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A B S T R A C T 

   The EDITRK5 method. which this paper derives. is an 
exponentially fitted diagonally implicit RK method for solving 
ODEs with the equation 𝑦′′′(𝑥)  =  𝑓(𝑥. 𝑦). With the help of the 
set functions 𝑒𝑤𝑥 and 𝑒−𝑤𝑥 for exponentially fitting problems. 
this strategy is designed to integrate precise initial value 
problems (IVPs). The primary frequency of the issue. 𝑤 ∈ 𝑅  is 
used to increase the method's accuracy. The new approach For 
the purpose of solving IVPs using exponential functions as 
solutions. EDITRK5 is a novel three-stage five-order 
exponentially-fitted diagonally implicit method. When the 
same issue is reduced to the first-order framework of 
equations. which can be solved using traditional RK 
approaches. different forms of third-order ODEs must be 
constructed using the new system. and numerical comparisons 
must be made. The numerical results demonstrate that the new 
strategy is more effective than methods that have already been 
published. 

 

1-Introduction:  

If the continuous vector-valued operation 𝑣 ∈   𝑅𝑑 . 𝑓: 𝑅 ×  𝑅𝑑   → 𝑅𝑑 . does not directly depend on 
the second derivatives. This kind of difficulty arises in a variety of physical problems. including 
thin-film flow. gravity-driven flows. and others [1. 2. 3].  Then. in recent years. several researchers 

have developed explicit RK techniques for solving 1𝑠𝑡-order and 2𝑛𝑑-order ODEs that are fitted 
exponentially and trigonometrically. Implicit approaches are crucial because they can achieve 
better levels of accuracy for the same stage number as explicit ones. This makes it simpler to find 
solutions to difficult issues. On the other hand. implicit (RK) techniques are significant in other 
problem classes. like solving differential-algebraic equations. Diagonally implicit RK techniques 
are also often referred to as semi-implicit or semi-explicit RK approaches since they feature a 
lower triangular A-matrix with at least one non-zero diagonal element. Paternoster [4] created 
(RKN) methods for trigonometric polynomial periodic solutions to ODEs. Vanden Berghe et al. [5] 
created exponentially modified RK algorithms. While Simos [6] offers an enhanced RK technique 
that addresses issues with the Schrödinger equation. Most scientists. engineers. and researchers 

mailto:Tikrit%20University%20/College%20of%20Computer%20Science%20and%20Mathematics,%20Mathematics%20Departmentnour.w.jaleel35433@st.tu.edu.iq
mailto:Tikrit%20University%20/College%20of%20Computer%20Science%20and%20Mathematics,%20Mathematics%20Departmentnour.w.jaleel35433@st.tu.edu.iq
mailto:firasadil01@tu.edu.iq


2 Nour W. Jaleel, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 14(3) 2022 , pp  Math. 111–124

 

used to solve (1) by breaking down a three-dimensional system of 1𝑠𝑡-order equations into a set 

of 3𝑟𝑑-order differential equations. It is more effective. nevertheless. to tackle the issue directly 
using numerical techniques. Examples of this kind of work may be found in [7. 8]. and [9].  In [10]. 
two explicit two-derivative RKN approaches are built. one with exponential fitting and the other 
with trigonometric fitting.  Demba et al. [11] then devised an explicit trigonometrically fitted RKN 

approach utilizing the Simos methodology. Additionally. [12. 13] show how certain 3𝑟𝑑- and 4𝑡ℎ-
order ODEs may be solved using the direct technique.  

This study's main objective is to demonstrate how to solve exceptional 3^rd ODEs using a fitted 
exponential-diagonally implicit RK technique. The algebraic order of the method must also be 
taken into account while solving (1) numerically since it is crucial to obtaining good accuracy. 
Section 3 presents the necessary requirements and derivation for exponentially fitted RK-type 

techniques for resolving 3𝑟𝑑-order ODEs. The efficiency of the new approach is contrasted with 
that of earlier methods in Section 4.  

