

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Nearly Quasi Primary-2-Absorbing Submodules

Omar A. Abdullaha, Mohmad E. Dahashb, Haibat K. Mohammadali^c

^aDirectorate General of Education Salahaddin, Ministry of education, Salahaddin, Iraq. Email: omer.a.abdullah35383@st.tu.edu.iq

^bDirectorate General of Education Salahaddin, Ministry of education, Salahaddin, Iraq. Email: mohmad.e.dahash35391@st.tu.edu.iq

^cDepartment of Mathematics, College of Computer Science and Mathematics, Univ. of Tikrit, Iraq . Email[: H.mohammadali@tu.edu.iq](mailto:H.mohammadali@tu.edu.iq)

ARTICLE INFO

Article history: Received: 27 /07/2022 Rrevised form:25 /08/2022 Accepted : 31 /08/2022 Available online: 24 /09/2022

Keywords: 2-Absorbing submodules. 2-Absorbing quasi primary submodules. Jacobson of modules. Radical of submodules. Multiplication modules and projective modules

ABSTRACT

Let W be a nonzero unital left R -module and R be a commutative ring with nonzero identity. As a generalization of 2-Absorbing submodules, we provide the idea of Nearly Quasi Primary-2-Absorbing submodules in this article. As a proper submodule V of W is called the Nearly Quasi Primary-2-Absorbing submodule of W, if whenever $rsx \in V$ for $r, s \in R$, $x \in W$, implies that either $rx \in W - rad(V) + J(W)$ or $sx \in W - rad(V) + J(W)$ or $rs \in W - rad(V)$ $\sqrt{[V + J(W)]_R W}$. Several properties, characterizations and examples concerning this new notion are given.

MSC..

https://doi.org/10.29304/jqcm.2022.14.3.1037

1. Introduction

2-Absorbing submodules are well recognized to have a significant impact on the theory of modules over commutative rings. This topic has received a lot of research thus far. One can look at [1, 2, 3] for numerous studies. The idea of generalizing the concept of 2-Absorbing submodule through the use of various methods is one of the key interests of many scholars. For instance, the Semi-2-Absorbing submodule generalization, was proposed and analyzed in [4], followed by a second generalization known as 2 -Absorbing primary. In [5], the submodule was examined. It is important to remember that the idea of 2-Absorbing submodule was initially presented in 2011 by Darani A. and Soheilinia F. as a generalization of the 2-Absorbing ideal, whereas the 2-Absorbing ideal was first presented in 2007 by Badawi A, see [6,7]. All rings being considered in this study are commutative with nonzero identity, and all modules are nonzero unitary. Additionally W always signifies such an R -module and R always denotes such a ring. Assume V is a submodule of W and I is an ideal of R. The radical of I, symbolized by \sqrt{I} , is then defined as the intersection of all prime ideals containing I and equally consists of all components an of R whose some power in *I*, that is, "{ $a \in R$: $a^n \in I$ for some $n \in V$ }". Additionally, the ideal [V:_R W] is defined as " ${a \in R : aW \subseteq V}$ and ${x \in W : ax \in V}$ for every $a \in R$ in the submodule $[V:_{W} a]$ ". "Similar to radical of an ideal, radical of a submodule of R -module W can be define as the intersection of all prime submodules containing V and

Email addresses:

Communicated by 'sub etitor'

