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A B S T R A C T 

         Using the quadratic spline function, this paper finds the numerical 

solution of mixed Volterra-Fredholm integral equations of the second 

kind. The proposed method is based on employing the quadratic spline 

function of the unknown function at an arbitrary point and using the 

integration method to turn the Volterra-Fredholm integral equation into a 

system of linear equations with respect to the unknown function. An 

approximate solution can be easily established by solving the given 

system. This is accomplished with the help of a computer program that 

runs on Python 3.9.. 
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1. INTRODUCTION 

Integral equations can be used to express a variety of mathematical physics topics. Some of 

these will be examined and treated explicitly as examples. It would be nearly impossible to compile a 

list of such applications. To say that integral equations play a role in practically every area of applied 

mathematics and mathematical physics is an understatement; thus, the literature on integral equations 

and their applications is extensive. 

Many research have been conducted in recent years, with the results revealing the interaction of 

Fredholm integral equation, Volterra integral equation, mixed Volterra-Fredholm integral equation, and 

numerical part of these three types of integral equation. 

In this work, we consider the linear mixed Volterra–Fredholm integral equations (MVFIEs) of 

the form:  

 ,)(),()(),()(=)( 21 dttutxLdttutxKxfxu
b

a

x

a  ++   (1) 

 where the functions )(xf , and the kernels ),( txK  and ),( txL  are known 
2L  analytic functions and 

1 , 2  are arbitrary constants, x  is variable and )(xu  is the unknown continuous function to be 

determined. Such equations arise in many applications in areas of physics, fluid dynamics, 

electrodynamics, and biology. Various formulations of boundary value problems, with Neumann, 

Dirichlet or mixed boundary conditions are reduced to such integral equations. They also provide 

mathematical models for the development of an epidemic and numerous other physical and biological 

problems. 

It is well-known that the analytical solution of MVFIEs generally does not exist except for 

special cases, and thus, numerical method was the successful and effective method for solving these 

problems. Several numerical and approximate methods are used for solving MVFIEs such as Taylor 

polynomial by [16]; [15], least square method and Chebyshev polynomials by [5], Lagrange collocation 

method by [14], Series solution, successive approximation method and method of successive 

substitutions by [22], Trigonometric Functions and Laguerre Polynomials by [7], Touchard Polynomials 

(T-Ps) method by [1], Some iterative numerical methods by [12], Taylor polynomial by [6]. The reader 

can consult the following references for other information ([2], [3], [8], [9], [10], [11], [17], [18], [19], 

[20], [21], [24]) and the references therein.  

We solved Equation (1) by linear spline function [23]. In this paper, Equation (1) studied by 

using quadratic spline function. The rest of this paper is organized as follows. In Section 2, we introduce 

our method for solving equation(1). In Section 3, we investigate several numerical examples, which 

demonstrate the effectiveness of our technique. In Section 4, some tentative conclusions will be given. 
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DESCRIPTION OF THE METHOD  

             In this section, we solve Equation (1) by using quadratic spline function [4], [25, P.151]. The 

unknown function )(xu  in (1) approximated by the quadratic spline function )(xQ . In the interval 

],[ 1+ii xx  the quadratic spline function defined by the following formula:  

 

 ,')()()(=)( 1 iQxCQxBQxAxQ iiiiii ++ +  (2) 

 where 
2
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))((
=)( 1 −− + , and ii xxh −+1=  for all 

1,0,1,= −ni  . Now substituting (2) in (1) and letting ixx = , we get  
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 By computing the integrals in the above equation using trapezoidal rule, we get 



4 Sarfraz Hassan Salim, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 14(4) 2022 , pp  Math.   10–19

 

 

 

 iiiiiiijijij

i

j

iiii QLKK
h

QLKhQLK
h

fQ ))2((
2

)()(
2

= 21121

1

1=

00201  +−+++++ −

−

  (3) 

 for ni ,0,1,=   

In this way, Equation (3) construct a system of linear equations with respect to the unknown 

function iQ . Briefly, this system can be rewritten as follows: 
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In the sequel, making use of a standard rule to the resulting system yields an approximate 

solution of Equation (1) as )(xQi  given by the Equation (2). 

