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Abstract
In this paper, we have discussed a new class of wBc-open sets and wBc-regular open
sets. Throughout this work, new concepts have been illustrated including an Bc-Lindelof
spaces and nearly Bc-Lindelof spaces and the behavior of these invariant under kinds of

functions.
Mathematics Subject Classification: 54XX

1.Introduction

The concept of Bc-open set in topological spaces was introduced in 2013 by Hariwan Z
[2]. This set was also considered in [3].

This paper consist of three section. In section one, we give similar definition by using of
Bc-open sets and also we proof some properties about it. In section two we introduce a new
generalization of wBc-open set, @Bc-regular open and investigate some properties of this set.
In section three we obtain new a characterization and preserving theorems of Bc-Lindelof

space and nearly Bc-Lindelof space.

Definition(1.1)[1]:

Let X be aspace and A € X. Then A is called b-open setin X if A < A°UA . The family of
all b-open subset of a topological space (X, t) is denoted by BO(X, t) or (Briefly BO(X)).
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Definition(1.2)[2]:

Let X be a space and A c X. Then A is called Bc-open set in X if for each X €
A € BO(X, 1), there exists a closed set F such that x € F c A. The family of all Bc-open
subset of a topological space (X, 1) is denoted by BcO(X, t) or (Briefly BcO(X)), A is Bc-
closed set if A° is Bc-open set. The family of all Bc-closed subset of a topological space
(X, ) is denoted by BcC (X, t) or (Briefly BcC(X)).

Example(1.3):

It is clear from the definition that every Bc-open set is b-open, but the converse is not true
in general.
Let X ={1,23}, = {¢, X, {1},{2},{1,2}}. Then the closed set are: X, ¢,{2,3},{1,3}, {3}.
Hence BO(X) = {¢, X, {1},{2},{1,2},{1,3},{2,3}} and BcO(X) = {¢, X, {1,3},{2,3}}. Then
{1} is b-open but {1} is not Bc-open.

Definition(1.4)[2]:

Let X be a space and A c X. Then A is called 6-open set in X if for each x € A, there
exists an open set G such that x € G € G ¢ A. The family of all 0-open subset of a
topological space (X, t) is denoted by 60 (X, 7) or (Briefly 60 (X)).

Remark(1.5)[2]:
1) Every 6-open is Bc-open.

2) Every 0-closed is Bc-closed.

Example(1.6):

The intersection of two Bc-open sets is not Bc-open in general.
Let X ={1,23}, v={o X {13,{2},{1,2}}. Then {1,3},{2,3} is Bc-open set, where as
{1,3}N{2,3} = {3} is not Bc-open set.

Remark(1.7)[4]:

The intersection of an b-open set and an open set is b-open set.
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Remark(1.8):

Let X be a space and A,B c X. If A is Bc-open set and B is an 6-open set, then ANB is
Bc-open set.

Proof:

Let A be a Bc-open set and B be an 0-open set, then A is b-open set and B is an open set
since every 0-open is open. Then ANB is b-open set by (Remark(1.7)). Now, let x € ANB ,
x €A and x € B. If x € A, then there exists a closed set F such that x € F c A and if
x € B, then there exists an open set E such that x € E ¢ E c B. Therefore, FNE is closed
since the intersection of closed sets is closed. Thus x € FNE c ANB. Then ANB is
Bc-open set.

Proposition(1.9)[2]:

Let X be a space and A < X. Then A is Bc-open set if and only if A is b-open set and it is a
union of closed sets. That is A = UF, where A is b-open set and F, is closed subsets for each
a.

Proposition(1.10)[2]:

Let {A,: a € A} be a collection of Bc-open sets in a topological space X. Then U{A,:a €
A} is Bc-open.

Definition(1.11)[2]:

Let X be aspace and A c X. A point x € X is said to Bc-interior point of A, if there exist a
Bc-open set U such that x € U c A. The set of all Be-interior points of A is called Bc-interior
of A and is denoted by A°5¢.

Theorem(1.12)[2]:

Let X be a space and A, B c X, then the following statements are true.

1) A°B¢ is the union of all Bc-open set which are contained in A.
2) A°B¢ is Bc-open set in X.

3) A is Bc-open if and only if A = A°B¢,

4) A°Bc c A.

5) (A°BC)°Be = goBc,

6) If A c B, then A°B¢ c B°Bc,

7) A°BCUB°B¢ c (AUB)°E¢.

8) (ANB)°Bc c A°BNB°Be.
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Definition(1.13)[2]:

Let X be a space and A < X. The Bc-closure of A is defined by the intersection of all Bc-

closed sets in X containing 4, and is denoted by A5¢.