[∗]Corresponding author

denoted by W – $rad(V)$. If not, that is if there is no prime submodule containing V we say W – $rad(V) \neq W$, where a submodule V of W is a prime submodule if whenever $am \in V$, then either $a \in [V, _{R}W]$ or $m \in V$ [8]". Primary submodule as a generalization of prime submodule is defined as follow, a proper submodule V of an R -module W is called primary submodule, "if whenever $rx \in V$, for $r \in R$, $x \in W$, implies that either $x \in V$ or $r^n W \subseteq V$ for some $n \in Z^+$ [9]". "In [10] introduced the concept of 2-Absorbing quasi primary ideal, where a proper ideal I of a ring R is 2-Absorbing quasi-primary ideal if and only if whenever $r \le \epsilon \in I$, then $r \le \sqrt{I}$ or $r \in \sqrt{I}$ or $r \in \sqrt{I}$ for each r, s, $t \in R$ ". Researcher Kos in 2017 popularized the concept of 2-Absorbing quasi primary ideal to 2-Absorbing quasi primary submodule, where a proper submodule V of an R -module W is called 2-Absorbing quasi primary submodule of W, "if whenever $rsx \in V$, where $r, s \in R$, $x \in W$, implies that either $rx \in W - rad(V)$ or $sx \in W$ rad(V) or $rs \in \sqrt{[V:_{R} W]}$ [11]". The concept of a multiplication module is one of the basic concepts in the theory of the module, define as an R-module W is multiplication, if every submodule K of W is of the form $K = IW$ for some ideal *I* of *R*. Equivalently *W* is a multiplication *R*-module if every submodule K of *R* of the form $K = [K:_{R} W]W$ [12]. "Recall that an R-module W is faithful if $ann_R(W) = (0)$, where $ann_R(W) = \{r \in R : rW = (0)\}\)$ and an R-module W is finitely generated if $W = Rx_1 + Rx_2 + \cdots + Rx_n$ for $x_1, x_2, \dots, x_n \in W$ [13]. The Jacobsen radical of W is the intersection of all maximal submodule of W. Finally an R -module W is a projective if for any R -epimorphism f from an R-module W on to an R-module \overline{W} and for any homomorphism g from an R-module \overline{W} to \overline{W} , there exists a homomorphism h from \overline{W} toW such that $f \circ h = g$ [13]."

2. Nearly Quasi Primary-2-Absorbing Submodules.

Definition 2.1 A proper submodule V of an R-module W is a Nearly Quasi Primary-2-Absorbing submodule of W $\left($ simply NQPr-2-ABS), if whenever $r \text{sm} \in V$ for $r, s \in R$, $m \in W$, implies that either $rm \ r \in W - rad(V) + I(W)$ or $\text{sm} \in$ $W - rad(V) + f(W)$ or $rs \in \sqrt{[V + f(W):_R W]}$. And a proper ideal *I* of a ring *R* is said to be a NQPr-2-ABS ideal of *R* if I is a NQPr-2-ABS submodule of an R -module R .

Proposition 2.2 Every 2-Absorbing submodule of an R-module W is a NOPr-2-ABS submodule of W.

Proof Clear .

Remark 2.3 The converse of proposition 2.2 it's not true in general, see the following example.

Example 2.4 Let $W = Z_{36}$, $R = Z$ and the submodule $V = \langle \overline{12} \rangle$. Clear that the submodule $\langle \overline{12} \rangle$ is NQPr-2-ABS submodule of Z_{36} , since $\sqrt{(Z_{36})} = \sqrt{6}$ and $rad_{Z_{36}}(\sqrt{12}) = \sqrt{6}$. Hence for all $a, b \in R$ and $m \in W$ with $abm \in V$ we gave either $am \in Z_{36} - rad(\langle \overline{12} \rangle) + J(Z_{36}) = \langle \overline{6} \rangle$ or $bm \in Z_{36} - rad(\langle \overline{12} \rangle) + J(Z_{36}) = \langle \overline{6} \rangle$ or $ab \in \sqrt{[V + J(Z_{36}) \cdot Z Z_{36}]}$. But *V* is not 2-Absorbing submodule of Z_{36} , because 2.3. $\overline{Z} \in \langle \overline{12} \rangle$ for 2, 3 $\in Z$ and $\overline{Z} \in Z_{36}$, implies that 2. $\overline{Z} = \langle \overline{4} \rangle \notin Z_{36}$ $\langle \overline{12} \rangle$ and 3. $\overline{2} = \langle \overline{6} \rangle \notin \langle \overline{12} \rangle$. Also 2.3 = 6 $\notin [V:_{Z}W] = 12Z$.

