 /08/2022 Available online: 24 /09/2022

Keywords: 2-Absorbing submodules. 2-Absorbing quasi primary submodules. Jacobson of modules. Radical of submodules. Multiplication modules and projective modules.

ABSTRACT

Let W be a nonzero unital left *R* -module and *R* be a commutative ring with nonzero identity. As a generalization of 2-Absorbing submodules, we provide the idea of Nearly Quasi Primary-2-Absorbing submodules in this article. As a proper submodule *V* of W is called the Nearly Quasi Primary-2-Absorbing submodule of W, if whenever $rsx \in V$ for $r, s \in R, x \in W$, implies that either $rx \in W - rad(V) + J(W)$ or $sx \in W - rad(V) + J(W)$ or $rs \in \sqrt{[V + J(W)]_R W]}$. Several properties, characterizations and examples concerning this new notion are given.

MSC..

https://doi.org/10.29304/jqcm.2022.14.3.1037

1. Introduction

2-Absorbing submodules are well recognized to have a significant impact on the theory of modules over commutative rings. This topic has received a lot of research thus far. One can look at [1, 2, 3] for numerous studies. The idea of generalizing the concept of 2-Absorbing submodule through the use of various methods is one of the key interests of many scholars. For instance, the Semi-2-Absorbing submodule generalization, was proposed and analyzed in [4], followed by a second generalization known as 2-Absorbing primary. In [5], the submodule was examined. It is important to remember that the idea of 2-Absorbing submodule was initially presented in 2011 by Darani A. and Soheilinia F. as a generalization of the 2-Absorbing ideal, whereas the 2-Absorbing ideal was first presented in 2007 by Badawi A, see [6,7]. All rings being considered in this study are commutative with nonzero identity, and all modules are nonzero unitary. Additionally W always signifies such an *R* -module and *R* always denotes such a ring. Assume *V* is a submodule of W and *I* is an ideal of *R*. The radical of *I*, symbolized by \sqrt{I} , is then defined as the intersection of all prime ideals containing *I* and equally consists of all components an of *R* whose some power in *I*, that is, " $\{a \in R: a^n \in I \text{ for some } n \in V\}$ ". Additionally, the ideal $[V:_R W]$ is defined as " $\{a \in R: aW \subseteq V\}$ and $\{x \in W: ax \in V\}$ for every $a \in R$ in the submodule $[V:_W a]$ ". "Similar to radical of an ideal, radical of a submodule of *R*-module W can be define as the intersection of all prime submodule of a submodule [$V:_W a$]".

Email addresses:

Communicated by 'sub etitor'

^{*}Corresponding author

denoted by W - rad(V). If not, that is if there is no prime submodule containing V we say $W - rad(V) \neq W$, where a submodule V of W is a prime submodule if whenever $a \in V$, then either $a \in [V_{R}, W]$ or $m \in V[8]^{n}$. Primary submodule as a generalization of prime submodule is defined as follow, a proper submodule V of an R-module W is called primary submodule, "if whenever $rx \in V$, for $r \in R, x \in W$, implies that either $x \in V$ or $r^n W \subseteq V$ for some $n \in Z^+$ [9]". "In [10] introduced the concept of 2-Absorbing quasi primary ideal, where a proper ideal I of a ring R is 2-Absorbing quasi-primary ideal if and only if whenever $rst \in I$, then $rs \in \sqrt{I}$ or $rt \in \sqrt{I}$ or $st \in \sqrt{I}$ for each r, s, $t \in R^n$. Researcher Kos in 2017 popularized the concept of 2-Absorbing quasi primary ideal to 2-Absorbing quasi primary submodule, where a proper submodule V of an R-module W is called 2-Absorbing quasi primary submodule of W, "if whenever $rsx \in V$, where $r, s \in R, x \in W$, implies that either $rx \in W - rad(V)$ or $sx \in W - rad(V)$ rad(V) or $rs \in \sqrt{[V:_R W]}$ [11]". The concept of a multiplication module is one of the basic concepts in the theory of the module, define as an *R*-module W is multiplication, if every submodule K of W is of the form K = IW for some ideal I of R. Equivalently W is a multiplication R-module if every submodule K of R of the form $K = [K_R W] W [12]$. "Recall that an *R*-module W is faithful if $ann_R(W) = (0)$, where $ann_R(W) = \{r \in R : rW = (0)\}$ and an *R*-module W is finitely generated if $W = Rx_1 + Rx_2 + \dots + Rx_n$ for $x_1, x_2, \dots, x_n \in W$ [13]. The Jacobsen radical of W is the intersection of all maximal submodule of W. Finally an R-module W is a projective if for any R-epimorphism f from an *R*-module W on to an *R*-module \overline{W} and for any homomorphism *a* from an *R*-module \overline{W} to \overline{W} , there exists a homomorphism h from \overline{W} to W such that $f \circ h = q$ [13]."