Theorem(1.14)[2]:

Let X be a space and A, B c X. Then the following statements are true.
1) AB¢ is the intersection of all Bc-closed sets containing A.
2) A c ABe,
3) AB¢is Bc-closed set in X.
4) A is Be-closed set if and only if A = AB¢,
5) (AB<)Pe = jFe.
6) If A c B. then AB¢ c B5¢,
7) AB°UBB¢ c (AUB)?e.
8) (ANB)B¢ c AB<NBEe.

Proposition(1.15)[2]:
Let X be a space and A c X, then the following statements are true.
1) (/TBC)C — (Ac)oBCl
2) (A°BeYE = ch.
3) AB¢ = (AC"BC)C.

4y e = (75’

Definition(1.16):
Let X be a space and Ac X. Then A is called Bc-regular open set in X iff

A = AB¢°% The complement of Bec-regular open set is called Be-regular closed.

Remark(1.17):

Let X be aspace and A c X. A is Bc-regular closed set iff A = AB
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Proof:

Let A be a Bc-regular closed set, then A€ is a Bc-regular open set A=

—Bc°Be\© COBcccBCC ‘ Bc€¢  ——Bc ——Bc
(= (") =4 = ABC 4B Then A=A
Conversely, let A = 4B To prove A is a Bc-regular closed set we must prove that A€ is a
—____BcN\C ___p.cceBe ___p.oBcCC
Bc-regular open set. A€ = (A°BC ) = (ACBC > = Ac”¢ =

___pcoBc
A Then ACisa Bc-regular open set. Therefore A is Be-regular closed set.

Remark(1.18):

Let X be a space and A c X. A is a Bc-regular open set, then AB<%C s a Bc-regular open

set.
Proof:

To prove AP s a Bc-regular open we must prove that ABeBC =
— oBCBCOBC B  Be
ABc , since A c AB¢, then A°B¢ c AB¢™™" and since A is a Bc-open set, hence A c
/TBCOBC
. TBCOBC
ABePC < jBePC .. (1) Since

B B oBcC

AP < 4P then PP < AP = AP, hence AT
ABePC ) From (1) and (2)

Bc°B¢

oBc —pn~oBcC .
. Hence AB¢" is a Bc-regular open.

we get AB¢*%¢ = Asc

Diagram I shows the relations among BcO(X) , BO(X), 60(X) and O(X)

00(X) - O(X)
) )
BcO(X) - BO(X)
Diagram |
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2. mBc-open sets and wBc-regular open sets

Definition(2.1)[5]:
Let X be a space and A c X. Then A is said to be wb-open if for every x € A, there exists

a b-open subset U, € X containing x such that U, — A is countable. The complement of an
wb-open subset is said to be wb-closed.
Lemma(2.2)[5]:

Let X be a space and A c X. A is said to be wb-open if and only if for every x € A, there
exists a b-open subset U containing x and a countable subset D suchthat U — D < A.
Definition(2.3):

Let X be a space and A c X. Then A is said to to be wBc-open if for each x € A, there
exists a Bc-open subset U, € X containing x such that U, — A is countable. The complement

of an wBc-open subset is said to be wBc-closed.
Lemma(2.4):

Every oBc-open is wb-open.
Proof:

Let A be an wBc-open, then for each x € A, there exists Bc-open U, subset containing x

such that U, — A is countable set. Since every Bc-open set is b-open, then A is owb-open.

Lemma(2.5):

Let X be a space and A c X. A is said to be @Bc-open if and only if for every x € A, there

exists a Bc-open subset U containing x and a countable subset D such that U — D < A.

Proof:

Let A be an @Bc-open and x € A, then there exists a Bc-open subset U, containing x such
that |U, — A| is countable. Let D = U, — A = U,NAS, then U, — D < A. Conversely, let
x € A, Then there exists a Bc-open subset U,, containing x and a countable subset D such that
U,—Dc A. ThusU, —A € D and U, — A is countable set.

Theorem(2.6):

Let X be a space and D € X. If D is owBc-closed, then D € KUB for some Bc-closed

subset K and a countable subset B.
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Proof:

If D is mBc-closed, then D€ is @Bc-open and hence for every x € D¢, there exists a Bc-
open set U containing x and a countable set B such that U — B < D€. Thus D € (U — B) =
(UNB°)¢ = U°UB. Let K = U¢, then K is Bc-closed such that D € KUB.
Proposition(2.7):

The union of any family of ®Bc-open is ®Bc-open.

Proof:

If {A,;a €A} is a collection of mBc-open subset of X, then for every
X € Ugenda, x € Ag for some g € A. Hence there exists a Bc-open subset U of X containing
x such that U — Ag is countable. Now as U — Ugep Ag € U — Ag and thus U — (Ugep 44) IS
countable. Therefore Ugep A4 1S ©@Bc-open set.

Definition(2.8):
Let X be a space and A c X. Then A is said to be wBc*-open if for every x € A, there

exists a Bc-open subset U, € X containing x such that U, — A is finite. The complement of

an wBc*-open subset is said to be ®Bc*-closed.