To address the problems of IVPs (1). the general structure of the EDITRK5 technique with a 
score of 𝑚-stage: 

𝑣𝑛+1 = 𝑣𝑛 + h𝑣𝑛
′ +

ℎ2

2
𝑣𝑛

′′ + ℎ3 ∑ 𝑏𝑖
𝑚
𝑖=1 𝑘𝑖  .                                                  (2) 

𝑣𝑛+1
′ = 𝑣𝑛

′ + h𝑣𝑛
′′ + ℎ2 ∑ 𝑏𝑖

′𝑚
𝑖=1 𝑘𝑖  .                                                                (3) 

𝑣𝑛+1
′′ = 𝑣𝑛

′′ + h ∑ 𝑏𝑖
′′𝑚

𝑖=1 𝑘𝑖  .                                                                             (4) 
Where 

 

𝑘𝑖 = 𝑓 (𝑥𝑛 + 𝑐𝑖ℎ. 𝑣𝑛 + 𝑐𝑖ℎ𝑣𝑛
′ +

ℎ2

2
 𝑐𝑖

2 𝑣𝑛
′′ + ℎ3  ∑ 𝑎𝑖𝑗

𝑖−1
𝑗=1 𝑘𝑗)                (5) 

 

 

for i=2.3.….n 

The parameters of diagonal implicit RK type (EDITRK5) strategies are  𝑏𝑖. 𝑏𝑖
′. 𝑏𝑖

′′. 𝑎𝑖.𝑗  and 𝑐𝑖 of 

where 𝑖 =  2. 3. . . . . 𝑚. are real integers and n is the method's level digit.  When 𝑎𝑖.𝑗  ≠ 0  for 𝑖 ≤

 𝑗. techniques. which shows that the decrease the triangle diagonal matric of 𝐴 has the equal 
values as    𝑎𝑖.𝑗 ≠ 0 wherein 𝑖 =  𝑗 at the diagonal 

TABLE I. Butcher form EDITRK method: 

𝑐1  𝑎11    

 𝑐2  𝑎21 𝑎22 

𝑐3  𝑎31  𝑎32  𝑎33  

 

𝑏1  𝑏2 𝑏3 
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 𝑏1
′

 

𝑏1
′′

 

𝑏2
′

 

𝑏2
′′

 

𝑏3
′

 

𝑏3
′′

 

 

 

 

To obtain the parameters of the new method provided by (2)-(5). the EDITRK5 method expression 
is expanded using Taylor's series expansion. After a few algebraic modifications. this expansion is 
equivalent to the real answer that Taylor's series expansion yields. The direct extension of the 
local truncation error was used to create the general order criterion for the new approach. This 
idea is based on how the order requirements for the RK approach were derived in [8. 14. 15] 

 

The new EDITRK5 technique is written as follows: 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝛷(𝑥𝑛 . 𝑦𝑛). 
𝑦𝑛+1

′ = 𝑦𝑛
′ + ℎ𝛷′(𝑥𝑛 . 𝑦𝑛). 

                                            𝑦𝑛+1
′′ = 𝑦𝑛

′′ + ℎ𝛷′′(𝑥𝑛 . 𝑦𝑛).                                        (6) 

 
 

 

where the functions for increment are 

          𝛷(𝑥𝑛 . 𝑦𝑛) = 𝑦𝑛
′ +

ℎ

2
 𝑦𝑛

′′ + ℎ2 ∑ 𝑏𝑖

𝑚

𝑖=1

𝑘𝑖 . 

𝛷′(𝑥𝑛 . 𝑦𝑛) = 𝑦𝑛
′′ + ℎ ∑ 𝑏𝑖

′

𝑚

𝑖=1

𝑘𝑖 . 

                                                                                 𝛷′′(𝑥𝑛 . 𝑦𝑛)

= ∑ 𝑏𝑖
′′

𝑚

𝑖=1

𝑘𝑖 .                                                                                                                 (7) 

In which k𝑖  is given in (5). If we suppose that the Taylor series increment characteristic is 
∆. ∆′and ∆′′. Thus. with the aid of inserting the exact solution of (1) into (7). the nearby truncation 
errors of 𝑦(𝑥). 𝑦′(𝑥)𝑎𝑛𝑑 𝑦′′(𝑥)may be received: 

𝜏𝑛+1 = ℎ[𝛷 − ∆]. 
𝜏𝑛+1

′ = ℎ[𝛷′ − ∆′]. 
                                                                                                                                                                                                      𝜏𝑛+1

′′ =
ℎ[𝛷′′ − ∆′′].                                                               (8) 

 

In the phrases of basic differentials. those expressions are satisfactory given and the Taylor series 
can be expressed as follows: 

∆= 𝑦′ +
1

2
ℎ𝑦′′ +

1

6
 ℎ2𝐹1

(3)
+

1

24
 ℎ3𝐹1

(4)
+ 𝑂(ℎ4).      
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∆′= 𝑦′′ +
1

2
 ℎ 𝐹1

(3)
+

1

6
 ℎ2𝐹1

(4)
+

1

24
 ℎ3𝐹1

(5)
+ 𝑂(ℎ4). 