The following propositions are characterizations of NQPr-2-ABS submodule.

Proposition 2.5 For a proper submodule *V* of *W*. The sentences that follow are comparable.

- $1-V$ is a NOPr-2-ABS submodule of W.
- 2-For every r , $s \in R$, $[V + J(W):_W r^n s^n] = W$ for some $n \in Z^+$ or $[V :_W rs] \subseteq [W rad(V) + J(W):_W r] \cup [W, T]$ $[W - rad(V) + J(W):_{W} S].$
- 3-For every $r, s \in R$, $[V + J(W):_W r^n s^n] = W$ for some $n \in Z^+$ or $[V :_W rs] \subseteq [W rad(V) + J(W):_W r]$ or $[V :_W rs] \subseteq$ $[W - rad(V) + J(W):_{W} S].$

Proof (1)⇒(2): Suppose that *V* is a NQPr-2-ABS submodule of *W*. Let r,s ∈ R. If $rs \in \sqrt{[V + J(W):_R W]}$, then $(\text{rs})^n = \text{r}^n \text{s}^n \in [V + J(W) :_R W]$ for some $n \in \mathbb{Z}^+$ and so $[V + J(W) :_W \text{r}^n \text{s}^n] = W$. Now, assume $r \text{s} \notin$ $\sqrt{[V + j(W)]_R W}$. Let $x \in [V:_{W} rs]$, then we have $rsx \in V$, hence either $rx \in W - rad(V) + j(W)$ or $sx \in W$ rad(V) + $J(W)$, since V is a NQPr-2-ABS submodule of W. Thus we get the result $[V:_{W} rs] \subseteq [W - rad(V) +$ $J(W):_W r] \cup [W - rad(V) + J(W):_W s].$

(2)⇒(3): It is common knowledge that if a submodule contains two other submodules, it must contain at least one of them.

(3)⇒(1): Let $rsx \in V$ for $r, s \in R$ and $x \in W$ with $rs \notin \sqrt{[V + J(W):_R W]}$. Then we have $[V + J(W):_W r^n s^n] \neq W$ for every $n \in \mathbb{Z}^+$. So by (3) we obtain that $x \in [V:_{W} rs] \subseteq [W - rad(V) + J(W):_{W} r]$ or $x \in [V:_{W} rs] \subseteq [W - rad(V) +$

 $J(W):_W$ s], hence either $rx \in W - rad(V) + J(W)$ or $sx \in W - rad(V) + J(W)$. Therefore V is a NQPr-2-ABS submodule of W.

Proposition 2.6 Let V be a proper submodule of an R -module W. Then V is a NQPr-2-ABS submodule of W if and only if $r s E \subseteq V$, for $r, s \in R$ and E is a submodule of W with $r s \notin \sqrt{[V + J(W):_R W]}$ implies that either $r E \subseteq W$ rad(V) + $J(W)$ or $sE \subseteq W - rad(V) + J(W)$.

Proof (\Rightarrow) Since $rsE \subseteq V$, for $r, s \in R$ and E is a submodule of W, then $E \subseteq [V:_W rs]$ and $[V + J(W):_W r^n s^n] \neq W$ for every $n \in \mathbb{Z}^+$, then by proposition 2.5 we gave $E \subseteq [V :_W \text{rs}] \subseteq [W - \text{rad}(V) + J(W) :_W \text{r}]$ or $E \subseteq [V :_W \text{rs}] \subseteq$ $[W - rad(V) + J(W)$:_W s]. Hence either $rE \subseteq W - rad(V) + J(W)$ or $sE \subseteq W - rad(V) + J(W)$.

 (\Leftarrow) Direct.

Proposition 2.7 For a proper submodule *V* of *W*. The sentences that follow are comparable.

