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Abstract

In this paper , weusedthe concept of generalized closed (g-closed) and generalized compact
(g-compact) sets to constructa new types of compact spaces and functions which are
compactly generalized closed space (cgc-space) , generalized compactly generalized closed
space and generalized coercive function (g-coercive) and investigate the properties of these
concepts .
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Introduction

This concept of generalized closed (g-closed) set was introduced by Levin N. [1] and
studiedits properties. Selvarani S. [2] gave the definition of g-neighborhood of a pointx € X
9T, -spaceand g-compact space . The generalized closure ofA € X is the intersection of all
g-closed setswhich contain Aand denoted bygcl(A)[1] . In[4] Balachandran K. , Sundaram P.
andMaki H. introducedthe certain types of continuous functions. Finally in [3] Ali J. H. and
Mohammed J. A. defined certain type of compact functions.We useT;,4t0
denote the indiscrete topology on a non-empty setsX and T,to denote the usual topology on
the set of real numbers R. Throughoutthis paper(X, T)and(Y,T)( or simply X and Y )
represent to non-empty topological spaces on which no separationaxiom are assumed , unless
otherwise mentioned .
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1. Basic Definitions and Notations:

1.1. Definition [1]:
A subset Aof a topological space Xis called generalized closed (for brief g-closed)set if
cl(A) < Ufor everyopen set U inX contains A . The complement of g-closed set is called g-
open set.

1.2. Example:
Let X ={1,2,3} withT = Tj,q,then A = {1} is g-closed set.

1.3. Example:
LetX =R, T = Ty, then A = (a, b) is not g-closed set.

1.4. Remark [1]:
(i) Every closed set is g-closed.
(ii) Every open set is g-open.

The converse of (i, ii ) in remark (1.4) is not true in general as the following example
shows:

1.5. Example:
In example (1.2), A = {1}is g-closed set but not closed and B = {2,3}is g-open but its
not open .

1.6. Theorem [1]:

A subsetAof a topological space Xis g-closed set if and only ifcl(A4)-A contains no non-empty
closed set.

1.7. Theorem [1]:
A subset Aof a topological space Xis g-open if and only ifF < int(A) , for every closed set F
in Xcontained in A.

1.8. Theorem [1]:
Let X be a topological space, Yis a closed (open) set in X. Then:
(i) If B is g-closed (g-open) set in X then BNYis g-closed (g-open) set in X.
(ii) If B is g-closed (g-open) set in X then BNY'is g-closed (g-open) set inY.
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1.9. Theorem [1]:

Let X be a topological spaceand B € Y < X. Then:
(i) ifB is g-closed (g-open) set in Y andY is g-closed (g-open) set in X, thenBis g-closed (g-
open)set inX .

(ii) if B is g-closed (g-open) set in X then B is g-closed (g-open) inY .

Note that if B is g-closed (g-open) in Ythen B not necessary be g-closed (g-open) setin X as
the following example shows:

1.10. Example:

Let X = RwithT = T; andY = {1,2}, thenB = {1}is g-open set in Y,but B is not g-open
inR .

1.11. Definition [2]:
Let Xbe a topological space andA < X. A generalized neighborhood of A( for brief g-
neighborhood) is any subset of Xwhich contains g-open set containingA .The family of all
g-neighborhoods of a subset A of Xdenoted by WV, (A)and the family of all g-neighborhoods
of x € X denoted by N, (x) .

1.12. Definition [3]:
A topological space Xis called generalized Hausdorff ( for briefgT,) if for any two distinct
points x, y € Xthere are disjoint g-open sets U,V of Xsuchthatx e Uand y € V.

1.13. Remark [3]:
Every T,-space is gT,-space. But the converse is not true in general. In example (1.2), Xis
gT,-space. But Xis not T,-space.
1.14. Remark [2]:
The intersection of two g-closed sets need not be g-closed and the union of two g-open
sets need not be g-open as the following example shows:

1.15. Example:

LetX ={a,b,cland T = {0, X ,{a}} be atopology onX , then{a,b} and {a, c}are g-closed
setsin X, but{a,b}N{a, c} = {a}is not g-closed set and {b}, {c}are g-open sets

but{b}U{c} = {b, c} is not g-open .