                                           ∆′′= 𝐹1
(3)

+
1

2
 ℎ𝐹1

(4)
+

1

6
 ℎ2𝐹1

(5)
+ 𝑂(ℎ3).                                                       (9)      

 

For the scalar case. the primary few simple differentials are 

                         𝐹1
(3)

= 𝑓.                                                                                                                                      

      𝐹1
(4)

= 𝑓𝑥 + 𝑓𝑦𝑦′ .                                                                                                      

𝐹1
(5)

= 𝑓𝑥𝑥 + 2𝑓𝑥𝑦𝑦′ + 𝑓𝑥𝑦′𝑦𝑥𝑥 + 𝑓𝑦𝑦′′ + 𝑓𝑦𝑦(𝑦′)2.                                                                             (10)             

substituting (10) into (7). for the new method. the increment functions will become Φ. Φ'  and 
Φ'' will become 

∑ 𝑏𝑖𝑘𝑖
𝑚
𝑖=1 = ∑ 𝑏𝑖

𝑚
𝑖=1 𝑓 + ∑ 𝑏𝑖𝑐𝑖

𝑚
𝑖=1 (𝑓

𝑥
+ 𝑓

𝑦
𝑦′) ℎ +

1

2
∑ 𝑏𝑖

𝑚
𝑖=1 𝑐𝑖

2 (𝑓
𝑥𝑥

+ 2𝑓
𝑥𝑦

𝑦′ + 𝑓
𝑥𝑦′𝑦𝑥𝑥

+ 𝑓
𝑦
𝑦′′ + 𝑓

𝑦𝑦
(𝑦′)

2
) ℎ2 +

𝑂(ℎ3).   
 

∑ 𝑏𝑖
′𝑘𝑖

𝑚
𝑖=1 = ∑ 𝑏𝑖

′𝑚
𝑖=1 𝑓 + ∑ 𝑏𝑖

′𝑐𝑖
𝑚
𝑖=1 (𝑓

𝑥
+ 𝑓

𝑦
𝑦′) ℎ +

1

2
∑ 𝑏𝑖

′𝑚
𝑖=1 𝑐𝑖

2 (𝑓
𝑥𝑥

+ 2𝑓
𝑥𝑦

𝑦′ + 𝑓
𝑥𝑦′𝑦𝑥𝑥

+ 𝑓
𝑦
𝑦′′ + 𝑓

𝑦𝑦
(𝑦′)

2
) ℎ2 +

𝑂(ℎ3).   

∑ 𝑏𝑖
′′𝑘𝑖

𝑚
𝑖=1 = ∑ 𝑏𝑖

′′𝑚
𝑖=1 𝑓 + ∑ 𝑏𝑖

′′𝑐𝑖
𝑚
𝑖=1 (𝑓

𝑥
+ 𝑓

𝑦
𝑦′) ℎ +

1

2
∑ 𝑏𝑖

′′𝑚
𝑖=1 𝑐𝑖

2 (𝑓
𝑥𝑥

+ 2𝑓
𝑥𝑦

𝑦′ + 𝑓
𝑥𝑦′ 𝑦𝑥𝑥

+ 𝑓
𝑦
𝑦′′ +

𝑓
𝑦𝑦

(𝑦′)
2
) ℎ2 + 𝑂(ℎ3) . 