- 1- V is a NOPr-2-ABS submodule of W.
- 2- For every $a \in R$, an ideal *I* of R and submodule E of W with $a/E \subseteq V$, then either $aI \subseteq \sqrt{[V + I(W):_R W]}$ or $aE \subseteq$ $W - rad(V) + J(W)$ or $IE \subseteq W - rad(V) + J(W)$.
- 3- For ideals *I*, *J* of *R* and submodule *E* of *W* with *IJE* \subseteq *V*, then either *IJ* $\subseteq \sqrt{[V + J(W):_R W]}$ or *IE* \subseteq *W* rad(*V*) + $J(W)$ or $JE \subseteq W - rad(V) + J(W)$.

Proof (1)⇒(2): Let $a/E \subseteq V$ for $a \in R$, an ideal *I* of *R* and submodule *E* of *W* with $aI \nsubseteq \sqrt{[V + J(W):_R W]}$ and *IE* \nsubseteq W – $rad(V) + J(W)$. Then there existsr, $s \in I$ such that $ar \notin \sqrt{[V + J(W):_R W]}$ and $sE \notin W - rad(V) + J(W)$. Now, to prove that $aE \subseteq W - rad(V) + f(W)$. Assume that $aE \nsubseteq W - rad(V) + f(W)$, since $arE \subseteq V$ and V is a NQPr-2-ABS submodule of W with $ar \notin \sqrt{[V + J(W):_R W]}$, hence by proposition 2.6 we get $rE \subseteq W - rad(V) + J(W)$ and so $(r + s)E \nsubseteq W - rad(V) + J(W)$, then by proposition 2.6 we have $a(r + s) = ar + as \in \sqrt{[V + J(W):_R W]}$, because $a(r+s)E \subseteq V$. Since $ar + as \in \sqrt{[V + J(W):_R W]}$ and $ar \notin \sqrt{[V + J(W):_R W]}$, then $as \notin \sqrt{[V + J(W):_R W]}$. As $a \in E \subseteq V$, by proposition 2.6 $\in E \subseteq W - rad(V) + l(W)$ or $aE \subseteq W - rad(V) + l(W)$, which is contradiction.

(2)⇒(3): Let $I/E \subseteq V$, with $I/\nsubseteq \sqrt{[V + J(W):_R W]}$ for an ideals *I* and *J* of R, then there exist $r \in I$ such that $r/\nsubseteq I$ $\sqrt{[V + J(W):_R W]}$. Assume that $IE \not\subseteq W - rad(V) + J(W)$ and $JE \not\subseteq W - rad + J(W)$, then by (2) we get $rE \subseteq W - rad + J(W)$. $rad(V) + I(W)$ for some $r \in I$. Also there exist an element $r \in I$ such that $sE \nsubseteq W - rad(V) + I(W)$, by hypotheses $IE \nsubseteq W - rad(V) + J(W)$. As $S/E \subseteq V$, we get the result that $S/\subseteq \sqrt{[V + J(W):_R W]}$ and $(T + S)/\nsubseteq$ $\sqrt{[V + j(W):_R W]}$, since $(r + s)/E \subseteq V$, we have $(r + s)E \subseteq W - rad(V) + j(W)$ and hence $sE \subseteq W - rad(V) +$ $J(W)$, which is a contradiction.

 $(3) \Rightarrow (1)$: Let $\text{r} \leq x \in V$ for r , $s \in R$ and $x \in W$. Then $\langle \text{r} \rangle \langle s \rangle \subseteq V$. By (3) either $\langle \text{r} \rangle \langle s \rangle \subseteq \sqrt{[V + J(W) : R(W)}$ or $\langle \text{r} \rangle \chi \subseteq V$. $W - rad(V) + f(W)$ or $\langle s \rangle x \subseteq W - rad(V) + f(W)$. Thus either $rs \in \sqrt{[V + f(W) :_{R} W]}$ or $rx \in W - rad(V) + f(W)$ or $sx \in W - rad + I(W)$.