Lemma(2.9):
Let X be a space and A < X. A is ®Bc*-open if and only if for every x € A, there exists a

Bc-open subset U containing x and a finite subset D suchthat U — D € A .

Proof:
Let A be an wBc*-open and x € A, then there exists a Bc-open subset U, containing x

such that U, — A is finite. Let D = U, — A = U, N(A)°. Then U.—D Cc A.
Conversely, let x € A, then there exists a Bc-open subset U,, containing x and a finite subset
D suchthat U, — D € A, thus U, — A € D and U,, — A is finite set.
Theorem(2.10):

Let X be a space and D € X if D is ®wBc*-closed, then D € KUB for some Bc-closed

subset K and a finite subset B.
Proof:

If D is oBc*-closed, then D€ is oBc*-open and hence for every x € D€, there exists a Bc-

open set U containing x and a finite set B such that U — B < D€, thus D € (U — B)¢ =
(UN(B)€)¢ = U°UB. Let K = U°. Then K is Bc-closed such that D € KUB.
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Proposition(2.11):

The union of any family of ®Bc*-open sets is wBc*-open.

Proof:

If {Ag:a €A} is a collection of wBc*-open subset of X, then for every
X € UgenAa, x € Ag for some B € A. Hence there exists Bc-open subset U of X containing x
such that U — Ag is finite. Now as U — Ugep Ag € U — Ag and thus U — (Ugep 4g) s finite.

Therefore, Ugep A, 1s @Bc*-open set.

The following diagram shows the implication for properties of subsets

®Bc*-open — ®Bc-open
T 7
Bc-open
Diagram Il

Lemma(2.12):

Every wBc*-open is mBc-open.

Proof:

Let A be an ®Bc*-open, then for each x € A there exists Bc-open subset U, € X
containing x such that U, — A is finite. Since every finite is countable, then U, — A is
countable. Therefore, A is a wBc-open.

Lemma(2.13):

Every Bc-open is oBc-open and wBc*-open
Proof:

1)

Let A be a Bc-open, then for each x € A there exists Bc-open set U, = A containing x
such that U, — A = ¢, then U, — A is countable. Therefore, A is a wBc-open.

2)
Let A be a Bc-open, then for each x € A there exists Bc-open set U, = A containing x

such that U, — A = ¢, then U, — A is finite. Therefore, A is a ®Bc*-open.
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Example(2.14):

Let R be the set of all real numbers with the usual topology and Q the set of all rational

numbers. Then A = R — Q is an wBc-open set but it is not wBc*-open.

Example(2.15):
Let X ={123}7={¢ X {1},{1,2},{2,3}}. Then BcoX) ={a X {1,3},{2,3}}.

Therefore, {3} is ®Bc-open and wBc*-open but it is not Bc-open.

Definition(2.16):
Let X be a space and A c X. Then A is wBc-regular open if for each x € A, there exists a

Bc-regular open subset U,, containing x such that U, — A is a countable.

Lemma(2.17):

Every Bc-regular open is wBc-regular open.
Proof:

Let A be a Bc-regular open, then for each x € A there exists Bc-regular open subset
U, = A containing x such that U, — A = ¢, then U, — A is countable. Therefore, A be a

®Bc-regular open.

Lemma(2.18):

Let X be a space and A c X. A is Bc-regular open if and only if for every x € A4, there
exists a Bc-regular open subset U, containing x and a countable subset D such that U, —
DcA.

Proof:

Let A be an wBc-regular open and x € A, then there exists a Bc-regular open subset U,
containing x such that U, — A is countable. Let D = U, — A = U,N(A)¢. Then U, — D € A.
Conversely, let x € A. Then there exists a Bc-regular open subset U, containing x and a
countable subset D such that U, — D € A. Thus U, — A € D and U, — A is countable.
Theorem(2.19):

Let X be a space and F € X. If F is owBc-regular closed, then F € KUD for some Bc-

regular closed subset K and a countable subset F.
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Proof:

If F is @Bc-regular closed, then F¢ is @Bc-regular open and hence choose x € F¢ , there
exists a Bc-regular open set U,, containing x and a countable set D, such that U, — D, € F¢.
Thus F € (U, — D,)¢ = (U,N(D,)%)¢ = U,°UD,. Let K = U,°. Then K is Bc-closed such
that F € KUD, .

Proposition(2.20):
The union of any family of mBc-regular open is @Bc-regular open.

Proof:
If {A,:a € A} is a collection of ®wBc-regular open subset of X, then for every x €

Ueerda, x € Ag for some B € A. Hence there exists Bc-regular open subset U of X
containing x such that U — Ag is countable. Now as U — UgepnAq € U — Ag and thus
U — (UgepA,) is countable. Therefore, U, ep A, is @Bc-regular open set.
Definition(2.21):

Let X be a space and A c X. Then A is is said to be @Bc*-regular open if for each x € A,
there exists a Bc-regular open subset U, containing x such that U,, — A is a finite set.
Lemma(2.22):

Let X be a space and A < X. A is ®Bc*-regular open if and only if for every x € A, there

exist a Bc-regular open subset U containing x and a finite subset D suchthat U — A .

