Page 94-116

Raad.A\Ruaa.M

On Bc-Lindelof spaces and nearly Bc-Lindelof spaces

Raad Aziz Hussain Al-Abdulla

&

Ruaa Muslim Abed

Department of Mathematics College of Computer Sciences and Mathematics

University of AL-Qadisiya

Recived :19\6\2014 Revised : 1\10\2014 Accepted :2\10\2014

Abstract

In this paper, we have discussed a new class of ω Bc-open sets and ω Bc-regular open sets. Throughout this work, new concepts have been illustrated including an Bc-Lindelof spaces and nearly Bc-Lindelof spaces and the behavior of these invariant under kinds of functions.

Mathematics Subject Classification: 54XX

1.Introduction

The concept of Bc-open set in topological spaces was introduced in 2013 by Hariwan Z [2]. This set was also considered in [3].

This paper consist of three section. In section one, we give similar definition by using of Bc-open sets and also we proof some properties about it. In section two we introduce a new generalization of ω Bc-open set, ω Bc-regular open and investigate some properties of this set. In section three we obtain new a characterization and preserving theorems of Bc-Lindelof space and nearly Bc-Lindelof space.

Definition(1.1)[1]:

Let *X* be a space and $A \subseteq X$. Then *A* is called b-open set in *X* if $A \subseteq \overline{A^{\circ}} \cup \overline{A^{\circ}}$. The family of all b-open subset of a topological space (X, τ) is denoted by $BO(X, \tau)$ or (Briefly BO(X)).

Definition(1.2)[2]:

Raad.A\Ruaa.M

Let X be a space and $A \subset X$. Then A is called Bc-open set in X if for each $x \in A \in BO(X,\tau)$, there exists a closed set F such that $x \in F \subset A$. The family of all Bc-open subset of a topological space (X,τ) is denoted by $BcO(X,\tau)$ or (Briefly BcO(X)), A is Bc-closed set if A^c is Bc-open set. The family of all Bc-closed subset of a topological space (X,τ) or (Briefly BcC(X)).

Example(1.3):

It is clear from the definition that every Bc-open set is b-open, but the converse is not true in general.

Let $X = \{1,2,3\}, \tau = \{\phi, X, \{1\}, \{2\}, \{1,2\}\}$. Then the closed set are: $X, \phi, \{2,3\}, \{1,3\}, \{3\}$. Hence $BO(X) = \{\phi, X, \{1\}, \{2\}, \{1,2\}, \{1,3\}, \{2,3\}\}$ and $BcO(X) = \{\phi, X, \{1,3\}, \{2,3\}\}$. Then $\{1\}$ is b-open but $\{1\}$ is not Bc-open.

Definition(1.4)[2]:

Let X be a space and $A \subset X$. Then A is called θ -open set in X if for each $x \in A$, there exists an open set G such that $x \in G \subset \overline{G} \subset A$. The family of all θ -open subset of a topological space (X, τ) is denoted by $\theta O(X, \tau)$ or (Briefly $\theta O(X)$).

Remark(1.5)[2]:

1) Every θ -open is Bc-open.

2) Every θ -closed is Bc-closed.

Example(1.6):

The intersection of two Bc-open sets is not Bc-open in general.

Let $X = \{1,2,3\}, \tau = \{\phi, X, \{1\}, \{2\}, \{1,2\}\}$. Then $\{1,3\}, \{2,3\}$ is Bc-open set, where as $\{1,3\} \cap \{2,3\} = \{3\}$ is not Bc-open set.

Remark(1.7)[4]:

The intersection of an b-open set and an open set is b-open set.

Raad.A\Ruaa.M

Remark(1.8):

Let X be a space and $A, B \subset X$. If A is Bc-open set and B is an θ -open set, then $A \cap B$ is Bc-open set.

Proof:

Let *A* be a Bc-open set and *B* be an θ -open set, then *A* is b-open set and *B* is an open set since every θ -open is open. Then $A \cap B$ is b-open set by (Remark(1.7)). Now, let $x \in A \cap B$, $x \in A$ and $x \in B$. If $x \in A$, then there exists a closed set *F* such that $x \in F \subset A$ and if $x \in B$, then there exists an open set *E* such that $x \in E \subset \overline{E} \subset B$. Therefore, $F \cap \overline{E}$ is closed since the intersection of closed sets is closed. Thus $x \in F \cap \overline{E} \subset A \cap B$. Then $A \cap B$ is Bc-open set.

Proposition(1.9)[2]:

Let *X* be a space and $A \subset X$. Then *A* is Bc-open set if and only if *A* is b-open set and it is a union of closed sets. That is $A = \bigcup F_{\alpha}$ where *A* is b-open set and F_{α} is closed subsets for each α .

Proposition(1.10)[2]:

Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be a collection of Bc-open sets in a topological space *X*. Then $\bigcup \{A_{\alpha} : \alpha \in \Lambda\}$ is Bc-open.

Definition(1.11)[2]:

Let X be a space and $A \subset X$. A point $x \in X$ is said to Bc-interior point of A, if there exist a Bc-open set U such that $x \in U \subset A$. The set of all Bc-interior points of A is called Bc-interior of A and is denoted by $A^{\circ Bc}$.

Theorem(1.12)[2]:

Let *X* be a space and $A, B \subset X$, then the following statements are true.

1) $A^{\circ Bc}$ is the union of all Bc-open set which are contained in A.

- 2) $A^{\circ Bc}$ is Bc-open set in *X*.
- 3) *A* is Bc-open if and only if $A = A^{\circ Bc}$.

$$4) A^{\circ Bc} \subset A.$$

$$5) (A^{\circ Bc})^{\circ Bc} = A^{\circ Bc}$$

6) If $A \subset B$, then $A^{\circ Bc} \subset B^{\circ Bc}$.

$$7) A^{\circ Bc} \cup B^{\circ Bc} \subset (A \cup B)^{\circ Bc}$$

8) $(A \cap B)^{\circ Bc} \subset A^{\circ Bc} \cap B^{\circ Bc}$.

Definition(1.13)[2]:

Raad.A\Ruaa.M

Let X be a space and $A \subset X$. The Bc-closure of A is defined by the intersection of all Bcclosed sets in X containing A, and is denoted by \overline{A}^{Bc} .

Theorem(1.14)[2]:

Let *X* be a space and *A*, $B \subset X$. Then the following statements are true.

1) \bar{A}^{Bc} is the intersection of all Bc-closed sets containing A.

- 2) $A \subset \overline{A}^{Bc}$.
- 3) \overline{A}^{Bc} is Bc-closed set in *X*.
- 4) *A* is Bc-closed set if and only if $A = \overline{A}^{Bc}$.
- 5) $\overline{(\bar{A}^{Bc})}^{Bc} = \bar{A}^{Bc}$.
- 6) If $A \subset B$, then $\overline{A}^{Bc} \subset \overline{B}^{Bc}$.
- 7) $\overline{A}^{Bc} \cup \overline{B}^{Bc} \subset \overline{(A \cup B)}^{Bc}$.
- 8) $\overline{(A \cap B)}^{Bc} \subset \overline{A}^{Bc} \cap \overline{B}^{Bc}$.

Proposition(1.15)[2]:

Let *X* be a space and $A \subset X$, then the following statements are true.