 

From (9) and (11) the local truncation error (8) can be expressed as follows: 

             𝜏𝑛+1 = ℎ3  [∑ 𝑏𝑖𝑘𝑖

𝑚

𝑖=1

− (
1

6
𝐹1

(3)
+

1

24
ℎ𝐹1

(4)
+ ⋯ )] .                                                  

𝜏𝑛+1
′ = ℎ2  [∑ 𝑏𝑖

′𝑘𝑖

𝑚

𝑖=1

− (
1

2
𝐹1

(3)
+

1

6
ℎ𝐹1

(4)
+ ⋯ )].                                                  

𝜏𝑛+1
′′ = ℎ [∑ 𝑏𝑖

′′𝑘𝑖
𝑚
𝑖=1 − (𝐹1

(3)
+

1

2
ℎ𝐹1

(4)
+

1

6
ℎ2𝐹1

(5)
… )] .                             (12) 

By changing (11) into (12) and expanding as a Taylor expansion with the help of the Maple 
package. the local truncation mistakes or the order conditions for m-stage up to order six for the 
new approach may be resolved (see [14] and [12]). 
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2. EXPONENTIALLY FITTED EDITRK METHOD 

 

Definition 1. 1: The functions 𝑒𝑤 and 𝑒−𝑤must integrate precisely at each stage in order to build 

the exponentially fitted RK type three-stage 4𝑡ℎ-order approach; as a result. the following equations 

are obtained for 𝑦. 𝑦′. and 𝑦". 

 

𝑒±𝑣 = 1 ± 𝑣 +
1

2
 𝑣2 ± 𝑣3 ∑ 𝑏𝑖

𝑚

𝑖=1

𝑒±𝑐𝑖𝑣                                  (13) 

e±v = 1 ± v + v2 ∑ bi
′

m

i=1

e±civ                                                 (14) 

𝑒±𝑣 = 1 ± 𝑣 ∑ 𝑏𝑖
′′𝑚

𝑖=1 𝑒±𝑐𝑖𝑣                                                        (15) 

 

Where 𝑣 = 𝑤ℎ. 𝑤 ∈ 𝑅. The relations  cosh(𝑣) =
𝑒𝑣+𝑒−𝑣

2
 and  sinh(𝑣) =

𝑒𝑣−𝑒−𝑣

2
 will be used in the 

derivation process. The following equations corresponding 𝑦. 𝑦′ and 𝑦′′ are 

 

 

cosℎ(𝑣) = 1 +
1

2
 𝑣2 + 𝑣3 ∑ 𝑏𝑖

𝑚

𝑖=1

sin ℎ(𝑣𝑐𝑖)                              (16) 

       𝑠𝑖𝑛 ℎ(𝑣) = 𝑣 + 𝑣3 ∑ 𝑏𝑖

𝑚

𝑖=1

𝑐𝑜𝑠ℎ(𝑣𝑐𝑖)                                          (17) 

𝑐𝑜𝑠ℎ(𝑣) = 1 + 𝑣2 ∑ 𝑏𝑖
′

𝑚

𝑖=1

𝑐𝑜𝑠ℎ(𝑣𝑐𝑖)                                          (18) 

sinh(𝑣) = 𝑣 + 𝑣2 ∑ 𝑏𝑖
′

𝑚

𝑖=1

sinh(𝑣𝑐𝑖)                                          (19) 

cosh(𝑣) = 1 + 𝑣 ∑ 𝑏𝑖
′′

𝑚

𝑖=1

sinh(𝑣𝑐𝑖)                                         (20) 

𝑠𝑖𝑛ℎ(𝑣) = 𝑣 ∑ 𝑏𝑖
′′

𝑚

𝑖=1

𝑐𝑜𝑠ℎ(𝑣𝑐𝑖)                                                 (21) 

 

The following three-stage. fifth-order diagonally implicit technique was developed in [12]. 

𝑐1 =
1

10
 . 𝑐2 =

1

2
. 𝑐3 =

4

5
   . 𝑎11 =

9

1000
. 𝑎21 = 0. 𝑎22 =

9

1000
. 𝑎31 =

1

10
. . 𝑎32 = 0. 𝑎33 =

9

1000
. 𝑏1 =

1

10
 . 𝑏2

=
1

18
 . 𝑏3 =

1

1000
   . 𝑏1

′ =
1

5
 . 𝑏2

′ =
2

9
 . 𝑏3

′ =
3

100
 . 𝑏1

′′ =
5

18
 . 𝑏2

′′ =
4

9
. 𝑏3

′′ =
5

18
 . 
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Next. we solve (16 – (21)) and use of the coefficients listed above to find 𝑏1. 𝑏2. 𝑏1
′ . 𝑏2

′ . 𝑏1
′′ and 𝑏2

′′
 

 
𝑏1

=
1

1000
.