1.16. Definition [2]:
A topological space X is called generalized multiplicative space (IG-space) if arbitrary
intersection of g-closed sets of X is g-closed set .

1.17. Remark [2]:
(i) gcl(A)need not be g-closed, since the intersection of g-closed sets is not to be g-closed .
(il)x € gcl(A)if and only if for every g-open set Ucontainingx ,UNA # Q.
(iii) If Xbe an I1G-space,then gcl(A)is g-closed set.
(iv) Every T;-space is an IG-space.
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1.18. Definition [4]:Letf: X — Y be a function from a topological spaceXinto a
topological spaceY, then f is called:

(i)generalized continuous ( g-continuous ) function if f=1(A) is g-closed set in X for every
closed set A inY .

(i) generalized irresolute continuous (gl-continuous) functionif f~1(A) is g-closed set in
Xfor everyg-closed set A inY .

1.19. Definition [4]:
A function f: X — Yis called:
(i)generalized closed (g-closed) if f(B) is g-closed set in Yfor every closed setB in X.
(ii) generalized irresolute closed (gl-closed) function if f(B)is g-closed set inY for every g-
closedset Bin X .

1.20. Definition [4]:
A function f: X — Yis called:
(i) generalized open ( g-open ) function if f(B) is g-open set inY for every openset B in X.
(ii) generalized irresolute open (gl-open) function if £(B) is g-open set in Yfor every g-open
setBinX.

1.21. Definition [3]:
A topological space Xis called generalized compact (g-compact) space if every g-open
cover of Xhas finite subcover.

1.22. Remark [5]:
Every g-compact space is compact. The converse is not true in general as the following
example shows:

1.23. Example [5]:

Let X = {x}U{x; : i €1}, Iuncountable,T = {@, X, {x}} be a topology onX . Then X is
compact but is not g-compact, since {{x X 1l E I}is g-open cover of X and has no finite
subcover.

1.24. Theorem [2] ,[3],[5]:

(i) Every g-closed subset of g-compact space is g-compact.

(if) The intersection of g-compact subset with g-closed subset is g-compact.
(iii) Every g-compact subspace of gT,-space is g-closed.

(iv) Every finite subset is g-compact.

(v) Every T, compact space is g-compact.

1.25. Theorem [3]:
(i)Let X be atopological space and Fis g-closed subset ofX. Then FNKis g-compact in F
for every g-compact set KinX .

(i) Let Ybe a g-open set of a topologicalX andK < Y, thenK is g-compact set in Yif and
only if K is g-compact set inX .
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1.26. Theorem [3]:

(i)Let fbe gl-continuous function from g-compact space X onto a topological space Y, then
Yis g-compact space.

(if)Let f: X — Ybe gl-continuous function, then the image f(A) of any g-compact set 4 in
X is g-compact set inY.

(iif)Let fbe gl-continuous function from g-compact space Xinto agT,-spaceY is gl-closed.

1.27. Definition [3]:
Let f: X — Ybe a function, thenf is calledgeneralized irresolute compact (gl-compact)
iff ~1(K)is g-compact set in Xfor every g-compact set K inY .

1.28. Definition [6]:

A set Dis called a directed if there is a relation < on Dsatisfying:
()d < d foreach d €D .

(i) Ifdy <d, andd, < d; thend, <d; .

(iii) If d,,d, € D, there is somed; € D withd; < d; andd, < d5 .

1.29. Definition [7]:
A netin a set Xisa functiony: D — X , whereD is directed set. The pointy(d) is usually
denoted by .

1.30. Definition [7]:

A subnet of a net y: D — Xis the composition yop,wherep: M — D and M is directed set,
such that :

(ep(my) < @(m,), where m; <m, .
(i) For alld € Dthere is some m € M such thatd < ¢ (m)form € M. Thepoint yop(m)
is often writteny 4, .