2. Nearly Quasi Primary-2-Absorbing Submodules.

Definition 2.1 A proper submodule *V* of an *R*-module *W* is a Nearly Quasi Primary-2-Absorbing submodule of *W* (simply NQPr-2-ABS), if whenever $rsm \in V$ for $r, s \in R, m \in W$, implies that either $rm \in W - rad(V) + J(W)$ or $sm \in W - rad(V) + J(W)$ or $rs \in \sqrt{[V + J(W):_R W]}$. And a proper ideal *I* of a ring *R* is said to be a NQPr-2-ABS ideal of *R* if *I* is a NQPr-2-ABS submodule of an *R*-module *R*.

Proposition 2.2 Every 2-Absorbing submodule of an *R*-module W is a NQPr-2-ABS submodule of W.

Proof Clear.

2

Remark 2.3 The converse of proposition 2.2 it's not true in general, see the following example.

Example 2.4 Let $W = Z_{36}$, R = Z and the submodule $V = \langle \overline{12} \rangle$. Clear that the submodule $\langle \overline{12} \rangle$ is NQPr-2-ABS submodule of Z_{36} , since $J(Z_{36}) = \langle \overline{6} \rangle$ and $rad_{Z_{36}}(\langle \overline{12} \rangle) = \langle \overline{6} \rangle$. Hence for all $a, b \in R$ and $m \in W$ with $abm \in V$ we gave either $am \in Z_{36} - rad(\langle \overline{12} \rangle) + J(Z_{36}) = \langle \overline{6} \rangle$ or $bm \in Z_{36} - rad(\langle \overline{12} \rangle) + J(Z_{36}) = \langle \overline{6} \rangle$ or $ab \in \sqrt{[V + J(Z_{36}):_Z Z_{36}]}$. But V is not 2-Absorbing submodule of Z_{36} , because 2.3. $\overline{2} \in \langle \overline{12} \rangle$ for 2, $3 \in Z$ and $\overline{2} \in Z_{36}$, implies that $2. \overline{2} = \langle \overline{4} \rangle \notin \langle \overline{12} \rangle$ and $3. \overline{2} = \langle \overline{6} \rangle \notin \langle \overline{12} \rangle$. Also 2.3 = $6 \notin [V:_Z W] = 12Z$.

The following propositions are characterizations of NQPr-2-ABS submodule.

Proposition 2.5 For a proper submodule *V* of *W*. The sentences that follow are comparable.

- 1-*V* is a NQPr-2-ABS submodule of W.
- 2-For every $r, s \in R$, $[V + J(W):_W r^n s^n] = W$ for some $n \in Z^+$ or $[V:_W rs] \subseteq [W rad(V) + J(W):_W r] \cup [W rad(V) + J(W):_W s].$
- 3-For every $r, s \in R$, $[V + J(W):_W r^n s^n] = W$ for some $n \in Z^+$ or $[V:_W rs] \subseteq [W rad(V) + J(W):_W r]$ or $[V:_W rs] \subseteq [W rad(V) + J(W):_W s]$.

Proof (1)=(2): Suppose that *V* is a NQPr-2-ABS submodule of *W*. Let $r, s \in R$. If $r s \in \sqrt{[V + J(W):_R W]}$, then $(rs)^n = r^n s^n \in [V + J(W):_R W]$ for some $n \in Z^+$ and so $[V + J(W):_W r^n s^n] = W$. Now, assume $rs \notin \sqrt{[V + J(W):_R W]}$. Let $x \in [V:_W rs]$, then we have $rsx \in V$, hence either $rx \in W - rad(V) + J(W)$ or $sx \in W - rad(V) + J(W)$, since *V* is a NQPr-2-ABS submodule of *W*. Thus we get the result $[V:_W rs] \subseteq [W - rad(V) + J(W):_W r] \cup [W - rad(V) + J(W):_W s]$.