1)
$$(\overline{A}^{Bc})^{c} = (A^{c})^{\circ Bc}$$
.
2) $(A^{\circ Bc})^{c} = \overline{(A^{c})}^{Bc}$.
3) $\overline{A}^{Bc} = (A^{c \circ Bc})^{c}$.
4) $A^{\circ Bc} = (\overline{A^{c}}^{Bc})^{c}$.

Definition(1.16):

Let X be a space and $A \subset X$. Then A is called Bc-regular open set in X iff $A = \overline{A}^{Bc^{\circ Bc}}$. The complement of Bc-regular open set is called Bc-regular closed.

Remark(1.17):

Let *X* be a space and $A \subset X$. *A* is Bc-regular closed set iff $A = \overline{A^{\circ Bc}}^{Bc}$.

Raad.A\Ruaa.M

Proof:

Let A be a Bc-regular closed set, then A^c is a Bc-regular open set A =

$$(A^c)^c = \left(\overline{A^c}^{Bc} \circ^{Bc}\right)^c = \left(\overline{A^c}^{c} \circ^{Bc} \circ^{C}^{C}\right)^c = \overline{A^{\circ Bc}}^{Bc} \circ^{C}^{C} = \overline{A^{\circ Bc}}^{Bc} \circ^{Bc}. \quad \text{Then} \quad A = \overline{A^{\circ Bc}}^{Bc} \circ^{Bc}$$

Conversely, let $A = \overline{A^{\circ Bc}}^{Bc}$. To prove A is a Bc-regular closed set we must prove that A^c is a

Bc-regular open set. $A^{c} = \left(\overline{A^{\circ Bc}}^{Bc}\right)^{c} = \left(\overline{A^{c}}^{Bc}^{c}\right)^{c} = \overline{A^{c}}^{Bc}^{Bc}^{c} = \overline{A^{c}}^{Bc}^{Bc}^{c} = \overline{A^{c}}^{Bc}^{Bc}^{C} = \overline{A^{c}}^{Bc}^{Bc}^{C} = \overline{A^{c}}^{Bc}^{Bc}^{C} = \overline{A^{c}}^{Bc}^{C}^{C} = \overline{A^{c}}^{Bc}^{C}^{C} = \overline{A^{c}}^{Bc}^{C}^{C} = \overline{A^{c}}^{Bc}^{C}^{C} = \overline{A^{c}}^{Bc}^{C}^{C}^{C} = \overline{A^{c}}^{Bc}^{C}^{C}^{C}^{C}$

 $\overline{A^c}^{Bc}$. Then A^c is a Bc-regular open set. Therefore A is Bc-regular closed set.

Remark(1.18):

Let X be a space and $A \subset X$. A is a Bc-regular open set, then $\overline{A}^{Bc^{\circ Bc}}$ is a Bc-regular open set.

Proof:

To prove $\bar{A}^{Bc} e^{Bc}$ is a Bc-regular open we must prove that $\bar{A}^{Bc} e^{Bc} = \overline{\bar{A}^{Bc}} e^{Bc}$, since $A \subset \bar{A}^{Bc}$, then $A^{eBc} \subset \bar{A}^{Bc} e^{Bc}$ and since A is a Bc-open set, hence $A \subset \bar{A}^{Bc} e^{Bc}$

$$\bar{A}^{Bc} \circ Bc} \subset \overline{\bar{A}^{Bc}} \circ Bc}^{Bc} \cdots (1)$$
Since
$$\bar{A}^{Bc} \circ Bc} \subset \bar{A}^{Bc}, \text{ then } \overline{\bar{A}^{Bc}} \circ Bc}^{Bc} \subset \bar{A}^{Bc} \circ Bc} = \bar{A}^{Bc}, \text{ hence}$$

$$\bar{A}^{Bc} \circ Bc} \cdots (2)$$
From (1) and (2)
we get $\bar{A}^{Bc} \circ Bc} = \overline{\bar{A}^{Bc}} \circ Bc}^{Bc}$. Hence $\bar{A}^{Bc} \circ Bc}$ is a Bc-regular open.

Diagram I shows the relations among BcO(X), BO(X), $\theta O(X)$ and O(X)

$$\begin{array}{ccc} \theta O(X) & \rightarrow & O(X) \\ \downarrow & & \downarrow \\ BcO(X) & \rightarrow & BO(X) \\ & Diagram I \end{array}$$

Raad.A\Ruaa.M

Definition(2.1)[5]:

Let X be a space and $A \subset X$. Then A is said to be ω b-open if for every $x \in A$, there exists a b-open subset $U_x \subseteq X$ containing x such that $U_x - A$ is countable. The complement of an ω b-open subset is said to be ω b-closed.

Lemma(2.2)[5]:

Let X be a space and $A \subset X$. A is said to be ω b-open if and only if for every $x \in A$, there exists a b-open subset U containing x and a countable subset D such that $U - D \subseteq A$.

Definition(2.3):

Let X be a space and $A \subset X$. Then A is said to be ω Bc-open if for each $x \in A$, there exists a Bc-open subset $U_x \subseteq X$ containing x such that $U_x - A$ is countable. The complement of an ω Bc-open subset is said to be ω Bc-closed.

Lemma(2.4):

Every ωBc-open is ωb-open.

Proof:

Let A be an ω Bc-open, then for each $x \in A$, there exists Bc-open U_x subset containing x such that $U_x - A$ is countable set. Since every Bc-open set is b-open, then A is ω b-open.

Lemma(2.5):

Let *X* be a space and $A \subset X$. *A* is said to be ω Bc-open if and only if for every $x \in A$, there exists a Bc-open subset *U* containing *x* and a countable subset *D* such that $U - D \subseteq A$.

Proof:

Let A be an ω Bc-open and $x \in A$, then there exists a Bc-open subset U_x containing x such that $|U_x - A|$ is countable. Let $D = U_x - A = U_x \cap A^c$, then $U_x - D \subseteq A$. Conversely, let $x \in A$, Then there exists a Bc-open subset U_x containing x and a countable subset D such that $U_x - D \subseteq A$. Thus $U_x - A \subseteq D$ and $U_x - A$ is countable set.

Theorem(2.6):

Let X be a space and $D \subseteq X$. If D is ω Bc-closed, then $D \subseteq K \cup B$ for some Bc-closed subset K and a countable subset B.

Raad.A\Ruaa.M

Proof:

If *D* is ω Bc-closed, then D^c is ω Bc-open and hence for every $x \in D^c$, there exists a Bcopen set *U* containing *x* and a countable set *B* such that $U - B \subseteq D^c$. Thus $D \subseteq (U - B)^c = (U \cap B^c)^c = U^c \cup B$. Let $K = U^c$, then *K* is Bc-closed such that $D \subseteq K \cup B$.

Proposition(2.7):

The union of any family of ω Bc-open is ω Bc-open.

Proof:

If $\{A_{\alpha} : \alpha \in \Lambda\}$ is a collection of ω Bc-open subset of X, then for every $x \in \bigcup_{\alpha \in \Lambda} A_{\alpha}, x \in A_{\beta}$ for some $\beta \in \Lambda$. Hence there exists a Bc-open subset U of X containing x such that $U - A_{\beta}$ is countable. Now as $U - \bigcup_{\alpha \in \Lambda} A_{\alpha} \subseteq U - A_{\beta}$ and thus $U - (\bigcup_{\alpha \in \Lambda} A_{\alpha})$ is countable. Therefore $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is ω Bc-open set.