Proof:
Let A be an wBc*-open and x € A, then there exists a Bc- regular open subset U

containing x such that U — A is finite. Let D =U—- A =UN(A)¢. Then U—D c A.
Conversely, let x € A, then there exists a Bc- regular open subset U containing x and a finite

subset D suchthat U — D € A,thusU — A € D and U — A is finite set.

Theorem(2.23):
Let X be a space and F € X. If F is oBc*-regular closed, then F <€ KUD for some Bc-

regular closed subset K and a finite subset F.
Proof:

If F is @Bc*-regular closed, then F¢ is @Bc*-regular open and hence choose x € F€¢, there
exists a Bc-regular open set U, containing x and a finite set D, such that U, — D, € F¢.
Thus F < (U, — D,)¢ = (U,N(D,)*)¢ = U,“UD,. Let K = U,°. Then K is Bc-closed such
that D € KUD,.
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Proposition(2.24):

The union of any family of @Bc*-regular open sets is @Bc*-regular open.

Proof:

If {A,:a €A} is a collection of wBc*-regular open subset of X, then for every
X € UgenAa, x € Ag for some g € A. Hence there exists Bc-regular open subset U of X
containing x such that U — Ag is finite. Now as U — Ugepn 4y €S U — A4p and thus U —
(UgenAy) is finite. Therefore, U,ep A, is ®Bce*-regular open set.

Definition(2.25)[6]:

A covering of a space X is the family {A,:a € A} of subsets such that
Uger4, = X. If each A,is open, then {A,: « € A} is called an open covering, and if each set
A,is closed, then {A,: a € A} is called a closed covering. A covering {By:y € F} is said to
be refinement of a covering {A,: a € A} if for each y in T there exists some a in A such that

B, c A,.

Definition(2.26):

Let f: X — Y be a function
1) f is called Bc-continuous function if £f~1(A) is Bc-open subset of X for each 0-open subset
Aof Y.
2) f is called Bc*-continuous function if f~1(A) is Bc-open subset of X for each Bc-open
subset A of Y.
3) f is called wBc*-closed function if f(A) is wBc*-closed of Y for each Bc-closed set A of
X.
4) f is called wBc-continuous function if f~1(A) is wBc-open subset of X for each 0-open
subset A of Y.
5) f is called wBc*-continuous function if f~1(A) is wBc-open subset of X for each Bc-open
subset A of Y.
6) f is called wBc**-continuous function if f~1(A) is wBc*-open subset of X for each 0-

open subset A of Y.
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Remark(2.27):

Every oBc**-continuous is mBc-continuous.

Proof:
Let f: X — Y be a function and let A be an 8-open of Y. Since f is an mBc**-continuous
function, then f~1(4) is an wBc*-open of X. Since every wBc*-open is mBc-open, then

f~1(A) is an mBc-open of X. Thus f is an mBc-continuous.

Definition(2.28):

Let f: X — Y be a function
1) f is called BcR-continuous function if f~1(A) is Bc-regular open subset of X for each 6-
open subset A of Y.
2) f is called Bc*R-continuous function if f~1(A) is Bc-regular open subset of X for each
Bc-open subset A of Y.
3) f is called @Bc*R-closed function if f(A) is oBc*-regular closed of Y for each Bc-closed
set A of X.
4) f is called mBcR-continuous function if f~1(4) is wBc-regular open subset of X for each
0-open subset A of Y.
5) f is called ®Bc*R-continuous function if f~1(A) is mBc-regular open subset of X for each
Bc-open subset A of Y.
6) f is called wBc**R-continuous function if f~1(A) is Bc*-regular open subset of X for

each 6-open subset A of Y.

Remark(2.29):

Every oBc**R-continuous is ®BcR-continuous.

Proof:
Let f: X — Y be a function and let A be an 6-open of Y. Since f is an @Bc**R-continuous
function, then f~1(4) is an wBc*-regular open of X. Since every wBc*-regular open is wBc-

regular open, then f~1(A) is an wBc-regular open of X. Thus f is an wBcR-continuous.
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3.Bc-Lindelof space and nearly Bc-Lindelof space

Definition(3.1):

A space X is said to be 0-Lindelof if every 6-open cover of X has a countable subcover.

Definition(3.2):
1) A space X is said to be Bc-Lindelof if every Bc-open cover of X has a countable subcover.
2) For a subset B of a space X is said to be Bc-Lindelof relative to X if every cover of B by

Bc-open sets of X has a countable subcover.

Theorem(3.3):
For any space X, the following properties are equivalent:
1) X is Be-Lindelof.

2) Every owBc-open cover of X has a countable subcover.