NUMERICAL EXAMPLES  

   In this section, we present three examples to illustrate the effciency and the accuracy of the 

proposed method. The computed errors ie  are defined by iii Que −= , where iu  is the exact solution 

of Equation(1) and iQ  is an approximate solution of the same equation. Also we compute Least square 

error (LSE)
2

0=
)(= ii

n

i
Qu −  and all computations are performed using Python program.  

 

Example 1 Consider Mixed Volterra-Fredholm integral equation  

 .)()(2
2

7

2
=)(

1

00

2

dttxudttu
xx

xu
x

 +++−−  

The exact solution of this equation is given by 2=)( +xxu . 

Table (1) demonstrates LSE obtained from applying our method on Example (1) for 5=n . 
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Table 1. The Numerical Results for Example (1) with 5.=n   

ix    iu    iQ    ii Qu −    
2

ii Qu −  

0  2    2    0    0   

0.2   2.2    2.13629596   0.06370404    0.0040582  

0.4   2.4   2.28579046    0.11420954    0.01304382  

0.6  2.6    2.42850187    0.17149813    0.02941161  

0.8  2.8    2.55956388    0.24043612    0.05780953  

1.0  3    2.67597365    0.32402635    0.10499308  

LSE  11062.09316234 −  

 

  

Example 2 Consider Mixed Volterra-Fredholm integral equation  

 .)()()(1)(2=)(
00

dttudttutxxcosxu
x

 +−+−


 

The exact solution of this equation is given by )(=)( xcosxu . 

Table (2) demonstrates LSE obtained from applying our method on Example (2) for 5=n . 

 

 Table 2. The Numerical Results for Example (2) with 5=n .  

ix    iu    iQ    ii Qu −    
2

ii Qu −  

0 1   0.76338595    0.23661405    0.05598621   

5


 

0.59756842   0.21144858    0.011772    0.0447105  

5

2
  

0.44912673   0.14010973    0.002637    0.01963074  
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5

3
  

0.01030637   0.31932337    0.009416    0.10196741  

5

4
  

0.54493082−   0.26408617    0.021227    0.06974151  

  1.−   1.03436141−   1.03436141−    0.00118071  

LSE    1102.93217071 −  

 

  

Example 3 Consider Mixed Volterra-Fredholm integral equation  

 .)()()()(
10

1

2

3

2
2

10
=)(

1

00

2
3

5

dttutxdttutx
xx

x
x

xu
x

−++++−−+−   

The exact solution of this equation is given by 12=)( 3 +xxu . 

Table (3) demonstrates LSE obtained from applying our method on Example (3) for 5=n . 

 

 Table 3. The Numerical Results for Example (3) with 5=n .  

ix    iu    iQ    ii Qu −    
2

ii Qu −  

0  1    0.87840757    0.066862    0.004470   

0.2   1.016    0.84829337    0.094613    0.008951  

0.4   1.128    0.93519736    0.126469    0.015994  

0.6  1.432    1.17390234    0.164023    0.026903  

0.8  2.024    1.6903575    0.2090981    0.043722  

1.0  3    2.58334564    0.26381781    0.06959984  

LSE     
1104.31615665 −  
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 Table 4. LSE for different values of n  for Examples (1)-(3).     

        n 

   LES 

10 20 30  40 50 

Example 1  
2104.1137035 −   

3105.9176371 −   
3101.8005313 −   

4107.6633046 −   
4103.9385354 −  

Example 2   
1101.2014112 −   

2104.5249249 −   
2102.7925237 −   

2102.0334663 −  
1101.6040094 −  

Example 3   
2108.8092531 −  

2101.3833397 −   
3104.3923665 −    

3101.9149630 −   
4109.9939046 −  

 

CONCLUSION  

               The quadratic spline function is used in this paper to solve linear mixed Volterra-Fredholm 

integral equations, and it is a powerful numerical approach. The numerical results in the preceding 

section demonstrate that the proposed method can successfully tackle the Volterra-Fredholm type 

problem. Table (4) shows that the proposed method has extremely good stability; as n  increases, the 

error decreases at first and then stabilizes. We also conclude that when the exact solution is a linear 

function, we have high accuracy. The present method can be easily extended to systems of mixed 

Volterra-Fredholm integral equations and systems of Volterra-Fredholm integro-differential equations. 

The current method may be simply extended to mixed Volterra-Fredholm integral equations and 

Volterra-Fredholm integro-differential equations. 
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