1.31. Definition [7]:
Let (x4)aep be anetin atopological space Xand A € X,x € X then:
(1) (xa)aepis eventually in A if there is d, € Dsuch that y, € Aforalld > d, .
(i) (Xa)aepis frequently inAif for alld € D there isd, € Dwithd = dysuch that y,, € A.

1.32. Definition [5]:

Let (x4)aepbe anet in a topological space X, x € X. Then (x4)4epis said to be generalized
converges to a point x ( for brief g-converges) if (x4)4ep€ventually in every g-neighborhood
of x (writteny, A x) . A point x is called generalized limit point ( for brief g-limit point) of

(Xa)aen-

1.33. Theorem:
LetXbe a topological space and A € X, x € X. Then x € gcl(A)if and only if there is a net

(Xa)aepin A such that x4 Sx.
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Proof:
Suppose that there is a net(x4)4epin A such that x4 % x.To prove that x € gcl(A) .
LetU € IV, (x), since x4 EA x, thereis d, € D withy, € Uforall d > d, . Buty, € U forall

d €D .SoANU # @ forall U € N, (x). By remark (1.17.ii) , x € gcl(4) .

Conversely:

Suppose that x € gcl(A) . To prove that there is a net (x4)4epin A such that y4 Lx.
Sincex € gcl(A), by remark (1.17.ii) , ANU # @forall U € Ny (x). ThenD = N (x)is
directed set by inclusion. Since NU # @YU € N, (x), there is y, € ANU. Define y:D -
A byx(U) = xy forallU € Ny (x) . Hence (Xv)ven,xis anetinA . To prove thatyy % x.
Let U € Ny (x)to find d, € Dsuch that y, € U for alld = d, . Let dy = U, then for all
d=d, wehave d =V € Ny(x) ie,V=UsVCU.

Xa=x(@d)=x(V)=xy €VNACSV cU,then y, € Uforall d = d,. Thusyy x.

1.34. Corollary:
Let Xbe a topological space and A € X, x € X. Then x € gcl(A)if and only if thereis a net
(Xa)aepin A such that y, Ix .

1.35. Theorem [8]:
LetX be aT,-space. Then Xis g-compact if and only if every net in X has a g-cluster
point in X.

1.36. Remark [7]:
Let f: X — Ybe a function from a set Xinto a setY , then:

(i) If (xa)aepisanetin X, then {f (x4)}qepiSanetiny .
(ii) Iffis onto and(y,)qepbe anetin Y, then there is a net (x4)qepinXsuchthat  f(x4) =

v, foreachd € D .

1.37. Theorem:
Let Xand Ybe topological spaces . A function f: X — Y is g-continuous if and only if

whenever (x4)epis a netin X such that y, % x ,then f(xq) = f(x) inY .

Proof: Clear.

1.38. Corollary:
Let Xand Ybe topological spaces . A function f: X — Y is gl-continuous if and only if

whenever (x4)4epis anetin X such that y, % x ,then f(x4) A f(x) inY .
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Proof:

Suppose thatf: X — Y is gl-continuous and () 4epiS @ Net in X such thaty, %x.To prove
thatf (x4) if(x) Let Ve N, (f(x))in Y, thenf~1(V) € N, (x) , for some d, € D

, d = dyimplies that y4 € f~1(V). Thus showing thatf (x4) if(x), since (Xq)aeplS
eventually in each g-neighborhood of f(x), then by remark (1.36.i), {f(x4)} isanetinY
which is eventually in each g-neighborhood of f(x). Thereforef (x4) A f(x).

Conversely:

To prove thatfis gl-continuous,suppose not, then there is V € Ng(f (x))such that

f(U) ¢ Viorany U € Ny(x) . Thus forall U € N,(x)we can x,; € U suchthat f(yy) & V

, but (rpduenw, (ois anetin X with yy EA x, while{f (xv)}venw, (xis not g-convergent tof (x) .
This is a contradiction.

2. Compactly g-closed and g-compactly g-closed spaces:

This section is devoted to a new concept which is called compactly g-closed space and
generalized compactly g-closed space. Several various examples, theorems and remarks
on these concepts are proved . Furthermore theorems are stated as well as the relationships
between these concepts.