Definition(2.8):

Let X be a space and $A \subset X$. Then A is said to be ωBc^* -open if for every $x \in A$, there exists a Bc-open subset $U_x \subseteq X$ containing x such that $U_x - A$ is finite. The complement of an ωBc^* -open subset is said to be ωBc^* -closed.

Lemma(2.9):

Let X be a space and $A \subset X$. A is ωBc^* -open if and only if for every $x \in A$, there exists a

Bc-open subset U containing x and a finite subset D such that $U - D \subseteq A$.

Proof:

Let A be an ωBc^* -open and $x \in A$, then there exists a Bc-open subset U_x containing x such that $U_x - A$ is finite. Let $D = U_x - A = U_x \cap (A)^c$. Then $U_x - D \subseteq A$. Conversely, let $x \in A$, then there exists a Bc-open subset U_x containing x and a finite subset D such that $U_x - D \subseteq A$, thus $U_x - A \subseteq D$ and $U_x - A$ is finite set.

Theorem(2.10):

Let X be a space and $D \subseteq X$ if D is ωBc^* -closed, then $D \subseteq K \cup B$ for some Bc-closed subset K and a finite subset B.

Proof:

If D is ωBc^* -closed, then D^c is ωBc^* -open and hence for every $x \in D^c$, there exists a Bcopen set U containing x and a finite set B such that $U - B \subseteq D^c$, thus $D \subseteq (U - B)^c = (U \cap (B)^c)^c = U^c \cup B$. Let $K = U^c$. Then K is Bc-closed such that $D \subseteq K \cup B$.

Proposition(2.11):

Raad.A\Ruaa.M

The union of any family of ωBc^* -open sets is ωBc^* -open.

Proof:

If $\{A_{\alpha} : \alpha \in \Lambda\}$ is a collection of ωBc^* -open subset of *X*, then for every $x \in \bigcup_{\alpha \in \Lambda} A_{\alpha}, x \in A_{\beta}$ for some $\beta \in \Lambda$. Hence there exists Bc-open subset *U* of *X* containing *x* such that $U - A_{\beta}$ is finite. Now as $U - \bigcup_{\alpha \in \Lambda} A_{\alpha} \subseteq U - A_{\beta}$ and thus $U - (\bigcup_{\alpha \in \Lambda} A_{\alpha})$ is finite. Therefore, $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is ωBc^* -open set.

The following diagram shows the implication for properties of subsets

```
\omegaBc*-open \rightarrow \omegaBc-open

\uparrow \land

Bc-open
```

Diagram II

Lemma(2.12):

Every ωBc^* -open is ωBc -open.

Proof:

Let A be an ω Bc*-open, then for each $x \in A$ there exists Bc-open subset $U_x \subseteq X$ containing x such that $U_x - A$ is finite. Since every finite is countable, then $U_x - A$ is countable. Therefore, A is a ω Bc-open.

Lemma(2.13):

Every Bc-open is ω Bc-open and ω Bc*-open

Proof:

1)

Let A be a Bc-open, then for each $x \in A$ there exists Bc-open set $U_x = A$ containing x such that $U_x - A = \phi$, then $U_x - A$ is countable. Therefore, A is a ω Bc-open. 2)

Let A be a Bc-open, then for each $x \in A$ there exists Bc-open set $U_x = A$ containing x such that $U_x - A = \phi$, then $U_x - A$ is finite. Therefore, A is a ω Bc*-open.

Example(2.14):

Raad.A\Ruaa.M

Let \mathbb{R} be the set of all real numbers with the usual topology and \mathbb{Q} the set of all rational numbers. Then $A = \mathbb{R} - \mathbb{Q}$ is an ω Bc-open set but it is not ω Bc*-open.

Example(2.15):

Let $X = \{1,2,3\}, \tau = \{\phi, X, \{1\}, \{1,2\}, \{2,3\}\}$. Then $BcO(X) = \{\phi, X, \{1,3\}, \{2,3\}\}$. Therefore, $\{3\}$ is ω Bc-open and ω Bc*-open but it is not Bc-open.

Definition(2.16):

Let X be a space and $A \subset X$. Then A is ω Bc-regular open if for each $x \in A$, there exists a Bc-regular open subset U_x containing x such that $U_x - A$ is a countable.

Lemma(2.17):

Every Bc-regular open is ω Bc-regular open.

Proof:

Let A be a Bc-regular open, then for each $x \in A$ there exists Bc-regular open subset $U_x = A$ containing x such that $U_x - A = \phi$, then $U_x - A$ is countable. Therefore, A be a ω Bc-regular open.

Lemma(2.18):

Let X be a space and $A \subset X$. A is ω Bc-regular open if and only if for every $x \in A$, there exists a Bc-regular open subset U_x containing x and a countable subset D such that $U_x - D \subseteq A$.

Proof:

Let A be an ω Bc-regular open and $x \in A$, then there exists a Bc-regular open subset U_x containing x such that $U_x - A$ is countable. Let $D = U_x - A = U_x \cap (A)^c$. Then $U_x - D \subseteq A$. Conversely, let $x \in A$. Then there exists a Bc-regular open subset U_x containing x and a countable subset D such that $U_x - D \subseteq A$. Thus $U_x - A \subseteq D$ and $U_x - A$ is countable.

Theorem(2.19):

Let X be a space and $F \subseteq X$. If F is ω Bc-regular closed, then $F \subseteq K \cup D$ for some Bc-regular closed subset K and a countable subset F.

Raad.A\Ruaa.M

Proof:

If F is ω Bc-regular closed, then F^c is ω Bc-regular open and hence choose $x \in F^c$, there exists a Bc-regular open set U_x containing x and a countable set D_x such that $U_x - D_x \subseteq F^c$. Thus $F \subseteq (U_x - D_x)^c = (U_x \cap (D_x)^c)^c = U_x^c \cup D_x$. Let $K = U_x^c$. Then K is Bc-closed such that $F \subseteq K \cup D_x$.

Proposition(2.20):

The union of any family of ωBc-regular open is ωBc-regular open.

Proof:

If $\{A_{\alpha}: \alpha \in \Lambda\}$ is a collection of ω Bc-regular open subset of X, then for every $x \in \bigcup_{\alpha \in \Lambda} A_{\alpha}, x \in A_{\beta}$ for some $\beta \in \Lambda$. Hence there exists Bc-regular open subset U of X containing x such that $U - A_{\beta}$ is countable. Now as $U - \bigcup_{\alpha \in \Lambda} A_{\alpha} \subseteq U - A_{\beta}$ and thus $U - (\bigcup_{\alpha \in \Lambda} A_{\alpha})$ is countable. Therefore, $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is ω Bc-regular open set.

Definition(2.21):

Let X be a space and $A \subset X$. Then A is is said to be ωBc^* -regular open if for each $x \in A$,

there exists a Bc-regular open subset U_x containing x such that $U_x - A$ is a finite set.

Lemma(2.22):

Let *X* be a space and $A \subset X$. *A* is ω Bc*-regular open if and only if for every $x \in A$, there exist a Bc-regular open subset *U* containing *x* and a finite subset *D* such that U - A.

Proof:

Let A be an ωBc^* -open and $x \in A$, then there exists a Bc- regular open subset U containing x such that U - A is finite. Let $D = U - A = U \cap (A)^c$. Then $U - D \subseteq A$. Conversely, let $x \in A$, then there exists a Bc- regular open subset U containing x and a finite subset D such that $U - D \subseteq A$, thus $U - A \subseteq D$ and U - A is finite set.