Remark 2.8 If the submodule V of W is a NQPr-2-ABS submodule of W, then the residual of W ($[V:_{R} W]$) should not be NQPr-2-ABS ideal of R . For example:

Consider the Z-module W = Z⊕Z, the submodule $V = 5Z \oplus 6Z$ is a NOPr-2-ABS of W, since 6.2. (0,1) $\in V$, implies that 6. (0,1) \in W – rad(V) + J(W) = V, but [5Z⊕6Z $_{R}$ Z⊕Z] = 30Z will not occur NQPr-2-ABS ideal of Z, because 5.3.2 ∈ 30, but 5.2 ∉ W – rad(30Z) + $J(W)$ = 30Z and 3.2 ∉ 30Z and 5.3 = 15 ∉ $\sqrt{30Z + J(Z) : ZZ}$ = $\sqrt{30Z}$ = 30Z.

On W, we obtain the subsequent characterizations under specific circumstances. But before that we need to recall the following lemmas.

Lemma 2.9 [13, Theo. $(9.2.1)(g)$ **] "For any projective R-moduleW, we have** $\mathcal{N}(W) = \mathcal{N}(R)W$ **."**

Lemma 2.10 [17] "Let W be faithful multiplication R-module, then $/(W) = I(R)W$."

Lemma 2.11 $[15, \text{Prop.} (2.12)]$ "Let R be a commutative ring with identity, V be a proper submodule of a multiplication R-module W and $I = [V:_{R} W]$. Then $W - rad(V) = \sqrt{W} = \sqrt{V:_{R} W}$.

Proposition 2.12 Let W be a multiplication projective R-module and V be a proper submodule of W. Then V is a NQPr-2-ABS submodule of W if and only if $[V:_{R} W]$ is NQPr-2-ABS ideal of R.

Proof (\Rightarrow) Let $r \leq t \in [V:_{R} W]$, where $r, s, t \in R$ and $rs \notin [[V:_{R} W] + f(R):_{R} R] = \sqrt{[V:_{R} W] + f(R)}$, sine $rs(tW) \subseteq$ V and V is NQPr-2-ABS submodule of W with $rs \notin \sqrt{[V:_{R}^{N}W]+J(R)}$, then either $r(tW) \subseteq W - rad(V) + J(W)$ or $s(tW) \subseteq \underbrace{W - rad(V) + J(W)}$. But W is <u>multipl</u>ication then by lemma 2.11 rad_w(V) = $\sqrt{[V:_{R} W]}$ W. Thus either rtW ⊆ $\sqrt{[V:_{R} W]}W + J(W)$ or stW ⊆ $\sqrt{[V:_{R} W]}W + J(W)$. Now, the mod<u>ule W b</u>e a projective R-module, then by le<u>mma 2</u>.9 we have either $rtW\subseteq \sqrt{[V:_R W]W+{J(R)W}}$ or $stW\subseteq \sqrt{[V:_R W]W+{J(R)W}}$, hence either r*t* \in $\sqrt{[V:_{R} W]} + J(R)$ or s $t \in \sqrt{[V:_{R} W]} + J(R)$. Therefore $[V:_{R} W]$ is NQPr-2-ABS ideal of R.

(←)Assume that $[V:_{R} W]$ is NQPr-2-ABS ideal of R, and $rsx \in V$, for $r, s \in R$, $x \in W$ with $rs \notin \sqrt{[V + J(W):_{R} W]}$, it follows that $(rs)^nW \nsubseteq V + J(W)$ for some $n \in Z^+$. But W is projective multiplication, then by lemma 2.9 $J(R)W =$ (W). Hence $(rs)^nW \notin [V:_{R}W]W + f(R)W$ for some $n \in Z^+$. It follows that $(rs)^n \notin [V:_{R}W] + f(R) = [[V:_{R}W] + f(R)$ $J(R): R$, hence $rs \notin \Pi[V:_{R} W] + J(R): R$. Now, $rsx \in V$, that is $rs(x) \subseteq V$ and W is a multiplication, then $(x) =$ *JW* for some ideal *J* of R, that is rs/W ⊆ V, it follows that rs ⊆ [V:_R W]. Since [V:_R W] is NQPr-2-Absorbing ideal of R and $rs \notin \left[\left[[V:_{R} W]+(R):R\right], \text{ then either } r \in \left\langle[V:_{R} W]+(R) \text{ or } s \in \left\langle[V:_{R} W]+(R)\right.\right. \right]$ That is $r/W \subseteq$ $\sqrt{[V:_{R}W]}W$ + $\gamma(R)$ or s/W $\subseteq \sqrt{[V:_{R}W]}W$ + $\gamma(R)$ W. Thus by lemma 2.9 and lemma 2.11 we get $r(x) \subseteq W$ – $rad(V) + f(W)$ or $s(x) \subseteq W - rad(V) + f(W)$. Hence either $rx \in W - rad(V) + f(W)$ or $sx \in W - rad(V) + f(W)$. Thus V is NQPr-2-ABS submodule of W.