Proof:
1-2
Let {G,:a € A} be any wBc-open cover of X. For each x € X, there exists a(x) € A such
that x € Gy(y). Since G, (x) is @Bc-open, there exists Be-open set Vi) such that x € Vi)
and Vy ) — Ga(x) IS a countable. The family {Va(x): X E X} is a Bc-open cover of X. Since X
is Bc-Lindelof, then there exists a countable subset, say a(x,),...,a(xy),... such that
X = U{Vu(x): i € N}. Now, we have
X = Uien{ (Va) = Gati)UGagen }
= (Uien(Vaxty = Gai) )V (Uien Gagxiy)-

For each a(xi), Vaxi) — Gacxiy 1S @ countable set and there exists a countable subset A, ;) of
A such  that Vo) — Gaey) S U{Gaia € Agepy}.  Therefore, — we  have
X € (Uien(U{Ga: @ € Ay }))U(Uien Gageny)-
2—1

Let {G,: @ € A} be any Bc-open cover of X. To prove X is Bc-Lindelof, since every Bc-
open is wBc-open by lemma(2.13). By(2), then {G,: a € A} is mBc-open cover of X has a

countable subcover. Therefore, X is Bc-Lindelof.
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Proposition(3.4):

For any space X, the following properties are equivalent:
1) X is Bc-Lindelof.
2) Every wBc*-open cover of X has a countable subcover.
Proof:
1-2

Let {G,:a € A} be any wBc*-open cover of X. For each x € X, there exists a(x) € A
such that x € Gy (y). Since Gy IS @Bc*-open, there exists Bc-open set Vg, such that
X € Va(xy) and V() — Go(x 18 a finite. Since every finite is countable, then Vi i,y — Gy is @
countable. The family {V,:x € X} is a Bc-open cover of X and since X is Bc-Lindelof,
then there exists a countable subset, say a(x;), ..., (xy), ... . such that X = U{Va(xi): i € N}.
Now, we have

X = Uien{ (Vaxt) = Gaxiy)UGaxi )
= (Vien(Vatxt) = Gatx))U(Uien Gaxiy)-

For each a(xi), Va(xiy — Gacxi) 1S @ countable set and there exists a countable subset Ay
of A such that Vi) — Gaey S U{Gaia € Agy}.  Therefore, we  have
X € (Uien(U{Ga: @ € Agiuin ) )U(Uien Gageiy)-
2—1

Let {G,: @ € A} be any Bc-open cover of X. To prove X is Bc-Lindelof, since every Bc-
open is wBc-open, then {G,: a € A} is ®Bc-open cover of X has a countable subcover by

theorem(3.3). Therefore, X is Bc-Lindelof.

Proposition(3.5):

If X is a space such that every Bc-open subset of X is a Bc-Lindelof relative to X, then
every subset is Bc-Lindelof relative to X.
Proof:

Let B be an arbitrary subset of X and let {U;:i € I} be a cover of B by Bc-open set. Then
the family {U;: i € 1} is a Bc-open cover of the Bc-open set U{U;:i € I} by proposition(1.10).
Hence by assumption there is a countable subfamily {U;;:j € I} which covers U{U;:i € I}.

This subfamily is also a cover of the set B.
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Proposition(3.6):
For any space X, the following statements are equivalent:

1) X is Bc-Lindelof.

2) Every family of wBc-closed sets {F,:a € A} of X such that Ngep Fy, = ¢, then there
exists a countable subset A. © A such that N,e p. Fy = .

3) Every family of wBc*-closed sets {F,:a € A} of X such that N,ep F, = ¢, then there
exists a countable subset A- A such that Nye p. Fy = ¢.

4) Every family of Bc-closed sets {F,: @ € A} of X such that N,ep F, = ¢, then there exists a

countable subset A- € A such that N e p. Fy = .

Proof:
1-2

Suppose that X is Bc-Lindelof. Let {F,: a € A} be a family of wBc-closed subsets of X
such that Ngep Fy = ¢. Then the family {F,“:a € A} is wBc-open cover of Bc-Lindelof

space X, there exists a countable subset A. of A such that X =
U{F,‘: a € A-}.Then ¢ =
(ULE,Sca € A = N{(F,9) :a € Ao} = N{E,: a € Ao}

2—3

It is clear since every wBc*-closed is mBc-closed.
3—4

It is clear since every Bc-closed is wBc*-closed.
4-1

Let {G,:a € A} be any a Bc-open cover of X. Then {G,“:a € A} is a family of Bc-
closed subset of X with N{G,“: a € A} = ¢. By assumption, there exists a countable subset
A- of A, then N{G, : a € A-} = ¢. So that X =(N{G, :a €
A} = U{G,: @ € A-}. Hence X is Bc-Lindelof.