(cosh (
1

2
𝑉) sinh (

4

5
𝑉) − cosh (

4

5
𝑉) sinh(

1

2
𝑉)

𝑣(cosh(
1

10
𝑉) sinh (

1

2
𝑉) − cosh(

1

2
𝑉) sinh(

1

10
𝑉)

+
1

2

cosh (
1

2
𝑉) 𝑉2 + 2 sinh(𝑉) sinh (

1

2
𝑉) − 2 cosh(

1

2
𝑉) cosh(𝑉) − 2 sinh (

1

2
𝑉) 𝑉 + 2 cosh(

1

2
𝑉)

𝑉3(cosh(
1

10
𝑉) sinh (

1

2
𝑉) − cosh(

1

2
𝑉) sinh(

1

10
))

 

                                             

 
𝑏2

= −
1

1000
.

(cosh (
1

2
𝑉) sinh (

4

5
𝑉) − cosh (

4

5
𝑉) sinh (

1

2
𝑉)

(cosh (
1

10
𝑉) sinh (

1

2
𝑉) − cosh (

1

2
𝑉) sinh (

1

10
𝑉)

−
1

2

𝑉2cosh (
1

10
𝑉) + 2 sinh(

1

10
𝑉) sinh(𝑉) − 2 cosh(𝑉) cosh (

1

10
𝑉) − 2 sinh (

1

10
𝑉) 𝑉 + 2 cosh(

1

10
𝑉)

𝑉3(cosh(
1

10
𝑉) sinh (

1

2
𝑉) − cosh(

1

2
𝑉) sinh(

1

10
))

 

 
𝑏1

′

=
5

18
.
(cosh (

1

2
𝑉) sinh (

4

5
𝑉) 𝑉 −

5

18
cosh (

4

5
𝑉) sinh (

1

2
𝑉) 𝑉 − 𝑐𝑜𝑠ℎ (

1

2
𝑉) 𝑐𝑜𝑠ℎ(𝑉) + 𝑠𝑖𝑛ℎ(𝑉) 𝑠𝑖𝑛ℎ (

1

2
𝑉) + 𝑐𝑜𝑠ℎ(

1

2
𝑉))

𝑣(cosh(
1

10
𝑉) sinh (

1

2
𝑉) − cosh(

1

2
𝑉) sinh(

1

10
𝑉))

 

  

 

 

 
𝑏2

′

= −
5

18
.
(cosh (

1

10
𝑉) sinh (

4

5
𝑉) 𝑉 −

5

18
cosh (

4

5
𝑉) sinh (

1

102
𝑉) 𝑉 − 𝑐𝑜𝑠ℎ (

1

10
𝑉) 𝑐𝑜𝑠ℎ(𝑉) + 𝑠𝑖𝑛ℎ(𝑉) 𝑠𝑖𝑛ℎ (

1

10
𝑉) + 𝑐𝑜𝑠ℎ(

1

10
𝑉))

𝑣(cosh(
1

10
𝑉) sinh (

1

2
𝑉) − cosh(

1

2
𝑉) sinh(

1

10
𝑉))

 

 

𝑏1
′′ =

3

100
.

(cosh (
1

2
𝑉) sinh (

4

5
𝑉) − cosh (

4

5
𝑉) sinh(

1

2
𝑉)

(cosh(
1

10
𝑉) sinh (

1

2
𝑉) − cosh(

1

2
𝑉) sinh(

1

10
𝑉)

−
cosh (

1

2
𝑉) sinh(𝑉) − cosh (

1

2
𝑉) 𝑉 − sinh(

1

2
𝑉) cosh(𝑉) + sinh(

1

2
𝑉)

𝑉2(cosh(
1

10
𝑉) sinh (

1

2
𝑉) − cosh(

1

2
𝑉) sinh(

1

10
))
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𝑏2
′′ = −

3

100
.
(cosh (

1

10
𝑉) sinh (

4

5
𝑉) − cosh (

4

5
𝑉) sinh (

1

10
𝑉)

(cosh (
1

10
𝑉) sinh (

1

2
𝑉) − cosh (

1

2
𝑉) sinh (

1

10
𝑉)