By lemmas 2.10-11 and by proof of proposition 2.12 we get the result.

Proposition 2.13 Let W be a faithful multiplication R -module and V be a proper submodule of W. Then V is NQPr-2-ABS submodule of W if and only if $[V:_{R} W]$ is NQPr-2-ABS ideal of R.

Lemma 2.14 [14, Coro. of Theo. 9] "Let I and I are ideals of ring R, and W be a finitely generated multiplication R module. Then $IW \subseteq JW$ if and only if $I \subseteq J + ann_R(W)$."

Lemma 2.15 [15, Prop. (2.4)] "Let W be a multiplication R **-module and** I **is an ideal of** R **such that** $ann(W) \subseteq I$ **,** then $rad_W(IW) = \sqrt{IW}$."

Proposition 2.16 Let W be a finitely generated faithful multiplication R -module and I is NQPr-2-ABS ideal of R . Then IW is NQPr-2-ABS submodule of W.

Proof Let $rsD \subseteq IW$ for $r, s \in R$, and D is a submodule of W with $rs \notin \sqrt{[IW + J(W):_R W]}$, that is $(rs)^nW \notin IW +$ /(W) for some $n \in \mathbb{Z}^+$. Since W is faithful R-module then by lemma 2.10/(W) = /(R)W, that is (rs)ⁿW ⊈ *IW* + $J(R)$ W for some $n \in \mathbb{Z}^+$, it follows that $(rs)^n \notin I + J(R) = [I + J(R):_R R]$ implies that $rs \notin \sqrt{[I + J(R):_R R]}$, Now, since $r \leq 1$ W and W is a multiplication then $D = /W$ for some ideal $/$ of R, thus $r \leq /W \subseteq IN$. Hence by lemma 2.14 $rs \subseteq I + ann_R(W)$, but W is a faithful, thus $ann_R(W) = (0)$, hence $ab \subseteq I$. But I is NQPr-2-ABS ideal of R and rs $\notin \sqrt{[I + J(R):_R R]}$ then by proposition 2.6 either $r \leq \sqrt{I} + J(R)$ or $s \leq \sqrt{I} + J(R)$, hence either $r/N \subseteq \sqrt{I}W +$ $J(R)$ W or s/W $\subseteq \sqrt{I}W + J(R)W$. It follows by lemma 2.10 and lemma 2.15, r/W $\subseteq W - rad(IW) + J(W)$ or s/W \subseteq $W - rad(IW) + j(W)$. That is $rD \subseteq W - rad(IW) + j(W)$ or $sV \subseteq W - rad(IW) + j(W)$. Hence by proposition 2.6 IW is NQPr-2-ABS submodule of W.

Lemma 2.17 [18, Prop. (3.1) **] "If W ia a multiplication R-module, then W is concellation if and only if W is faithful** finitely generated."

Proposition 2.18 Let W be a faithful finitely generated multiplication R-module and V be a proper submodule of W. The sentences that follow are comparable.

1- V is NQPr-2-ABS submodule of W.

2- $[V: _R W]$ is NQPr-2-ABS ideal of R.