2.1. Definition:
Let Xbe a topological space. A subset A < Xis called compactly generalized closed (for brief
cgc-set) if ANKis g-compact set for every g-compact setKinX.

2.2. Example:
(i) Every finite subset of a topological space is cgc-set.
(i) Every subset of indiscrete space is cgc-set.

2.3. Theorem:
Every g-closed subset of a topological space is cgc-set.

Proof:
Let Abe a g-closed subset of a topological space Xand Kbe a compact subset of X, by
Theorem(1.24.ii) , ANKis g-compact set. Thus Ais cgc-set.

The converse of theorem (2.3) need not true in general as the following example shows:

2.4. Example:
Let X = {a,b,c}andT = {@, X, {a, b}}be a topology onX , then A = {a, b}is cgc-set but it is
not g-closed set.
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2.5. Theorem:
Let X be a T,-space andA < X. ThenAis cgc-set if and only if it is g-closed set.

Proof:
Let A beacgc-setin X and x € gcl(A) . By theorem (1.33), there isa net (x4)4epin A such

thaty, % x . Thenk = {xa4, x}is g-compact set . Since A is cgc-set , then ANK is g-

compact setinX . But X isaT, , then ANKis g-closed . Since x4 %, xand Xa € ANK, then
by theorem (1.33), x € ANK , hencex € A. Thus A is g-closed set.
Conversely: By using Theorem (2.3) .

2.6. Theorem:
Letf: X — Yis a bijective, gl-continuous , gl-compact function andA € X . Then A is
cge-set in X if and only if f(A) is cgc-set inY.

Proof:

LetA be acgc-set inX and let Kbe a g-compact set inY. Since f be a gl-compact, then
f1(K)is g-compact set inX. ThusANf~1(K)is g-compact set inX. By theorem

(1.26.ii),f (ANF~1(K))is g-compact set inY. But f(ANf~1(K)) = f(A)NKis g-compact set
inY.

Hence f(A)is cgc-setinY.

Conversely:

Letf (A)be a cgc-set inY. To prove thatA is cgc-set in . LetK be a g-compact set inX. Since
fbe a gl-continuous , then by theorem (1.26.ii), f (K)is g-compact set inY .Thus
fANf(K) is g-compact set inY ,thusf‘l(f(A) ﬂf(K))is g-compact set inX .( since f gl-
compact ). Butf ~*(f(A)Nf(K)) = ANK. ThusA is cgc-set inX .

2.7. Theorem:
Let Bbe a g-open subset of a topological space X. ThenBis cgc-set in Xif and only if
the inclusion functioni: B — Xis gl-compact.

Proof:

Suppose that B be a cgc-set and K be a g-compact set in X . ThenBNKis g-compact set inX ,
by theorem (1.25.ii), BNK is g-compact setin B. But BNK = i~1(K), then i~1(K)

is g-compact setin B . Thus i: B = X is gl-compact.

Conversely:

Let K be a g-compact set inX, sincei: B — Xis gl-compact . Theni~*(K) = BNK is g-
compact set inB , thus by theorem (1.25.ii),BNKis g-compact set in Xfor every g-compact
set K in X , Therefore B is cgc-set in X.

2.8. Definition:
A subset Aof a topological spaceX is said to be generalized compact generalized closed set
(for brief gcge-set) , if ANKis g-closed set in X for every g-compact set KinX .
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2.9. Example:
Every subset of a discrete space is gcgc-set.

2.10. Remark:
Not every set of a topological space is gcgc-set as the example (2.4) shows.

2.11. Theorem:
Every gcgc-set in a topological space is gcg-set.

Proof:

LetAbe a gcgc-set of a topological spaceXand letKbe a g-compact subset ofX. ThenANKis g-
closed set inX . SinceANK < K, then by remark (1.24.i) , ANK is g-compact set . Therefore
Ais cge-set in X.

2.12. Theorem:
Let Xbe a T,-space andA < X , the following statements are equivalent:
(A is cgc-set.
(ii)A is gcge-set.
(iii)A is g-closed set.