 $(2) \Rightarrow (3)$: It is common knowledge that if a submodule contains two other submodules, it must contain at least one of them.

(3)⇒(1): Let rs*x* ∈ *V* for r,s ∈ *R* and *x* ∈ W with rs $\notin \sqrt{[V + J(W):_R W]}$. Then we have $[V + J(W):_W r^n s^n] \neq W$ for every *n* ∈ *Z*⁺. So by (3) we obtain that *x* ∈ $[V:_W rs] \subseteq [W - rad(V) + J(W):_W r]$ or *x* ∈ $[V:_W rs] \subseteq [W - rad(V) + J(W):_W r]$.

 $J(W):_W s$, hence either $rx \in W - rad(V) + J(W)$ or $sx \in W - rad(V) + J(W)$. Therefore V is a NQPr-2-ABS submodule of W.

Proposition 2.6 Let *V* be a proper submodule of an *R*-module W. Then *V* is a NQPr-2-ABS submodule of W if and only if $rsE \subseteq V$, for $r, s \in R$ and *E* is a submodule of W with $rs \notin \sqrt{[V + J(W):_R W]}$ implies that either $rE \subseteq W - rad(V) + J(W)$ or $sE \subseteq W - rad(V) + J(W)$.

Proof (\Rightarrow) Since $rsE \subseteq V$, for $r, s \in R$ and E is a submodule of W, then $E \subseteq [V:_W rs]$ and $[V + J(W):_W r^n s^n] \neq W$ for every $n \in Z^+$, then by proposition 2.5 we gave $E \subseteq [V:_W rs] \subseteq [W - rad(V) + J(W):_W r]$ or $E \subseteq [V:_W rs] \subseteq [W - rad(V) + J(W):_W s]$. Hence either $rE \subseteq W - rad(V) + J(W)$ or $sE \subseteq W - rad(V) + J(W)$.

 (\Leftarrow) Direct.

Proposition 2.7 For a proper submodule *V* of *W*. The sentences that follow are comparable.

- 1- *V* is a NQPr-2-ABS submodule of W.
- 2- For every $a \in R$, an ideal *I* of *R* and submodule *E* of *W* with $aIE \subseteq V$, then either $aI \subseteq \sqrt{[V + J(W):_R W]}$ or $aE \subseteq W rad(V) + J(W)$ or $IE \subseteq W rad(V) + J(W)$.
- 3- For ideals *I*, *J* of *R* and submodule *E* of *W* with $IJE \subseteq V$, then either $IJ \subseteq \sqrt{[V + J(W)]}$ or $IE \subseteq W rad(V) + J(W)$ or $JE \subseteq W rad(V) + J(W)$.

Proof (1)=(2): Let $aIE \subseteq V$ for $a \in R$, an ideal *I* of *R* and submodule *E* of *W* with $aI \notin \sqrt{[V + J(W):_R W]}$ and $IE \notin W - rad(V) + J(W)$. Then there exists $r, s \in I$ such that $ar \notin \sqrt{[V + J(W):_R W]}$ and $sE \notin W - rad(V) + J(W)$. Now, to prove that $aE \subseteq W - rad(V) + J(W)$. Assume that $aE \notin W - rad(V) + J(W)$, since $arE \subseteq V$ and *V* is a NQPr-2-ABS submodule of *W* with $ar \notin \sqrt{[V + J(W):_R W]}$, hence by proposition 2.6 we get $rE \subseteq W - rad(V) + J(W)$ and so $(r + s)E \notin W - rad(V) + J(W)$, then by proposition 2.6 we have $a(r + s) = ar + as \in \sqrt{[V + J(W):_R W]}$, because $a(r + s)E \subseteq V$. Since $ar + as \in \sqrt{[V + J(W):_R W]}$ and $ar \notin \sqrt{[V + J(W):_R W]}$, then $as \notin \sqrt{[V + J(W):_R W]}$. As $asE \subseteq V$, by proposition 2.6 $sE \subseteq W - rad(V) + J(W)$ or $aE \subseteq W - rad(V) + J(W)$, which is contradiction.