Theorem(2.23):

Let X be a space and $F \subseteq X$. If F is ωBc^* -regular closed, then $F \subseteq K \cup D$ for some Bc-regular closed subset K and a finite subset F.

Proof:

If F is ω Bc*-regular closed, then F^c is ω Bc*-regular open and hence choose $x \in F^c$, there exists a Bc-regular open set U_x containing x and a finite set D_x such that $U_x - D_x \subseteq F^c$. Thus $F \subseteq (U_x - D_x)^c = (U_x \cap (D_x)^c)^c = U_x^c \cup D_x$. Let $K = U_x^c$. Then K is Bc-closed such that $D \subseteq K \cup D_x$.

Proposition(2.24):

Raad.A\Ruaa.M

The union of any family of ωBc^* -regular open sets is ωBc^* -regular open.

Proof:

If $\{A_{\alpha}: \alpha \in \Lambda\}$ is a collection of ωBc^* -regular open subset of X, then for every $x \in \bigcup_{\alpha \in \Lambda} A_{\alpha}, x \in A_{\beta}$ for some $\beta \in \Lambda$. Hence there exists Bc-regular open subset U of X containing x such that $U - A_{\beta}$ is finite. Now as $U - \bigcup_{\alpha \in \Lambda} A_{\alpha} \subseteq U - A_{\beta}$ and thus $U - (\bigcup_{\alpha \in \Lambda} A_{\alpha})$ is finite. Therefore, $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is ωBc^* -regular open set.

Definition(2.25)[6]:

A covering of a space X is the family $\{A_{\alpha}: \alpha \in \Lambda\}$ of subsets such that $\bigcup_{\alpha \in \Lambda} A_{\alpha} = X$. If each A_{α} is open, then $\{A_{\alpha}: \alpha \in \Lambda\}$ is called an open covering, and if each set A_{α} is closed, then $\{A_{\alpha}: \alpha \in \Lambda\}$ is called a closed covering. A covering $\{B_{\gamma}: \gamma \in \Gamma\}$ is said to be refinement of a covering $\{A_{\alpha}: \alpha \in \Lambda\}$ if for each γ in Γ there exists some α in Λ such that $B_{\gamma} \subset A_{\alpha}$.

Definition(2.26):

Let $f: X \to Y$ be a function

1) *f* is called Bc-continuous function if $f^{-1}(A)$ is Bc-open subset of *X* for each θ -open subset *A* of *Y*.

2) f is called Bc*-continuous function if $f^{-1}(A)$ is Bc-open subset of X for each Bc-open subset A of Y.

3) f is called ω Bc*-closed function if f(A) is ω Bc*-closed of Y for each Bc-closed set A of X.

4) f is called ω Bc-continuous function if $f^{-1}(A)$ is ω Bc-open subset of X for each θ -open subset A of Y.

5) *f* is called ω Bc*-continuous function if $f^{-1}(A)$ is ω Bc-open subset of *X* for each Bc-open subset *A* of *Y*.

6) f is called ωBc^{**} -continuous function if $f^{-1}(A)$ is ωBc^{*} -open subset of X for each θ open subset A of Y.

Remark(2.27):

Raad.A\Ruaa.M

Every ωBc**-continuous is ωBc-continuous.

Proof:

Let $f: X \to Y$ be a function and let A be an θ -open of Y. Since f is an ωBc^{**} -continuous function, then $f^{-1}(A)$ is an ωBc^{*} -open of X. Since every ωBc^{*} -open is ωBc -open, then $f^{-1}(A)$ is an ωBc -open of X. Thus f is an ωBc -continuous.

Definition(2.28):

Let $f: X \to Y$ be a function

1) f is called BcR-continuous function if $f^{-1}(A)$ is Bc-regular open subset of X for each θ open subset A of Y.

2) f is called Bc*R-continuous function if $f^{-1}(A)$ is Bc-regular open subset of X for each Bc-open subset A of Y.

3) *f* is called ω Bc*R-closed function if f(A) is ω Bc*-regular closed of *Y* for each Bc-closed set *A* of *X*.

4) f is called ω BcR-continuous function if $f^{-1}(A)$ is ω Bc-regular open subset of X for each θ -open subset A of Y.

5) f is called ω Bc*R-continuous function if $f^{-1}(A)$ is ω Bc-regular open subset of X for each Bc-open subset A of Y.

6) f is called $\omega Bc^{**}R$ -continuous function if $f^{-1}(A)$ is ωBc^{*} -regular open subset of X for each θ -open subset A of Y.

Remark(2.29):

Every ωBc**R-continuous is ωBcR-continuous.

Proof:

Let $f: X \to Y$ be a function and let A be an θ -open of Y. Since f is an $\omega Bc^{**}R$ -continuous function, then $f^{-1}(A)$ is an ωBc^{*} -regular open of X. Since every ωBc^{*} -regular open is ωBc^{*} -regular open, then $f^{-1}(A)$ is an ωBc -regular open of X. Thus f is an ωBcR -continuous.

Raad.A\Ruaa.M

3.Bc-Lindelof space and nearly Bc-Lindelof space

Definition(3.1):

A space X is said to be θ -Lindelof if every θ -open cover of X has a countable subcover.

Definition(3.2):

A space X is said to be Bc-Lindelof if every Bc-open cover of X has a countable subcover.
 For a subset B of a space X is said to be Bc-Lindelof relative to X if every cover of B by Bc-open sets of X has a countable subcover.

Theorem(3.3):

For any space *X*, the following properties are equivalent:

1) X is Bc-Lindelof.

2) Every ω Bc-open cover of *X* has a countable subcover.

Proof:

 $1 \rightarrow 2$

Let $\{G_{\alpha}: \alpha \in \Lambda\}$ be any ω Bc-open cover of X. For each $x \in X$, there exists $\alpha(x) \in \Lambda$ such that $x \in G_{\alpha(x)}$. Since $G_{\alpha(x)}$ is ω Bc-open, there exists Bc-open set $V_{\alpha(x)}$ such that $x \in V_{\alpha(x)}$ and $V_{\alpha(x)} - G_{\alpha(x)}$ is a countable. The family $\{V_{\alpha(x)}: x \in X\}$ is a Bc-open cover of X. Since X is Bc-Lindelof, then there exists a countable subset, say $\alpha(x_1), \dots, \alpha(x_n), \dots$ such that $X = \bigcup\{V_{\alpha(xi)}: i \in N\}$. Now, we have

$$X = \bigcup_{i \in N} \{ (V_{\alpha(xi)} - G_{\alpha(xi)}) \cup G_{\alpha(xi)} \}$$
$$= (\bigcup_{i \in N} (V_{\alpha(xi)} - G_{\alpha(xi)})) \cup (\bigcup_{i \in N} G_{\alpha(xi)})$$

For each $\alpha(xi)$, $V_{\alpha(xi)} - G_{\alpha(xi)}$ is a countable set and there exists a countable subset $\Lambda_{\alpha(xi)}$ of Λ such that $V_{\alpha(xi)} - G_{\alpha(xi)} \subseteq \bigcup \{G_{\alpha} : \alpha \in \Lambda_{\alpha(xi)}\}$. Therefore, we have $X \subseteq (\bigcup_{i \in N} (\bigcup \{G_{\alpha} : \alpha \in \Lambda_{\alpha(xi)}\})) \cup (\bigcup_{i \in N} G_{\alpha(xi)}).$ $2 \rightarrow 1$

Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be any Bc-open cover of *X*. To prove *X* is Bc-Lindelof, since every Bcopen is ω Bc-open by lemma(2.13). By(2), then $\{G_{\alpha} : \alpha \in \Lambda\}$ is ω Bc-open cover of *X* has a countable subcover. Therefore, *X* is Bc-Lindelof.