108



Journal of AL-Qadisiyah for computer science and mathematics
Vol.6 No.2 Year 2014

Raad.A\Ruaa.M
Theorem(3.7):

A space X is Bc-Lindelof if and only if for every collection of Bc-closed sets with
countable intersection property Ngea Fx # ¢.
Proof:

Let X is Bc-Lindelof and {F,: @ € A} be a collection of Bc-closed sets with countable
intersection property, Ngep Fy # ¢. Suppose that Ngep By, = ¢ . Then X = Ugen F,© Where
E,¢ is Bc-open set for each a € A. Therefore, {F,“: « € A} is Bc-open cover of X which is a
Bc-Lindelof, there exist countable many members ay,...,a,, .. such that
X = Uien Fai® = (Nien Fai)©
Nien Fai = Far N . N N o= ¢
which is a contradiction with our assumption that {F,: @ € A} has a countable intersection
property. Hence Ngep F, # ¢. Conversely, let every collection of Bc-closed subset of X
with the countable intersection property, Ngea F, # ¢. Suppose that X is not Be-Lindelof,
then there exist Bc-open cover {G,: @ € A} of X has no countable subcover {G,4, ..., Gan, - }
e X =G4, U..UGy U...Then (Uien Gai) = Nien Goi© # ¢.
But {G,°: @ € A} be a collection of Bc- closed of X with countable intersection property by
assumption. Then Ngea Go # @, (Ugen Go)© # ¢ which is a contradiction that G is Bc-

open cover of X. Thus must have countable subcover. Hence X is Bc-Lindelof.

Theorem(3.8):

Every wBc-closed subset of a Bc-Lindelof space of X is Bc-Lindelof relative to X.

Proof:

Let A be an wBc-closed subset of X. Let {G,: @ € A} be a cover of A by Bc-open set of
X. Now, for each x € A€, there is a Bc-open set V, such that V,NA is a countable. Since X is
Bc-Lindelof and the collection {G,: a € A}U{V,:x € A} is a Bc-open cover of X, there exists
a countable subcover {G,;:i € NYU{V,;:i € N}. Since U;en(V,;NA) is countable, so for each
x; € U(V,;NA), there is Ga(xjy € {Gg: @ € A} such that x; € Gy (,jy and
j € N. Hence {G,;:i € N}U{Ga(xj):j € N} is a countable subcover of {G,:a € A} and it

covers A. Therefore, A is Be-Lindelof relative to X.
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Theorem(3.9):

Every Bc-closed subset of a Bc-Lindelof space of X is Be-Lindelof relative to X.

Proof:
Let A be an Bc-closed subset of X. Then A€ is Bc-open ,since every Bc-open is wBc-

open. Therefore, A is wBc-closed by theorem(3.8), then A is Bc-Lindelof relative to X.

Proposition(3.10):

Every oBc*-closed subset of a Bc-Lindelof space of X is Bc-Lindelof relative to X.
Proof:

Let A be an mBc*-closed subset of X. Then A€ is ®Bc*-open ,since every oBc*-open is

oBc-open. Therefore, A is ®Bc-closed by theorem(3.8), then A is Be-Lindelof relative to X.

Theorem(3.11):

Let f: X — Y be a Bc-continuous and onto function. If X is a Bc-Lindelof, then Y is an 6-
Lindelof.

Proof:

Let {G,: «@ € A} be an 6-open cover of Y and since f is Bc-continuous function, then
{f1(G,): « € A} is Bc-open cover of X. Since X is Bc-Lindelof, then X has a countable
subcover {f1(Gy1), ..., f71(Gan), .- }. Since f is onto, then fFUFYGY)) =
G, for each a € A. Therefore, {G,q, ..., Gon, - } 1S @ countable subcover of Y. Hence Y is an
0-Lindelof.

Theorem(3.12):

Let f: X — Y be a Bc*-continuous and onto function. If X is a Bc-Lindelof, then Y is a Bc-
Lindelof.

Proof:

Let {G,:a € A} be a Bc-open cover of Y and since f is Bc*-continuous function, then
{f1(G,): « € A} is Bc-open cover of X. Since X is Bc-Lindelof, then X has a countable
subcover {f"1(Gy1), ..., f71(Gan), ... }. Since f is onto, then f(fYG) =G,
for each a € A. Therefore, {G,4, ..., Gon, ... } IS @ countable subcover of Y. Hence Y is a Bc-
Lindelof.
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Theorem(3.13):

Let f: X — Y be a wBc-continuous and onto function. If X is a Bc-Lindelof, then Y is an 6-
Lindelof.

Proof:

Let {G,: @ € A} be an 6-open cover of Y and since f is mBc-continuous function, then
{f1(G,): a € A} is mBc-open cover of X. Since X is Bc-Lindelof, then by theorem(3.4), X
has a countable subcover {f~1(G41), ..., f "1(Ggr), -.. }. Since f is onto, then f(f~1(G,)) =
G, for each a € A. Therefore, {G,4, ..., Gan, - } 1S @ countable subcover of Y. Hence Y is an
0-Lindelof.