 $(2) \Rightarrow (3): \text{Let } IJE \subseteq V$, with $IJ \not\subseteq \sqrt{[V + J(W)]_R W]}$ for an ideals I and J of R, then there exist $r \in I$ such that $r/ \not\subseteq \sqrt{[V + J(W)]_R W]}$. Assume that $IE \not\subseteq W - rad(V) + J(W)$ and $JE \not\subseteq W - rad + J(W)$, then by (2) we get $rE \subseteq W - rad(V) + J(W)$ for some $r \in I$. Also there exist an element $r \in I$ such that $sE \not\subseteq W - rad(V) + J(W)$, by hypotheses $IE \not\subseteq W - rad(V) + J(W)$. As $sJE \subseteq V$, we get the result that $sJ \subseteq \sqrt{[V + J(W)]_R W]}$ and $(r + s)J \not\subseteq \sqrt{[V + J(W)]_R W]}$, since $(r + s)JE \subseteq V$, we have $(r + s)E \subseteq W - rad(V) + J(W)$ and hence $sE \subseteq W - rad(V) + J(W)$, which is a contradiction.

(3)⇒(1): Let rs $x \in V$ for r, s ∈ R and $x \in W$. Then $\langle r \rangle \langle s \rangle x \subseteq V$. By (3) either $\langle r \rangle \langle s \rangle \subseteq \sqrt{[V + J(W):_R W]}$ or $\langle r \rangle x \subseteq W - rad(V) + J(W)$ or $\langle s \rangle x \subseteq W - rad(V) + J(W)$. Thus either rs $\in \sqrt{[V + J(W):_R W]}$ or r $x \in W - rad(V) + J(W)$ or s $x \in W - rad + J(W)$.

Remark 2.8 If the submodule *V* of *W* is a NQPr-2-ABS submodule of *W*, then the residual of *W* ($[V_{R}W]$) should not be NQPr-2-ABS ideal of *R*. For example:

Consider the Z-module $W = Z \oplus Z$, the submodule $V = 5Z \oplus 6Z$ is a NQPr-2-ABS of W, since 6.2. $(0,1) \in V$, implies that 6. $(0,1) \in W - rad(V) + J(W) = V$, but $[5Z \oplus 6Z_R Z \oplus Z] = 30Z$ will not occur NQPr-2-ABS ideal of Z, because 5.3.2 \in 30, but 5.2 $\notin W - rad(30Z) + J(W) = 30Z$ and 3.2 \notin 30Z and 5.3 = 15 $\notin \sqrt{[30Z + J(Z):_Z Z]} = \sqrt{30Z} = 30Z$.

On W ,we obtain the subsequent characterizations under specific circumstances. But before that we need to recall the following lemmas.

Lemma 2.9 [13, Theo. (9.2.1)(g)] "For any projective *R*-moduleW, we have J(W) = J(R)W."

Lemma 2.10 [17] "Let W be faithful multiplication R-module, then J(W) = J(R)W."

Lemma 2.11 [[**15**, **Prop.** (**2**. **12**)]] "Let *R* be a commutative ring with identity, *V* be a proper submodule of a multiplication *R*-module W and $I = [V:_R W]$. Then $W - rad(V) = \sqrt{I}W = \sqrt{[V:_R W]}W$."

Proposition 2.12 Let W be a multiplication projective *R*-module and *V* be a proper submodule of W. Then *V* is a NQPr-2-ABS submodule of W if and only if $[V_{R}, W]$ is NQPr-2-ABS ideal of *R*.

Proof (⇒)Let rst ∈ [V:_R W], where r, s, t ∈ R and rs ∉ $\int [[V:_R W] + J(R):_R R] = \sqrt{[V:_R W] + J(R)}$, sine rs(tW) ⊆ V and V is NQPr-2-ABS submodule of W with rs ∉ $\sqrt{[V:_R W]} + J(R)$, then either r(tW) ⊆ W - rad(V) + J(W) or s(tW) ⊆ W - rad(V) + J(W). But W is multiplication then by lemma 2.11 rad_W(V) = $\sqrt{[V:_R W]}W$. Thus either rtW ⊆ $\sqrt{[V:_R W]}W + J(W)$ or stW ⊆ $\sqrt{[V:_R W]}W + J(W)$. Now, the module W be a projective R-module, then by lemma 2.9 we have either rtW ⊆ $\sqrt{[V:_R W]}W + J(R)W$ or stW ⊆ $\sqrt{[V:_R W]}W + J(R)W$ or stW ⊆ $\sqrt{[V:_R W]}W + J(R)W$ or stW ⊆ $\sqrt{[V:_R W]}W + J(R)W$. Therefore [V:_R W] is NQPr-2-ABS ideal of R.