Proposition(3.4):

Raad.A\Ruaa.M

For any space *X*, the following properties are equivalent:

1) X is Bc-Lindelof.

2) Every ωBc^* -open cover of *X* has a countable subcover.

Proof:

$1 \rightarrow 2$

Let $\{G_{\alpha}: \alpha \in \Lambda\}$ be any ω Bc*-open cover of X. For each $x \in X$, there exists $\alpha(x) \in \Lambda$ such that $x \in G_{\alpha(x)}$. Since $G_{\alpha(x)}$ is ω Bc*-open, there exists Bc-open set $V_{\alpha(x)}$ such that $x \in V_{\alpha(x)}$ and $V_{\alpha(x)} - G_{\alpha(x)}$ is a finite. Since every finite is countable, then $V_{\alpha(x)} - G_{\alpha(x)}$ is a countable. The family $\{V_{\alpha(x)}: x \in X\}$ is a Bc-open cover of X and since X is Bc-Lindelof, then there exists a countable subset, say $\alpha(x_1), \dots, \alpha(x_n), \dots$ such that $X = \bigcup \{V_{\alpha(xi)}: i \in N\}$. Now, we have

$$X = \bigcup_{i \in N} \{ (V_{\alpha(xi)} - G_{\alpha(xi)}) \cup G_{\alpha(xi)} \}$$
$$= (\bigcup_{i \in N} (V_{\alpha(xi)} - G_{\alpha(xi)})) \cup (\bigcup_{i \in N} G_{\alpha(xi)})$$

For each $\alpha(xi)$, $V_{\alpha(xi)} - G_{\alpha(xi)}$ is a countable set and there exists a countable subset $\Lambda_{\alpha(xi)}$ of Λ such that $V_{\alpha(xi)} - G_{\alpha(xi)} \subseteq \bigcup \{G_{\alpha} : \alpha \in \Lambda_{\alpha(xi)}\}$. Therefore, we have $X \subseteq (\bigcup_{i \in N} (\bigcup \{G_{\alpha} : \alpha \in \Lambda_{\alpha(xi)}\})) \cup (\bigcup_{i \in N} G_{\alpha(xi)}).$ $2 \rightarrow 1$

Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be any Bc-open cover of *X*. To prove *X* is Bc-Lindelof, since every Bcopen is ω Bc-open, then $\{G_{\alpha} : \alpha \in \Lambda\}$ is ω Bc-open cover of *X* has a countable subcover by theorem(3.3). Therefore, *X* is Bc-Lindelof.

Proposition(3.5):

If X is a space such that every Bc-open subset of X is a Bc-Lindelof relative to X, then every subset is Bc-Lindelof relative to X.

Proof:

Let *B* be an arbitrary subset of *X* and let $\{U_i: i \in I\}$ be a cover of *B* by Bc-open set. Then the family $\{U_i: i \in I\}$ is a Bc-open cover of the Bc-open set $\bigcup\{U_i: i \in I\}$ by proposition(1.10). Hence by assumption there is a countable subfamily $\{U_{ij}: j \in I\}$ which covers $\bigcup\{U_i: i \in I\}$. This subfamily is also a cover of the set *B*.

Raad.A\Ruaa.M

Proposition(3.6):

For any space *X*, the following statements are equivalent:

1) X is Bc-Lindelof.

2) Every family of ω Bc-closed sets { $F_{\alpha}: \alpha \in \Lambda$ } of *X* such that $\bigcap_{\alpha \in \Lambda} F_{\alpha} = \phi$, then there exists a countable subset $\Lambda_{\circ} \subseteq \Lambda$ such that $\bigcap_{\alpha \in \Lambda_{\circ}} F_{\alpha} = \phi$.

3) Every family of ω Bc*-closed sets { $F_{\alpha}: \alpha \in \Lambda$ } of *X* such that $\bigcap_{\alpha \in \Lambda} F_{\alpha} = \phi$, then there exists a countable subset $\Lambda_{\circ} \subseteq \Lambda$ such that $\bigcap_{\alpha \in \Lambda_{\circ}} F_{\alpha} = \phi$.

4) Every family of Bc-closed sets $\{F_{\alpha} : \alpha \in \Lambda\}$ of *X* such that $\bigcap_{\alpha \in \Lambda} F_{\alpha} = \phi$, then there exists a countable subset $\Lambda_{\circ} \subseteq \Lambda$ such that $\bigcap_{\alpha \in \Lambda_{\circ}} F_{\alpha} = \phi$.

Proof:

1→2

Suppose that X is Bc-Lindelof. Let $\{F_{\alpha} : \alpha \in \Lambda\}$ be a family of ω Bc-closed subsets of X such that $\bigcap_{\alpha \in \Lambda} F_{\alpha} = \phi$. Then the family $\{F_{\alpha}{}^{c} : \alpha \in \Lambda\}$ is ω Bc-open cover of Bc-Lindelof space X, there exists a countable subset Λ_{\circ} of Λ such that $X = \bigcup\{F_{\alpha}{}^{c} : \alpha \in \Lambda_{\circ}\}$. Then $\phi = (\bigcup\{F_{\alpha}{}^{c} : \alpha \in \Lambda_{\circ}\})^{c} = \bigcap\{(F_{\alpha}{}^{c})^{c} : \alpha \in \Lambda_{\circ}\} = \bigcap\{F_{\alpha} : \alpha \in \Lambda_{\circ}\}$

It is clear since every ωBc^* -closed is ωBc -closed.

3→4

It is clear since every Bc-closed is ωBc*-closed.

4→1

Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be any a Bc-open cover of *X*. Then $\{G_{\alpha}^{\ c} : \alpha \in \Lambda\}$ is a family of Bcclosed subset of *X* with $\bigcap \{G_{\alpha}^{\ c} : \alpha \in \Lambda\} = \phi$. By assumption, there exists a countable subset Λ_{\circ} of Λ , then $\bigcap \{G_{\alpha}^{\ c} : \alpha \in \Lambda_{\circ}\} = \phi$. So that $X = (\bigcap \{G_{\alpha}^{\ c} : \alpha \in \Lambda_{\circ}\})^{c} = \bigcup \{G_{\alpha} : \alpha \in \Lambda_{\circ}\}$. Hence *X* is Bc-Lindelof.

Raad.A\Ruaa.M

Theorem(3.7):

A space *X* is Bc-Lindelof if and only if for every collection of Bc-closed sets with countable intersection property $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$.