Proof:

(i = ii)Let A is cgc-set inXand let Kbe a g-compact set inX. Then ANKisg-compact set
in X. SinceXis a T,-space , then by theorem (1.24.iii) , ANKisg-closed set in X.
Thus A is gcge-set inX .

(ii = i) By using theorem (2.11) .

(iii = i) By using theorem (2.3) .

2.13. Remark:
If X is not T,-space , then it is not necessary that cgc-set is gcgc-set as the following example
shows:

LetX = {a,b,c}and T = {U € X : a € U }U{@}be a topology on X, clear that(X, T)
is not T,-space . Since {a, b}, {b} c Xand{b}is g-compact set in X and {a, b}N{b} = {b}is g-
closed but {a, b}is not g-closed set.

Recall that a bijective function f: X — Yis called generalized irresolute homeomorphism (gl-
homeomorphism) if fand f~1 are gl-continuous [7].

2.14. Theorem [9]:
A bijection function f: X — Y is gl-homeomorphism if fis gl-continuous and gl-open (gl-
closed) function.
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2.15. Theorem:
The following conditions on a Hausdorff space Yare equivalent:
(1)) The only g-open subset ofYwhich is gcgc-set is the whole spaceand the empty set.

(ii) Every gl-open, gl-continuous and gl-compact function from a topologicalspace Xinto Y
is onto .

(iii) Every one to one, gl-open , gl-continuous and gl-compact function froma topological
spaceX into Yis gl-homeomorphism.

Proof:

(i=>ii)Let f: X - Y be a gl-open, gl-continuous and gl-compact function .SinceXisnon -
empty g-open set , then f(X)is non-empty g-open setin Y. To prove f(X)is gcgc-setinY.
Let Kbe a g-compact set in Ythenf ~1(K)is g-compact set inX, sincef is gl-compact. Thus
by theorem (1.26.ii) , f(f ~1(K)) is g-compact set in Y. By theorem (1.24.iii) ,f (f ~1(K))is
g-closed set in Y. Since f(X)NK = f(f~*(K)),then f(X)NKis g-closed set in Y. So f(X)is
gcge-set.Butf (X) = @, thenf(X) =Y. Thus f is onto.

(ii = iii)Let f: X — Y be an one to one, gl-open, gl-continuous and gl-compact function.
Then by (ii), f is onto and one to one ,hence it is bijection . Then by theorem (2.14) ,f is gl-
homeomorphism .

(iii = i)Let A be a non-empty g-open subset of Ywhich is gcgc-set. Then by theorem (2.11)
, Ais cgc-set, since Ais g-open . Then by theorem (2.7) , theinclusion function i: A = Yis
gl-compact. To prove i:A — Y is gl-continuous, let Bis g-open set in Y, then ANBis g-open
set. ButANB = i~1(B)isg-open set in A. Thus , the inclusion function is gl-continuous, by
(iii) , the inclusion function is gl-hnomeomorphism . ThusA =Y, this complete proof .

2.16. Definition:
A topological space Xis said to be compactly generalized closed space (for brief cgc-space) if
every cgc-set of X is g-closed.

2.17. Example:
(i) Every indiscrete space is cgc-space.
(1) Every T,-space is cgc-space.

2.18. Remark:
The example in remark (2.13) shows that not every topological space is cgc-space.

2.19. Theorem:
Let X be a topological space andY'is cgc-space. Then every gl-continuous and gl-
compact onto function f: X — Yis gl-closed.
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Proof:
Let Fbe a g-closed subset ofX. To prove that f (F)is g-closed subset ofY. Let Kbe a
g-compact subset of Y. Sincef is gl-compact, thenf ~1(K) isg-compact set in X.
By remark (1.24.ii) ,FNf~1(K)is g-compact set inX.
Since f is gl-continuous, then by theorem (1.26.ii), f(FNf~1(K)) is g-compact set of Y.
Butf(FNf~(K)) = f(F)NK , thusf (F)NKis g-compact set of Y. Hence f(F)is cgc-set in
Y. Since Y is cgc-space, then f(F)is g-closed set inY . Thus f is gl-closed function.
2.20. Definition:

A topological spaceXis said to be generalized compactly generalized closed (for brief gcgc-
space) if every gcge-set of Xis g-closed.