(⇐)Assume that $[V:_R W]$ is NQPr-2-ABS ideal of R, and $rsx \in V$, for $r, s \in R$, $x \in W$ with $rs \notin \sqrt{[V + J(W):_R W]}$, it follows that $(rs)^n W \notin V + J(W)$ for some $n \in Z^+$. But W is projective multiplication, then by lemma 2.9 J(R)W = J(W). Hence $(rs)^n W \notin [V:_R W] + J(R)W$ for some $n \in Z^+$. It follows that $(rs)^n \notin [V:_R W] + J(R) = [[V:_R W] + J(R):R]$, hence $rs \notin \sqrt{[[V:_R W] + J(R):R]}$. Now, $rsx \in V$, that is $rs(x) \subseteq V$ and W is a multiplication, then (x) = JW for some ideal J of R, that is $rs/W \subseteq V$, it follows that $rs / \subseteq [V:_R W]$. Since $[V:_R W]$ is NQPr-2-Absorbing ideal of R and $rs \notin \sqrt{[[V:_R W] + J(R):R]}$, then either $rJ \subseteq \sqrt{[V:_R W]} + J(R)$ or $s / \subseteq \sqrt{[V:_R W]} + J(R)$. That is $r/W \subseteq \sqrt{[V:_R W]W + J(R)W}$ or $s/W \subseteq \sqrt{[V:_R W]W + J(R)W}$. Thus by lemma 2.9 and lemma 2.11 we get $r(x) \subseteq W - rad(V) + J(W)$ or $s(x) \subseteq W - rad(V) + J(W)$. Hence either $rx \in W - rad(V) + J(W)$ or $sx \in W - rad(V) + J(W)$.

By lemmas 2.10-11 and by proof of proposition 2.12 we get the result.

Proposition 2.13 Let W be a faithful multiplication *R*-module and V be a proper submodule of W. Then V is NQPr-2-ABS submodule of W if and only if $[V:_R W]$ is NQPr-2-ABS ideal of *R*.

Lemma 2.14 [14, Coro. of Theo. 9] "Let *I* and *J* are ideals of ring *R*, and *W* be a finitely generated multiplication *R*-module. Then $IW \subseteq JW$ if and only if $I \subseteq J + ann_R(W)$."

Lemma 2.15 [15, Prop. (2.4)] "Let W be a multiplication *R*-module and *I* is an ideal of *R* such that $ann(W) \subseteq I$, then $rad_W(IW) = \sqrt{I}W$."

Proposition 2.16 Let W be a finitely generated faithful multiplication *R*-module and *I* is NQPr-2-ABS ideal of *R*. Then *IW* is NQPr-2-ABS submodule of W.

Proof Let $rsD \subseteq IW$ for $r, s \in R$, and D is a submodule of W with $rs \notin \sqrt{[IW + J(W)]_R W]}$, that is $(rs)^n W \notin IW + J(W)$ for some $n \in Z^+$. Since W is faithful R-module then by lemma 2.10 J(W) = J(R)W, that is $(rs)^n W \notin IW + J(R)W$ for some $n \in Z^+$, it follows that $(rs)^n \notin I + J(R) = [I + J(R)]_R R]$ implies that $rs \notin \sqrt{[I + J(R)]_R R]}$, Now, since $rsD \subseteq IW$ and W is a multiplication then D = JW for some ideal J of R, thus $rsJW \subseteq IW$. Hence by lemma 2.14 $rsJ \subseteq I + ann_R(W)$, but W is a faithful, thus $ann_R(W)=(0)$, hence $abJ \subseteq I$. But I is NQPr-2-ABS ideal of R and $rs \notin \sqrt{[I + J(R)]_R R]}$ then by proposition 2.6 either $rJ \subseteq \sqrt{I} + J(R)$ or $sJ \subseteq \sqrt{I} + J(R)$, hence either $r/W \subseteq \sqrt{IW} + J(R)W$ or $sJW \subseteq \sqrt{IW} + J(R)W$. It follows by lemma 2.10 and lemma 2.15, $r/W \subseteq W - rad(IW) + J(W)$ or $sJW \subseteq W - rad(IW) + J(W)$. That is $rD \subseteq W - rad(IW) + J(W)$ or $sV \subseteq W - rad(IW) + J(W)$. Hence by proposition 2.6 IW is NQPr-2-ABS submodule of W.