Proof:

Let *X* is Bc-Lindelof and $\{F_{\alpha} : \alpha \in \Lambda\}$ be a collection of Bc-closed sets with countable intersection property, $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$. Suppose that $\bigcap_{\alpha \in \Lambda} F_{\alpha} = \phi$. Then $X = \bigcup_{\alpha \in \Lambda} F_{\alpha}{}^{c}$ where $F_{\alpha}{}^{c}$ is Bc-open set for each $\alpha \in \Lambda$. Therefore, $\{F_{\alpha}{}^{c} : \alpha \in \Lambda\}$ is Bc-open cover of *X* which is a Bc-Lindelof, there exist countable many members $\alpha_{1}, ..., \alpha_{n}, ...$ such that $X = \bigcup_{i \in N} F_{\alpha i}{}^{c} = (\bigcap_{i \in N} F_{\alpha i})^{c}$

$$\bigcap_{i\in N} F_{\alpha i} = F_{\alpha 1} \cap \dots \cap F_{\alpha n} \cap \dots = \phi$$

which is a contradiction with our assumption that $\{F_{\alpha}: \alpha \in \Lambda\}$ has a countable intersection property. Hence $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$. Conversely, let every collection of Bc-closed subset of Xwith the countable intersection property, $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$. Suppose that X is not Bc-Lindelof, then there exist Bc-open cover $\{G_{\alpha}: \alpha \in \Lambda\}$ of X has no countable subcover $\{G_{\alpha 1}, \dots, G_{\alpha n}, \dots\}$ i.e $X = G_{\alpha 1} \cup \dots \cup G_{\alpha n} \cup \dots$. Then $(\bigcup_{i \in N} G_{\alpha i})^c = \bigcap_{i \in N} G_{\alpha i}^c \neq \phi$. But $\{G_{\alpha}{}^c: \alpha \in \Lambda\}$ be a collection of Bc- closed of X with countable intersection property by assumption. Then $\bigcap_{\alpha \in \Lambda} G_{\alpha}{}^c \neq \phi$, $(\bigcup_{\alpha \in \Lambda} G_{\alpha})^c \neq \phi$ which is a contradiction that G is Bc-

open cover of X. Thus must have countable subcover. Hence X is Bc-Lindelof.

Theorem(3.8):

Every ω Bc-closed subset of a Bc-Lindelof space of X is Bc-Lindelof relative to X.

Proof:

Let *A* be an ω Bc-closed subset of *X*. Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be a cover of *A* by Bc-open set of *X*. Now, for each $x \in A^c$, there is a Bc-open set V_x such that $V_x \cap A$ is a countable. Since *X* is Bc-Lindelof and the collection $\{G_{\alpha} : \alpha \in \Lambda\} \cup \{V_x : x \in A^c\}$ is a Bc-open cover of *X*, there exists a countable subcover $\{G_{\alpha i} : i \in N\} \cup \{V_{xi} : i \in N\}$. Since $\bigcup_{i \in N} (V_{xi} \cap A)$ is countable, so for each $x_j \in \bigcup (V_{xi} \cap A)$, there is $G_{\alpha(xj)} \in \{G_{\alpha} : \alpha \in \Lambda\}$ such that $x_j \in G_{\alpha(xj)}$ and $j \in N$. Hence $\{G_{\alpha i} : i \in N\} \cup \{G_{\alpha(xj)} : j \in N\}$ is a countable subcover of $\{G_{\alpha} : \alpha \in \Lambda\}$ and it covers *A*. Therefore, *A* is Bc-Lindelof relative to *X*.

Raad.A\Ruaa.M

Theorem(3.9):

Every Bc-closed subset of a Bc-Lindelof space of X is Bc-Lindelof relative to X.

Proof:

Let *A* be an Bc-closed subset of *X*. Then A^c is Bc-open ,since every Bc-open is ω Bc-open. Therefore, *A* is ω Bc-closed by theorem(3.8), then *A* is Bc-Lindelof relative to *X*.

Proposition(3.10):

Every ω Bc*-closed subset of a Bc-Lindelof space of *X* is Bc-Lindelof relative to *X*.

Proof:

Let *A* be an ω Bc*-closed subset of *X*. Then *A^c* is ω Bc*-open ,since every ω Bc*-open is ω Bc-open. Therefore, *A* is ω Bc-closed by theorem(3.8), then *A* is Bc-Lindelof relative to *X*.

Theorem(3.11):

Let $f: X \to Y$ be a Bc-continuous and onto function. If X is a Bc-Lindelof, then Y is an θ -Lindelof.

Proof:

Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be an θ -open cover of Y and since f is Bc-continuous function, then $\{f^{-1}(G_{\alpha}) : \alpha \in \Lambda\}$ is Bc-open cover of X. Since X is Bc-Lindelof, then X has a countable subcover $\{f^{-1}(G_{\alpha 1}), \dots, f^{-1}(G_{\alpha n}), \dots\}$. Since f is onto, then $f(f^{-1}(G_{\alpha})) =$ G_{α} for each $\alpha \in \Lambda$. Therefore, $\{G_{\alpha 1}, \dots, G_{\alpha n}, \dots\}$ is a countable subcover of Y. Hence Y is an θ -Lindelof.

Theorem(3.12):

Let $f: X \to Y$ be a Bc*-continuous and onto function. If X is a Bc-Lindelof, then Y is a Bc-Lindelof.

Proof:

Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be a Bc-open cover of *Y* and since *f* is Bc*-continuous function, then $\{f^{-1}(G_{\alpha}) : \alpha \in \Lambda\}$ is Bc-open cover of *X*. Since *X* is Bc-Lindelof, then *X* has a countable subcover $\{f^{-1}(G_{\alpha 1}), \dots, f^{-1}(G_{\alpha n}), \dots\}$. Since *f* is onto, then $f(f^{-1}(G_{\alpha})) = G_{\alpha}$ for each $\alpha \in \Lambda$. Therefore, $\{G_{\alpha 1}, \dots, G_{\alpha n}, \dots\}$ is a countable subcover of *Y*. Hence *Y* is a Bc-Lindelof.

Raad.A\Ruaa.M

Theorem(3.13):

Let $f: X \to Y$ be a ω Bc-continuous and onto function. If X is a Bc-Lindelof, then Y is an θ -Lindelof.

Proof:

Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be an θ -open cover of Y and since f is ω Bc-continuous function, then $\{f^{-1}(G_{\alpha}) : \alpha \in \Lambda\}$ is ω Bc-open cover of X. Since X is Bc-Lindelof, then by theorem(3.4), X has a countable subcover $\{f^{-1}(G_{\alpha 1}), \dots, f^{-1}(G_{\alpha n}), \dots\}$. Since f is onto, then $f(f^{-1}(G_{\alpha})) = G_{\alpha}$ for each $\alpha \in \Lambda$. Therefore, $\{G_{\alpha 1}, \dots, G_{\alpha n}, \dots\}$ is a countable subcover of Y. Hence Y is an θ -Lindelof.

Theorem(3.14):

Let $f: X \to Y$ be a ωBc^* -continuous and onto function. If X is a Bc-Lindelof, then Y is a Bc-Lindelof.

Proof:

Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be a Bc-open cover of *Y* and since *f* is ω Bc*-continuous function, then $\{f^{-1}(G_{\alpha}) : \alpha \in \Lambda\}$ is ω Bc-open cover of *X*. Since *X* is Bc-Lindelof, then by theorem(3.4), *X* has a countable subcover $\{f^{-1}(G_{\alpha 1}), \dots, f^{-1}(G_{\alpha n}), \dots\}$. Since *f* is onto, then $f(f^{-1}(G_{\alpha})) = G_{\alpha}$ for each $\alpha \in \Lambda$. Therefore, $\{G_{\alpha 1}, \dots, G_{\alpha n}, \dots\}$ is a countable subcover of *Y*. Hence *Y* is a Bc-Lindelof.