3- $V = BW$ for some NQPr-2-ABS ideal B of R.

Proof $(1) \Leftrightarrow (2)$ By proposition 2.13.

(2) ⇒ (3) Since $[V: _R W]$ is NQPr-2-ABS ideal of R and W be a faithful, hence $(0) = ann_R(W) = [(0):_R W] ⊆ [V: _R W]$ and W be multiplication R-module, so $V = [V:_{R} W]W$, implies that $V = BW$ for some NQPr-2-ABS ideal $B = [V:_{R} W]$ of R .

(3) \Rightarrow (2) Let $V = BW$ for some NQPr-2-ABS ideal B of R. Since W is multiplication, then $V = [V:_{R} W]W = BW$. But W is faithful finitely generated multiplication, then by lemma 2.17 $B = [V_{iR} W]$, it follows that $[V_{iR} W]$ is NQPr-2-ABS ideal B of R .

Proposition 2.19 Let W be a finitely generated multiplication projective R -module and I is NQPr-2-ABS ideal of R with $ann_R(W) \subseteq I$. Then IW is NQPr-2-ABS submodule of W.

Proof Clear.

Remark 2.20 The intersection of two NQPr-2-ABS submodules of W need not to be NQPr-2-ABS submodule of W. The example below clarifies that:

Consider the Z-module Z and the submodules 5Z, 6Z are NQPr-2-ABS submodules of Z-module Z, but 5Z \cap 6Z = 30Z is not NQPr-2-ABS submodule of Z-module Z (because if 2.3.5 ∈ 30Z, but 2.5 ∉ Z – $rad(30Z) + I(Z) = 30Z$ and $3.5 = 15 \notin Z - \text{rad}(30Z) + J(Z) = 30Z$. Also $2.3 = 6 \notin \sqrt{30Z : ZZ} = \sqrt{30Z + J(Z) : ZZ} = \sqrt{30Z} = 30Z$.

Under the certain condition the intersection of two NQPr-2-ABS submodules is NQPr-2-ABS submodule.

Lemma 2.21[13, lemma (2.3.15)] "Let A, B and C are submodules of an R-module W with $B \subseteq C$ **, then** $(A + B) \cap$ $C = (A \cap C) + B = (A \cap C) + (B \cap C).$ "

Lemma 2.22[16, Theo. 15(3)] "Let W be a multiplication R -module and D, V be a submodules of W. Then W – $rad(D \cap V) = W - rad(D) \cap W - rad(D).$ "

Proposition 2.23 Let V and D be a proper submodules of multiplication R-module W with $/(W) \subseteq V$ or $/(W) \subseteq D$. If V and D are NOPr-2-ABS submodules of W, then $V \cap D$ is NOPr-2-ABS submodule of W.

Proof Suppose that V and D are NQPr-2-ABS submodules of W, and let $r \in V \cap D$ for $r, s \in R$, $t \in W$, then $r \in E$ V and $r \leq E$. But both V and D are NQPr-2-ABS submodules of W, then either $rt \in W - rad(V) + J(W)$ or $st \in E$ $W - rad(V) + f(W)$ or $rs \in \sqrt{[V + f(W):_R W]}$ and either $rt \in W - rad(D) + f(W)$ or $st \in W - rad(D) + f(W)$ or rs $\in \sqrt{[D+J(W):_R W]}$. Hence either $rt \in (W - rad(V) + J(W)) \cap (W - rad(D) + J(W))$ or $st \in (W - rad(V) +$ $J(W)$)∩(W - rad(D) + $J(W)$) or (rs)ⁿW ⊆(V + $J(W)$)∩(D + $J(W)$). If $J(W)$ ⊆ D ⊆ W - rad(D), then D + $J(W) = D$ and $J(W) + W - rad(D) = W - rad(D)$. Thus either $rt \in (W - rad(V) + J(W)) \cap W - rad(D)$ or $st \in$ $(W - rad(V) + J(W)) \cap W - rad(D)$ or $(rs)^n W \subseteq (V + J(W)) \cap D$. It follows that by lemma 2.21 either rt \in $(W - rad(V) \cap W - rad(D)) + J(W)$ or $st \in (W - rad(V) \cap W - rad(D)) + J(W)$ or $(rs)^nW \subseteq (V \cap D) + J(W)$. Hence by lemma 2.22 we obtain that either $rt \in W - rad(V \cap D) + J(W)$ or $st \in W - rad(V \cap D) + J(W)$ or $rs \in W$ $\sqrt{[(V \cap D) + j(W)}$: RWI. That is $V \cap D$ is NQPr-2-ABS submodule of W. Similarly if $j(W) \subseteq V$, we get $V \cap D$ is NQPr-2-ABS submodule of W.