Lemma 2.17 [18, **Prop**. (**3**. **1**)] "If W ia a multiplication *R*-module, then W is concellation if and only if W is faithful finitely generated."

Proposition 2.18 Let W be a faithful finitely generated multiplication *R*-module and *V* be *a proper* submodule of W. The sentences that follow are comparable.

1- *V* is NQPr-2-ABS submodule of W.

2- $[V:_R W]$ is NQPr-2-ABS ideal of R.

3- $V = \mathcal{B}W$ for some NQPr-2-ABS ideal \mathcal{B} of R.

Proof (1) \iff (2) By proposition 2.13.

(2) \Rightarrow (3) Since $[V:_R W]$ is NQPr-2-ABS ideal of R and W be a faithful, hence (0) = $ann_R(W) = [(0):_R W] \subseteq [V:_R W]$ and W be multiplication R-module, so $V = [V:_R W]W$, implies that V = BW for some NQPr-2-ABS ideal $B = [V:_R W]$ of R.

(3) \Rightarrow (2) Let $V = \mathcal{B}W$ for some NQPr-2-ABS ideal \mathcal{B} of R. Since W is multiplication, then $V = [V_{:R} W]W = \mathcal{B}W$. But W is faithful finitely generated multiplication, then by lemma 2.17 $\mathcal{B} = [V_{:R} W]$, it follows that $[V_{:R} W]$ is NQPr-2-ABS ideal \mathcal{B} of R.

Proposition 2.19 Let W be a finitely generated multiplication projective *R*-module and *I* is NQPr-2-ABS ideal of *R* with $ann_R(W) \subseteq I$. Then *IW* is NQPr-2-ABS submodule of W.

Proof Clear.

Remark 2.20 The intersection of two NQPr-2-ABS submodules of W need not to be NQPr-2-ABS submodule of W. The example below clarifies that:

Consider the *Z*-module *Z* and the submodules 5*Z*, 6*Z* are NQPr-2-ABS submodules of *Z*-module *Z*, but $5Z \cap 6Z = 30Z$ is not NQPr-2-ABS submodule of *Z*-module *Z* (because if $2.3.5 \in 30Z$, but $2.5 \notin Z - \operatorname{rad}(30Z) + J(Z) = 30Z$ and $3.5 = 15 \notin Z - \operatorname{rad}(30Z) + J(Z) = 30Z$. Also $2.3 = 6 \notin \sqrt{[30Z:_Z Z]} = \sqrt{[30Z + J(Z):_Z Z]} = \sqrt{30Z} = 30Z$.

Under the certain condition the intersection of two NQPr-2-ABS submodules is NQPr-2-ABS submodule.

Lemma 2.21[13, lemma (2.3.15)] "Let *A*, *B* and *C* are submodules of an *R*-module W with $B \subseteq C$, then $(A + B) \cap C = (A \cap C) + B = (A \cap C) + (B \cap C)$."

Lemma 2.22[16, Theo. 15(3)] "Let W be a multiplication *R*-module and *D*, *V* be a submodules of W. Then $W - rad(D \cap V) = W - rad(D) \cap W - rad(D)$."

Proposition 2.23 Let *V* and *D* be a proper submodules of multiplication *R*-module *W* with $J(W) \subseteq V$ or $J(W) \subseteq D$. If *V* and *D* are NQPr-2-ABS submodules of *W*, then $V \cap D$ is NQPr-2-ABS submodule of *W*.