Theorem(3.15):

Let $f: X \to Y$ be an ωBc^{**} -continuous and onto function. If X is a Bc-Lindelof, then Y is a Bc-Lindelof.

Proof:

It is clear since every ωBc^{**} -continuous is ωBc -continuous.

Raad.A\Ruaa.M

Proposition(3.16):

If $f: X \to Y$ be an ω Bc*-closed onto such that $f^{-1}(y)$ is Bc-Lindelof relative to X and Y is a Bc-Lindelof for each $y \in Y$, then X is a Bc-Lindelof.

Proof:

Let $\{G_{\alpha}: \alpha \in \Lambda\}$ be an Bc-open cover of X. For each $y \in Y$, $f^{-1}(y)$ is Bc-Lindelof relative to X and there exists a countable subset $\Lambda_1(y)$ of Λ such that $f^{-1}(y) \subset \cup \{G_{\alpha}: \alpha \in \Lambda_1(y)\}$. Now we put $G(y) = \{G_{\alpha}: \alpha \in \Lambda_1(y)\}$ and $V(y) = Y - f(U(y)^c)$. Then, since f is an ω Bc*-closed, V(y) is an ω Bc*-open set in Y containing y such that $f^{-1}(V(y)) \subset U(y)$. Since V(y) is an ω Bc*-open, there exists a Bc-open set W(y) containing y such that W(y) - V(y) is a countable set. For each $y \in Y$, we have $W(y) \subset (W(y) - V(y)) \cup V(y)$ and hence

$$\begin{aligned} f^{-1}\big(W(y)\big) &\subset \left[f^{-1}\big(W(y) - V(y)\big)\right] \cup f^{-1}\big(V(y)\big) \\ &\subset f^{-1}\big(W(y) - V(y)\big) \cup G(y) \end{aligned}$$

since W(y) - V(y) is a countable set and $f^{-1}(y)$ is Bc-Lindelof relative to X, there exists a countable set $\Lambda_2(y)$ of Λ such that

$$f^{-1}\big(W(y)-V(y)\big) \subset \bigcup \{G_\alpha \colon \alpha \in \Lambda_2(y)\}$$

and hence $f^{-1}(W(y)) \subset [\bigcup\{G_{\alpha}: \alpha \in \Lambda_{2}(y)\}] \bigcup[G(y)]$. Since $\{W(y): y \in Y\}$ is Bc-open cover of the Bc-Lindelof space Y, there exists a countable points of Y, say $y_{1}, ..., y_{n}, ...$ such that $Y = \bigcup\{W(yi): i \in N\}$. Therefore, we obtain $X = \bigcup_{i \in N} f^{-1}(W(yi)) = \bigcup_{i \in N} [\bigcup_{\alpha \in \Lambda_{2}(yi)} G_{\alpha}] \cup (\bigcup_{\alpha \in \Lambda_{1}(yi)} G_{\alpha})$ $= \bigcup\{G_{\alpha}: \alpha \in \Lambda_{1}(yi) \cup \Lambda_{2}(yi), i \in N\}.$

Hence X is Bc-Lindelof.

Definition(3.17):

1) A space X is said to be nearly Bc-Lindelof if every Bc-regular open cover of X has a countable subcover.

2) For a subset *B* of a space *X* is said to be nearly Bc-Lindelof relative to *X* if every cover of *B* by Bc-regular open sets of *X* has a countable subcover of *B*.

Theorem(3.18):

For any space *X*, the following properties are equivalent:

- 1) X is nearly Bc-Lindelof.
- 2) Every ω Bc-regular open cover of *X* has a countable subcover.

Raad.A\Ruaa.M

Proof:

$1 \rightarrow 2$

Let $\{G_{\alpha}: \alpha \in \Lambda\}$ be any ω Bc-regular open cover of X. For each $x \in X$, there exists $\alpha(x) \in \Lambda$ such that $x \in G_{\alpha(x)}$. Since $G_{\alpha(x)}$ is ω Bc-regular open, there exists Bc-regular open set $V_{\alpha(x)}$ such that $x \in V_{\alpha(x)}$ and $V_{\alpha(x)} - G_{\alpha(x)}$ is a countable. The family $\{V_{\alpha(x)}: x \in X\}$ is a Bc-regular open cover of X. Since X is nearly Bc-Lindelof, then there exists a countable subset, say $\alpha(x_1), \dots, \alpha(x_n), \dots$ such that $X = \bigcup \{V_{\alpha(xi)}: i \in N\}$. Now, we have

$$X = \bigcup_{i \in N} \{ (V_{\alpha(xi)} - G_{\alpha(xi)}) \cup G_{\alpha(xi)} \}$$

= $(\bigcup_{i \in N} (V_{\alpha(xi)} - G_{\alpha(xi)})) \cup (\bigcup_{i \in N} G_{\alpha(xi)}).$

For each $\alpha(xi)$, $V_{\alpha(xi)} - G_{\alpha(xi)}$ is a countable set and there exists a countable subset $\Lambda_{\alpha(xi)}$ of Λ such that $V_{\alpha(xi)} - G_{\alpha(xi)} \subseteq \bigcup \{ G_{\alpha} : \alpha \in \Lambda_{\alpha(xi)} \}$. Therefore, we have $X \subseteq (\bigcup_{i \in N} (\bigcup \{ G_{\alpha} : \alpha \in \Lambda_{\alpha(xi)} \})) \cup (\bigcup_{i \in N} G_{\alpha(xi)}).$ $2 \rightarrow 1$

Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be any Bc-regular open cover of X. To prove X is nearly Bc-Lindelof, since every Bc-regular open is ω Bc-regular open by (2) ,then $\{G_{\alpha} : \alpha \in \Lambda\}$ is ω Bc-regular open cover of X has a countable subcover. Therefore, X is nearly Bc-Lindelof.

Proposition(3.19):

A space X is nearly Bc-Lindelof if and only if every family $\{F_{\alpha}: \alpha \in \Lambda\}$ of ω Bc-regular closed sets has countable intersection property $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$.

Proof:

Let X be a nearly Bc-Lindelof space and suppose that $\{F_{\alpha}: \alpha \in \Lambda\}$ be a family of ω Bc-regular closed sets with countable intersection property, $\bigcap_{\alpha \in \Lambda} F_{\alpha} = \phi$. Let us consider the ω Bc-regular open sets $G_{\alpha} = F_{\alpha}^{\ c}$, the family $\{G_{\alpha}: \alpha \in \Lambda\}$ is ω Bc-regular open cover of X. Since X is nearly Bc-Lindelof, the cover $\{G_{\alpha}: \alpha \in \Lambda\}$ has a countable subcover $\{G_{\alpha i}: i \in N\}$. Therefore, $X = \bigcup\{G_{\alpha i}: i \in N\}$

$$= \bigcup \{F_{\alpha i}^{\ c} : i \in N\}$$
$$= (\bigcap \{F_{\alpha i} : i \in N\})^{c}.$$

Then $\bigcap \{F_{\alpha i} : i \in N\} = \phi$. Thus, if the family $\{F_{\alpha} : \alpha \in \Lambda\}$ of ω Bc-regular closed sets with countable intersection property, then $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$. Conversely, Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be an ω Bc-regular open cover of *X* and suppose that every family $\{F_{\alpha} : \alpha \in \Lambda\}$ of ω Bc-regular closed sets

Raad.A\Ruaa.M

has countable intersection property, $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \phi$. Then $X = \bigcup \{G_{\alpha} : \alpha \in \Lambda\}$. Therefore, $\phi = X^c = \bigcap \{G_{\alpha}^{\ c} : \alpha \in \Lambda\}$ and $\{G_{\alpha}^{\ c} : \alpha \in \Lambda\}$ is a family of ω Bc-regular closed sets with an empty intersection. By assumption, there exists a countable subset $\{G_{\alpha i}^{\ c} : i \in N\}$ such that $\bigcap \{G_{\alpha i}^{\ c} : i \in N\} = \phi$. Hence $(\bigcap \{G_{\alpha i}^{\ c} : i \in N\})^c = X = \bigcup \{G_{\alpha i} : i \in N\}$. Thus X is nearly Bc-Lindelof.