Theorem(3.14):

Let f: X — Y be a @Bc*-continuous and onto function. If X is a Bc-Lindelof, then Y is a
Bc-Lindelof.

Proof:

Let {G,: @ € A} be a Bc-open cover of Y and since f is wBc*-continuous function, then
{f1(G,): a € A} is ®Bc-open cover of X. Since X is Bc-Lindelof, then by theorem(3.4), X
has a countable subcover {f~1(G41), ..., f "1(Ggy), -.. }. Since f is onto, then f(f~1(G,)) =
G, for each a € A. Therefore, {G,1, ..., Ggn, --- } IS @ countable subcover of Y. Hence Y is a
Bc-Lindelof.

Theorem(3.15):
Let f: X — Y be an ®Bc**-continuous and onto function. If X is a Bc-Lindelof, then Y is

a Bc-Lindelof.

Proof:

It is clear since every mBc**-continuous is mBc-continuous.
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Proposition(3.16):

If f:X — Y be an wBc*-closed onto such that f~1(y) is Bc-Lindelof relative to X and Y
is a Bc-Lindelof for each y € Y, then X is a Bc-Lindelof.
Proof:

Let {G,: @ € A} be an Bc-open cover of X. For each y € Y, f~1(y) is Bc-Lindelof relative
to X and there exists a countable subset A,(y) of A such that Yy c
U{G,: @ € A;(y¥)}. Now we put G(y) = {G,: @ € A, (y)} and Viy)=Y —
f(U)). Then, since f is an ®Bc*-closed, V(y) is an ®Bc*-open set in Y containing y such
that f~1(V(y)) c U(y). Since V(y) is an oBc*-open, there exists a Bc-open set W (y)
containing y such that W(y) — V(y) is a countable set. For each y € Y, we have W(y) c
(W(y) = V(y))UV(y) and hence

W) e[ W) -vo)ur(vy)
c (W) -Vm)UG(y)
since W (y) — V(y) is a countable set and f~1(y) is Bc-Lindelof relative to X , there exists a
countable set A, (y) of A such that
AW V) € UG a € A, ()}
and hence f~Y(W(y)) c [U{G,: @ € A,(»)HU[G(y)]. Since {W(y):y € Y} is Bc-open
cover of the Bc-Lindelof space Y, there exists a countable points of Y, say vy, ..., y,, ... such
that Y = U{W(yi):i € N}. Therefore, we obtain
X = Uien fTE (WD) = Usen|Uaen, iy Ga] U(Uaen, i) Ga)
= U{G,:a € A, (yi)UA,(yi),i € N}.

Hence X is Bc-Lindelof.
Definition(3.17):
1) A space X is said to be nearly Bc-Lindelof if every Bc-regular open cover of X has a
countable subcover.
2) For a subset B of a space X is said to be nearly Bc-Lindelof relative to X if every cover of
B by Bc-regular open sets of X has a countable subcover of B.
Theorem(3.18):

For any space X, the following properties are equivalent:
1) X is nearly Bc-Lindelof.

2) Every wBc-regular open cover of X has a countable subcover.
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Proof:

1-2

Let {G,: @ € A} be any ®Bc-regular open cover of X. For each x € X, there exists
a(x) € A such that x € Gg(y). Since G ) is @Bc-regular open, there exists Be-regular open
set Vy(xy such that x € Vy () and Vi) — Gagxy is @ countable. The family {V,:x € X} is a
Bc-regular open cover of X. Since X is nearly Bc-Lindelof, then there exists a countable
subset, say a(x;), ..., a(xy), ... such that X = U{Va(xl-):i € N}. Now,
we have

X = Uien{ (Vaxt) = Gatxiy)UGai )
= (Uien(Vatet) = Gay))U(Uien Gaixy)-

For each a(xi), Vaxi) — Gacxiy 1S @ countable set and there exists a countable subset A, ;) of

A such that Vo(ei) — Gageiy S U{Gy: @ € Ay} Therefore, we have X c
(Uien(U{Gar @ € Aty ) )U(Uien Gagaiy)-
2—1

Let {G,: @ € A} be any Bc-regular open cover of X. To prove X is nearly Bc-Lindelof,
since every Bc-regular open is wBc-regular open by (2) ,then {G,: a € A} is wBc-regular
open cover of X has a countable subcover. Therefore, X is nearly Bc-Lindelof.
Proposition(3.19):

A space X is nearly Bc-Lindelof if and only if every family {F,: a € A} of wBc-regular
closed sets has countable intersection property Ngep Fy # .