References

[1] Haibat, K. Mohammedali and Omar, A. Abdalla. Pseudo-2-Absorbing and Pseudo Semi-2- Absorbing Submodules, AIP Conference Proceedings 2096,020006,(2019), 1-9.

^[2] Haibat, K. M and Omar, A. Abdalla. Pseudo Primary-2-ABSORBING SUBMODULES and Some Related Concepts, Ibn Al-Haitham Journal for pure and applied mathematics, 32 (3) (2019), 129-139.

^[3] Omar, A. Abdalla, Ali Sh. Ajeel and Haibat, K. Mohammedali. Nearly Primary-2-Absorbing submodules and Other Related Concepts, Ibn Al-Haitham Journal for pure and applied mathematics, 34 (1) (2021), 116-124.

^[4] Innam, M. A and Abdulrahman, A. H. Semi- 2-Absorbing Submodules and Semi-2-absorbing Modules, international Journal of Advanced Scientific and Technical Research, RS Publication, 5 (3) (2015), 521-530.

^[5] H. Mostafanasab, E. Yetkin, U. Tekir and A. Y. Darani. On 2-absorbing primary submodules of modules over commutative rings. An. Sti. U. Ovid. Co-mat. 24(1) (2015), 335–351.

^[6] Darani, A.Y and Soheilniai. F. 2-Absorbing and Weakly 2-Absorbing Submodules, Tahi Journal. Math, (9) (2011), 577-584.

^[7] Badawi, A. On 2-Absorbing Ideals of Commutative Rings, Bull. Austral. Math. Soc, (75) (2007), 417-429.

^[8] Lu, C. P. Prime Submodules of Modules, Comm. Math, University Spatula, (33) (1981), 61-69.

^[9] Lu, C. P. M-radical of Submodules, Math. Japan. 34 (2) (1989), 211-219.

^[10] Tekir, U. , Koc, S. , Oral, K. H. and Shum, K. P. , On 2-Absorbing Quasi-primary Ideals in commutative Rings, Communication in Mathematics and statistics, 4(1)((2016), 55-62.

^[11] Kos, S. Uregen, R. N and Tekir, U. On 2-Absorbing Quasi-primary Submodules, Faculty of Science and Mathematics, 31(10) (2017), 2943-2950.

^[12] El-Bast, Z.A. and Smith, P.F. Multiplication modules, Comm. In Algebra 16(4) (1988), 755–779.

^[13] Kasch, F. Modules and Rings, *London Math. Soc. Monographs, New York, Academic press*, 1982.

^[14] Smith, P. F. Some remarks of Multiplication Modules, Arch. Math. (50) (1986), 223-225.

^[15] Ahamed, A. A. On Submodules of Multiplication Modules, M.Sc. Thesis, University of Baghdad, 1992.

- [16] Ali, M. M. , Idempotent and Nilpotent Submodules of Multiplication Modules, Comm. Algebra,(36) (2008), 4620-4642.
- [17] Nuha, H. H. The Radical of Modules, M. Sc. Thesis, University of Baghdad, 1996.
- [18] Ali, S. M. On Cancellation Modules, M. Sc. Thesis, University of Baghdad, 1993.