+
cosh (

1

10
𝑉) sinh(𝑉) − cosh (

1

10
𝑉) 𝑉 − sinh(

1

10
𝑉) cosh(𝑉) + sinh(

1

10
𝑉)

𝑉2(cosh(
1

10
𝑉) sinh (

1

2
𝑉) − cosh(

1

2
𝑉) sinh(

1

10
))

 

 

EDITRK5. a three-stage fifth-order diagonally implicit exponentially fitted RK type technique. was 
created as a consequence. The corresponding Taylor series extension of the answer is provided by 

 

𝑏1 =  
1259

12000
−

1313

7200000
 𝑉2 +

349747

60480000000
 𝑉4 −

5613577

60480000000000
 𝑉6 +

7214336873

4790016000000000000
𝑉8

−
31933381356353

1307674368000000000000000
 𝑉10 

 

𝑏2 =  
243

4000
+

557

7200000
 𝑉2 +

493793

60480000000
 𝑉4 −

15282961

181440000000000
 𝑉6 +

7318459747

4790016000000000000
𝑉8

−
31889153986003

1307674368000000000000000
 𝑉10   

 

𝑏1
′ =  

277

1200
−

439

720000
 𝑉2 +

90941

6048000000
 𝑉4 −

1451231

6048000000000
 𝑉6 +

1861044919

479001600000000000
𝑉8

−
8233503141559

130767436800000000000000
 𝑉10 

 

𝑏2
′ =  

287

1200
+

1171

720000
 𝑉2 +

228679

6048000000
 𝑉4 −

6414611

6048000000000
 𝑉6 +

2070291941

479001600000000000
𝑉8

−
8110978170509

130767436800000000000000
 𝑉10    

 

𝑏1
′′ =  

5

24
−

7

2880
 𝑉2 +

119

3456000
 𝑉4 −

5587

10368000000
 𝑉6 +

71837

8294400000000
𝑉8

−
10459081

74649600000000000
 𝑉10 +

15658809599

6897623040000000000000
𝑉12     

 

𝑏2
′′ =  

37

72
+

43

2880
 𝑉2 +

1261

3456000
 𝑉4 +

145921

72576000000
 𝑉6 +

1072601

58060800000000
𝑉8

−
668809087

5748019200000000000
 𝑉10 +

20695460803

6897623040000000000000
𝑉12 
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3. NUMERICAL EXPERIMENTS 

 

The concepts discussed in this section were tested against five different problems. The numerical 
outcomes of the suggested approaches are compared to those of existing implicit RK algorithms 
of the same order. The following equipment was used to conduct the numerical experiments: 

 

Problem 1: ( Non-homogeneous Linear Problem) 

 
𝑣′′′(𝑡) =  𝑣(𝑡) +  𝑐𝑜𝑠(𝑣).     𝑣(0) =  0.    𝑣 ′(0) =  0.  𝑣′′(0)  =  1 

Theoretical solution : 

𝑣(𝑡) = (𝑒𝑡 − cos(𝑡) − sin(𝑡)) . 

 

Problem 2: ( Non-homogeneous Nonlinear Problem ) 

𝑣′′′(𝑡)  =  (𝑣(𝑡))2  +  𝑐𝑜𝑠2(𝑣)  −  𝑐𝑜𝑠(𝑡)  −  1. 

𝑣(0)  =  0. 𝑣′(0)  =  1. 𝑣′′(0)  =  1. 
Theoretical solution: 

𝑣(𝑡)  =  𝑠𝑖𝑛(𝑡). 

Problem 3: ( Non-homogeneous Nonlinear Problem) 

𝑣′′′(t) = 8 (
𝑣2(𝑡)

𝑒2𝑡
)  . 

𝑣(0) = 1 .        𝑣′(0) = 2.      𝑣′′(0) = 4 .                                        

Theoretical solution : 

𝑣(𝑡)  =  𝑒2𝑡 

Problem 4: ( linear System) 

 

𝑦1
′′′(t) = 𝑦2(t).                                        

𝑦2
′′′(t) = −𝑦1(𝑡) − 2𝑦2(𝑡) + 2𝑦3(𝑡). 

𝑦3
′′′(t) = 𝑦1(𝑡) + 𝑦2(𝑡)                      

The exact solution is given by : 

𝑦1(𝑡)  =  𝑐𝑜𝑠ℎ(𝑡). 