Theorem (3.20):

Every ω Bc-regular closed subset of a nearly Bc-Lindelof space *X* is nearly Bc-Lindelof relative to *X*.

Proof:

Let *A* be an ω Bc-regular closed subset of *X*. Let $\{G_{\alpha}: \alpha \in \Lambda\}$ be a cover by Bc-regular open sets of *X*. Now, for each $x \in A^c$, there is a Bc-regular open set V_x such that $V_x \cap A$ is a countable. Since *X* is nearly Bc-Lindelof and the collection $\{G_{\alpha}: \alpha \in \Lambda\} \cup \{V_x: x \in A^c\}$ is a Bc-regular open cover of *X*, there exists a countable subcover $\{G_{\alpha i}: i \in N\} \cup \{V_{xi}: i \in N\}$. Since $\bigcup_{i \in N} (V_{xi} \cap A)$ is a countable, so for each $x_j \in \bigcup (V_{xi} \cap A)$, there is $G_{\alpha(xj)} \in \{G_{\alpha}: \alpha \in \Lambda\}$ such that $x_j \in G_{\alpha(xj)}$ and $j \in N$. Hence $\{G_{\alpha i}: i \in N\} \cup \{G_{\alpha(xj)}: i \in N\}$ is a countable subcover of $\{G_{\alpha}: \alpha \in \Lambda\}$ and it covers *A*. Therefore, *A* is nearly Bc-Lindelof relative to *X*.

Theorem(3.21):

Let $f: X \to Y$ be an BcR-continuous and onto function. If X is a nearly Bc-Lindelof, then Y is an θ -Lindelof.

Proof:

Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be an θ -open cover of Y and since f is BcR-continuous function, then $\{f^{-1}(G_{\alpha}) : \alpha \in \Lambda\}$ is Bc-regular open cover of X. Since X is nearly Bc-Lindelof, then X has a countable subcover $\{f^{-1}(G_{\alpha 1}), \dots, f^{-1}(G_{\alpha n}), \dots\}$. Since f is onto, then $f(f^{-1}(G_{\alpha})) = G_{\alpha}$ for each $\alpha \in \Lambda$. Therefore, $\{G_{\alpha 1}, \dots, G_{\alpha n}, \dots\}$ is a countable sub cover of Y. Hence Y is an θ -Lindelof.

Theorem(3.22):

Raad.A\Ruaa.M

Let $f: X \to Y$ be a Bc*R-continuous and onto function. If X is a nearly Bc-Lindelof, then Y is a Bc-Lindelof.

Proof:

Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be a Bc-open cover of Y and since f is Bc*R-continuous function, then $\{f^{-1}(G_{\alpha}) : \alpha \in \Lambda\}$ is Bc-regular open cover of X. Since X is nearly Bc-Lindelof, then X has a countable subcover $\{f^{-1}(G_{\alpha 1}), \dots, f^{-1}(G_{\alpha n}), \dots\}$. Since f is onto, then $f(f^{-1}(G_{\alpha})) = G_{\alpha}$ for each $\alpha \in \Lambda$. Therefore, $\{G_{\alpha 1}, \dots, G_{\alpha n}, \dots\}$ is a countable subcover of Y. Hence Y is a Bc-Lindelof.

Theorem(3.23):

Let $f: X \to Y$ be a ω BcR-continuous and onto function. If X is a nearly Bc-Lindelof, then Y is a θ -Lindelof.

Proof:

Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be a θ -open cover of Y and since f is ω BcR-continuous function, then $\{f^{-1}(G_{\alpha}) : \alpha \in \Lambda\}$ is ω Bc-regular open cover of X. Since X is Bc-nearly Bc-Lindelof, then by theorem(3.18), X has a countable subcover $\{f^{-1}(G_{\alpha 1}), ..., f^{-1}(G_{\alpha n}), ...\}$. Since f is onto, then $f(f^{-1}(G_{\alpha})) = G_{\alpha}$ for each $\alpha \in \Lambda$. Therefore, $\{G_{\alpha 1}, ..., G_{\alpha n}, ...\}$ is a countable subcover of Y. Hence Y is a θ -Lindelof.

Theorem(3.24):

Let $f: X \to Y$ be a ω Bc*R-continuous and onto function. If X is a nearly Bc-Lindelof, then Y is a Bc-Lindelof.

Proof:

Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be a Bc-open cover of Y and since f is ω Bc*R-continuous function, then $\{f^{-1}(G_{\alpha}) : \alpha \in \Lambda\}$ is ω Bc-regular open cover of X. Since X is nearly Bc-Lindelof, then by theorem(3.18), X has a countable subcover $\{f^{-1}(G_{\alpha 1}), ..., f^{-1}(G_{\alpha n}), ...\}$. Since f is onto, then $f(f^{-1}(G_{\alpha})) = G_{\alpha}$ for each $\alpha \in \Lambda$. Therefore, $\{G_{\alpha 1}, ..., G_{\alpha n}, ...\}$ is a countable subcover of Y. Hence Y is a Bc-Lindelof.

Theorem(3.25):

Let $f: X \to Y$ be an $\omega Bc^{**}R$ -continuous and onto function. If X is a nearly Bc-Lindelof, then Y is a θ -Lindelof.

Proof:

It is clear since every $\omega Bc^{**}R$ -continuous is ωBcR -continuous.

Raad.A\Ruaa.M

References

[1] D. Andrijevic, On b-open sets, Math. Vesnik, 59-64, 48(1996).

[2] H. Z. Ibrahim, "Bc-open sets in topological spaces", Advances in pure Math., 3, 34-40, (2013).

[3] N. V. Velicko, H-closed topological spaces, American Mathematical Society, Vol. 78, No. 2, pp. 103-118, (1968).

[4] A. AL-Omari and T. Noiri, "Characterizations of nearly Lindelof spaces", Jordon Journal of Mathematics and Statistics (JJMS) 3(2), 81-92, (2010).

[5] T. N. Noiri, A. Al-Omari, and Mohd. Salmi Md. Noorani, On ωb-open sets and b-Lindelof spaces, Europen Journal of pure and applied Math., Vol. 1, No. 3, (3-9), (2008).

[6] A. P. Pears, on Dimension Theory of General Spaces, Cambridge University press, (1975).

المستخلص

. Bc& والمجاميع المفتوحة المنتظمة من النمط-Bc∞نناقش في هذا البحث صنف جديد من المجاميع المفتوحة من النمط-بالاضافة الى ذلك Bc واللندلوف تقريبا من النمط-Bcظهرت خلال هذا العمل مفاهيم جديدة وتتضمن اللندلوف من النمط-در سنا سلوك هذه الصفات تحت تأثير بعض انواع معينه من الدوال.