2.21. Example:
(i) Every T,-space is gcgc-space.
(i) Every indiscrete space is gcgc-space.

2.22. Theorem:
Let Xbe a T,-space . Then cgc-space and gcgc-space are equivalent.

Proof: By using theorem (2.12) .

2.23. Definition:

Let Xand Ybe topological spaces. A function f:X — Y is called generalized coercive (for
brief g-coercive) if for every g-compact subset Bof Y there is g-compact subset AofX such
that f(X\ A) € (Y \B).

2.24. Example:
The identity function of any topological space is g-coercive.

2.25. Theorem:
Iff: X — Y is a function, such that Xis g-compact space , then f is g-coercive.

Proof:
Let Bbe a g-compact subset ofY . Since X is g-compact space.Then (X \ X) = f(®) =0 <
f(Y'\ B) . Thus f is g-coercive function.

2.26. Theorem:
Let X and Y beT,-spaces and f: X — Yis gl-continuous function. Then fis g-coercive if and
only if f is gl-compact .
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Proof:
Suppose thatfis g-coercive and let Bbe a g-compact subset ofY.To prove that fis g-compact,
since Y is T,-space then by (1.24.iii), B is g-closed but fis gl-continuous . Then f~1(B)is g-
closed subset ofX. Since fis g-coercive function, then there is a g-compact set Ain X such
thatf (X \ A) < (Y \ B).

since £ ~1(B)is g-closed, then by corollary (1.34) , every net in £~1(B) hasg-cluster in itself
itself . Then by theorem (1.35) , £ ~1(B)is g-compact subset inX. Therefore f is gl-
compactfunction.

Conversely: By using theorem (2.25).

2.27. Theorem:

Let X and Ybetopological spacesand f:X — Y be a function. Then:

()Iff: X — Ybe a g-coercive function withFis g-closed and open subset of X, then the
restriction function f/:F — Y is g-coercive .

(i) If Xis g-compact andF is g-closed subset ofX, thenf,r: F — Y isg-coercivefunction.

Proof:

(i) Let Bbe a g-compact subset of Y, since f is a g-coercive . Then there is a g-compact
subset AofXsuchthat f(X\ A) € (Y\B).

SinceF isg-closed subset of X , then by theorem (1.24.ii), FNAis g-compact set in X. Since
Fis open inX ,by theorem (1.25.ii), FNA is g-compact set in F.

Sincef/r(FNA) = f(F\ A) andF \ A € X \ A, thenf(F\ A) € f(X\ 4).

Thusf,r(F \ FNA) €Y \ B, hence f/p: F — Y is g-coercive.

(ii) By using theorem (2.25) and (i) .
2.28. Theorem:

A composition of two g-coercive functions is g-coercive.
Proof:
Let f: X = Yandh:Y — Zbe a g-coercive functions . Let C is a g-compact subset of Z , then
there is a g-compact subset B of Y suchthath(Y \ B) € Z\ C.
Since fis a g-coercive, then there is a g-compact subset AofX such that(X \ A) € Y \ B..
Soh(f(X\A) S h(Y\B),but h(Y\ B) €Z\C .Hence h(f(X\ A)) =hof(X\ A) <
Z \ C , thereforehof'is g-coercive function.
2.29. Theorem:
If £: X — Yis bijective , gl-compact and h: Y — Z is a g-coercive function, then hof is g-
coercive function .

Proof:

Let Cbe a g-compact subset of Z , then there is a g-compact subset B of Y such that h(Y \
B) € Z\ C.Putd = f~1(B), since f is gl-compact then A is a g-compact subset of X.Thus
hof (X \ A) = h(f (XNA®)) = h(f (X)NSf(A)).

Since f is a bijective, thenhof (X \ A) = h(f(X)NF(A)) = h(Y \ f(f 1(B))¢ = h(YNB®)
=h(Y\ B) € Z\ C . Thus hof is g-coercive function.
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