𝑦2(𝑡)  =  𝑠𝑖𝑛ℎ(𝑡). 

𝑦3(𝑡)  = 𝑒𝑡. 
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Problem 5: ( linear System)  
𝑦1

′′′(t) = 𝑦2(t).       

𝑦2
′′′(t) = 𝑦1(t).      

                                                     𝑦3
′′′(t) = 𝑦1(𝑡) + 𝑦2(𝑡) − sinh(𝑡)                                                

 

𝑦1(0) = 1 . 𝑦1
′ (0) = 0 . 𝑦1

′′(0) = 1 .  

   𝑦2(0) = 0 . 𝑦2
′ (0) = 1 . 𝑦2

′′(0) = 0 .     

𝑦3(0) = 1 . 𝑦3
′ (0) = 0 . 𝑦3

′′(0) = 1 .   

The exact solution is given by 

𝑦1(𝑡) = cosh(𝑡). 

𝑦2(𝑡) = sinh(𝑡). 

𝑦3(𝑡) = 𝑒𝑡 + 1 − cosh(𝑡) +
𝑡2

2
− 𝑡. 

 

 
The decimal logarithm of the largest global error and the logarithm of function evaluations are displayed 
in Figures 1–5. respectively. to demonstrate the effectiveness of the EDITRK5 techniques. The EDITRK5 
technique needs fewer function evaluations than other implicit RK methods of the same order. This is due 
to the fact that when the issues were transformed into a system of 1𝑠𝑡-order ODEs. the number of equations 
quadrupled. The EDITRK5 approaches. as shown in Figures 1–5. have the smallest maximum global error 
and the fewest number of function evaluations each step when compared to other implicit RK methods of 
the same order. Figures 1–5 demonstrate that the EDITRK5 delivers results that are more accurate than 
those from other studies in the literature (Radau IA. Radau II). In this study. the decimal logarithm of the 
largest global mistake for 5 test problems is used to calculate the logarithm of function evaluations with 
various step sizes. ℎ =  0.1. 0.05. 0.025. 0.00125. and 0.00625 respectively. 

 

 

 

 
FIGURE 1. Accuracy curve for EDITRK5. Radau IA. Radau II. with ℎ =  0.1. 0.05 0.025. 0.00125. 0.00625 

for the problem 1. 
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FIGURE 2. Accuracy curve EDITRK5. Radau IA. Radau II. with h =  0.1. 0.05 0.025. 0.00125. 0.00625 for 
the problem 2. 

 

FIGURE 3. Accuracy curve for EDITRK5. Radau IA. Radau II. with h =  0.1. 0.05 0.025. 0.00125. 0.00625 
for the problem 3. 
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FIGURE 4. Accuracy curve for EDITRK5. Radau IA. Radau II. with h =  0.1. 0.05 0.025. 0.00125. 0.00625 
for the problem 4. 

 

 

FIGURE 5. Accuracy curve for EDITRK5. Radau IA. Radau II. with ℎ =  0.1. 0.05 0.025. 0.00125. 0.00625 
for the problem 5. 
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4. CONCLUSION 
 
In this research. we addressed the 𝑦′′′(𝑥)  =  𝑓 (𝑥. 𝑦) problem using an exponentially fitted diagonally 
implicit RK type approach. The EDITRK5 method. a three-stage fifth-order exponentially-fitted 
diagonally implicit method based on calculating the maximum error in the solution (𝑚𝑎𝑥(| 𝑦(𝑡𝑛) −
𝑦𝑛|)). which is equal to the maximum difference between absolute errors of actual and computed 
solutions. was created as a result and used in the numerical comparison of criteria. Figures 1–5 
display the numerical outcomes. Additionally. compared to the (Radau IA. Radau II) methods. the 
EDITRK5 technique needs less capacity evaluations. The figures demonstrate how the common 
logarithm of the greatest global error during integration and computation cost was determined using 
the number of function evaluations. The numerical results made it abundantly evident that the unique 
exponentially fitted technique RK type approach has a smaller global error than the other existing 
approaches for a brief time of integration. When solving 3𝑟𝑑-order ODEs of the kind 𝑦′′′ =  𝑓 (𝑥. 𝑦) 
directly. the ground-breaking EDITRK5 methodology is substantially more effective than the other 
current methods. 
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