Proof:

Let X be a nearly Bc-Lindelof space and suppose that {F,: a € A} be a family of wBc-
regular closed sets with countable intersection property, Ngep Fy = ¢. Let us consider the
oBc-regular open sets G, = F,°the family {G,:a € A} is wBc-regular open cover of X.
Since X is nearly Bc-Lindelof, the cover {G,: @ € A} has a countable subcover {G,;:i € N}.
Therefore, X = U{G,;:i € N}

= U{F,;“:i € N}

= (N{F,:i € N})“.
Then N{F,;:i € N} = ¢. Thus, if the family {F,: « € A} of of wBc-regular closed sets with
countable intersection property, then Ngea F, # ¢. Conversely, Let {G,: @ € A} be an wBc-

regular open cover of X and suppose that every family {F,: « € A} of ®Bc-regular closed sets
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has countable intersection property, NgeaFy # ¢. Then X = U{G,: a € A}. Therefore,

¢ =X"=N{G, :a € A} and {G,“:a € A} is a family of wBc-regular closed sets with an
empty intersection. By assumption, there exists a countable subset {G,;“:i € N} such that
N{G,;“:i € N} = ¢. Hence (N{Gy“:i € N} =X = U{Gy:i € N}. Thus X
is nearly Bc-Lindelof.

Theorem (3.20):

Every oBc-regular closed subset of a nearly Bc-Lindelof space X is nearly Bc-Lindelof

relative to X.

Proof:

Let A be an wBc-regular closed subset of X. Let {G,:a € A} be a cover by Bc-regular
open sets of X. Now, for each x € A€, there is a Bc-regular open set V, such that V,NA is a
countable. Since X is nearly Bc-Lindelof and the collection {Gp:a € AJU{V,:x €
A€} is a Be-regular open cover of X, there exists a countable subcover {G,;:i € N}U{V,;:i €
N}. Since U;en(VyiNA) is a countable, so for each x; € U(V,;NA), there is Ggxj) €
{Gy:a € A} such that x; € Gy(rjy and j € N. Hence {Gg;:i € N}U{Gynjy:i € N} is a
countable subcover of {G,:a € A} and it covers A. Therefore, A is nearly Bc-Lindelof

relative to X.

Theorem(3.21):
Let f: X — Y be an BcR-continuous and onto function. If X is a nearly Bc-Lindelof, then
Y is an 0-Lindelof.

Proof:

Let {G,: a € A} be an 0-open cover of Y and since f is BcR-continuous function, then
{f1(G,): a € A} is Bc-regular open cover of X. Since X is nearly Bc-Lindelof, then X has a
countable subcover {f ~1(G41), ..., f "1 (Gyy), ... }. Since f is onto, then f(f~1(G,)) = G, for
each a € A. Therefore, {G1, ..., Ggn, .- } IS @ countable sub cover of Y. Hence Y is an 6-
Lindelof.
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Let f: X — Y be a Bc*R-continuous and onto function. If X is a nearly Bc-Lindelof,

then Y is a Be-Lindelof.
Proof:

Let {G,: a € A} be a Bc-open cover of Y and since f is Bc*R-continuous function, then
{f1(G,): a € A} is Bc-regular open cover of X. Since X is nearly Bc-Lindelof, then X has a
countable subcover {f "1(G41), ..., f 1(Ggrn), ... }. Since f is onto, then f(f~1(G,)) = G, for
each a € A. Therefore, {G,4, ..., Gon, --- } 1S @ countable subcover of Y. Hence Y is a Bc-
Lindelof.

Theorem(3.23):

Let f: X — Y be a @BcR-continuous and onto function. If X is a nearly Bc-Lindelof, then
Y is a 0-Lindelof.

Proof:

Let {G,: @ € A} be a B-open cover of Y and since f is eBcR-continuous function, then
{f~1(G,): a € A} is wBc-regular open cover of X. Since X is Bc-nearly Be-Lindelof, then by
theorem(3.18), X has a countable subcover {f~1(Gg1), ..., f "1 (Gan), ... }. Since f is onto,
then f(f~1(G,)) = G, for each a € A. Therefore, {G,1, ..., Gan, .- } is @ countable sub cover
of Y. HenceY is a 6-Lindelof.

Theorem(3.24):

Let f: X — Y be a ®Bc*R-continuous and onto function. If X is a nearly Bc-Lindelof, then
Y is a Bc-Lindelof.

Proof:

Let {G,: a € A} be a Bc-open cover of Y and since f is @Bc*R-continuous function, then
{f1(G,): a € A} is wBc-regular open cover of X. Since X is nearly Bc-Lindelof, then by
theorem(3.18), X has a countable subcover {f1(Ggq), ..., f "1 (Gan), ... }. Since f is onto,
then f(f~1(G,)) = G, for each a € A. Therefore, {G,1, ..., Ggn, -.. } is @ countable subcover
of Y. HenceY is a Bc-Lindelof.

Theorem(3.25):

Let f: X = Y be an @Bc**R-continuous and onto function. If X is a nearly Bc-Lindelof,
then Y is a 0-Lindelof.
Proof:

It is clear since every wBc**R-continuous is ®BcR-continuous.
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