Proof Suppose that *V* and *D* are NQPr-2-ABS submodules of W, and let $rst \in V \cap D$ for $r, s \in R, t \in W$, then $rst \in V$ and $rst \in D$. But both *V* and *D* are NQPr-2-ABS submodules of W, then either $rt \in W - rad(V) + J(W)$ or $st \in W - rad(V) + J(W)$ or $rs \in \sqrt{[V + J(W):_R W]}$ and either $rt \in W - rad(D) + J(W)$ or $st \in W - rad(D) + J(W)$ or $rs \in \sqrt{[D + J(W):_R W]}$. Hence either $rt \in (W - rad(V) + J(W)) \cap (W - rad(D) + J(W))$ or $st \in (W - rad(V) + J(W)) \cap (W - rad(D) + J(W))$ or $(rs)^n W \subseteq (V + J(W)) \cap (D + J(W))$. If $J(W) \subseteq D \subseteq W - rad(D)$, then D + J(W) = D and J(W) + W - rad(D) = W - rad(D). Thus either $rt \in (W - rad(V) + J(W)) \cap W - rad(D)$ or $st \in (W - rad(V) + J(W)) \cap W - rad(D)$ or $(rs)^n W \subseteq (V + J(W)) \cap D$. It follows that by lemma 2.21 either $rt \in (W - rad(V) - W - rad(D)) + J(W)$ or $st \in (W - rad(V) \cap W - rad(D)) + J(W)$ or $rs \in \sqrt{[(V - rad(V) - W - rad(D)) + J(W)}$ or $st \in (W - rad(V) \cap D) + J(W)$. Hence by lemma 2.22 we obtain that either $rt \in W - rad(V \cap D) + J(W)$ or $st \in W - rad(V \cap D) + J(W)$ or $rs \in \sqrt{[(V \cap D) + J(W):_R W]}$. That is $V \cap D$ is NQPr-2-ABS submodule of W. Similarly if $J(W) \subseteq V$, we get $V \cap D$ is NQPr-2-ABS submodule of W.

References

- Haibat, K. Mohammedali and Omar, A. Abdalla. Pseudo-2-Absorbing and Pseudo Semi-2- Absorbing Submodules, AIP Conference Proceedings 2096,020006,(2019), 1-9.
- [2] Haibat, K. M and Omar, A. Abdalla. Pseudo Primary-2-ABSORBING SUBMODULES and Some Related Concepts, Ibn Al-Haitham Journal for pure and applied mathematics, 32 (3) (2019), 129-139.

[3] Omar, A. Abdalla, Ali Sh. Ajeel and Haibat, K. Mohammedali. Nearly Primary-2-Absorbing submodules and Other Related Concepts, Ibn Al-Haitham Journal for pure and applied mathematics, 34 (1) (2021), 116-124.

^[4] Innam, M. A and Abdulrahman, A. H. Semi- 2-Absorbing Submodules and Semi-2-absorbing Modules, international Journal of Advanced Scientific and Technical Research, RS Publication, 5 (3) (2015), 521-530.

^[5] H. Mostafanasab, E. Yetkin, U. Tekir and A. Y. Darani. On 2-absorbing primary submodules of modules over commutative rings. An. Sti. U. Ovid. Co-mat. 24(1) (2015), 335–351.

^[6] Darani, A.Y and Soheilniai. F. 2-Absorbing and Weakly 2-Absorbing Submodules, Tahi Journal. Math, (9) (2011), 577-584.

^[7] Badawi, A. On 2-Absorbing Ideals of Commutative Rings, Bull. Austral. Math. Soc, (75) (2007), 417-429.

^[8] Lu, C. P. Prime Submodules of Modules, Comm. Math, University Spatula, (33) (1981), 61-69.

^[9] Lu, C. P. M-radical of Submodules, Math. Japan. 34 (2) (1989), 211-219.

^[10] Tekir, U., Koc, S., Oral, K. H. and Shum, K. P., On 2-Absorbing Quasi-primary Ideals in commutative Rings, Communication in Mathematics and statistics, 4(1)((2016), 55-62.

^[11] Kos, S. Uregen, R. N and Tekir, U. On 2-Absorbing Quasi-primary Submodules, Faculty of Science and Mathematics, 31(10) (2017), 2943-2950.

^[12] El-Bast, Z.A. and Smith, P.F. Multiplication modules, Comm. In Algebra 16(4) (1988), 755–779.

^[13] Kasch, F. Modules and Rings, London Math. Soc. Monographs, New York, Academic press, 1982.

^[14] Smith, P. F. Some remarks of Multiplication Modules, Arch. Math. (50) (1986), 223-225.

^[15] Ahamed, A. A. On Submodules of Multiplication Modules, M.Sc. Thesis, University of Baghdad, 1992.

- [16] Ali, M. M., Idempotent and Nilpotent Submodules of Multiplication Modules, Comm. Algebra, (36) (2008), 4620-4642.
 [17] Nuha, H. H. The Radical of Modules, M. Sc. Thesis, University of Baghdad, 1996.
 [18] Ali, S. M. On Cancellation Modules, M. Sc. Thesis, University of Baghdad, 1993.