Page 136-148

Sattar.H\Saied.A

Certain Types of Compact Spaces Sattar Hameed Hamzah AL-Janabi Department of Mathematics, College of Education , AL-Qadisiyah University E-Mail: Sattar _ math@ yahoo . Com & Saied A. Johnny Department of Mathematics

College of Computer Science and Mathematics, AL-Qadisiyah University E-Mail: Saied 201424 @ yahoo.com

Recived :13\7\2014

Revised : 21\9\2014

Accepted :28\9\2014

Abstract

In this paper , weusedthe concept of generalized closed (g-closed) and generalized compact (g-compact) sets to construct new types of compact spaces and functions which are compactly generalized closed space (cgc-space), generalized compactly generalized closed space and generalized coercive function (g-coercive) and investigate the properties of these concepts .

Keywords: g-open, g-closed, cgc-space, gcgc-space and g-coercive function.

Mathematics Subject Classification:54C10-E45

Introduction

This concept of generalized closed (g-closed) set was introduced by Levin N. [1] and studiedits properties. Selvarani S. [2] gave the definition of g-neighborhood of a point $x \in X$, gT_2 -spaceand g-compact space. The generalized closure of $A \subseteq X$ is the intersection of all g-closed setswhich contain A and denoted by gcl(A)[1]. In[4] Balachandran K., Sundaram P. andMaki H. introduced the certain types of continuous functions. Finally in [3] Ali J. H. and Mohammed J. A. defined certain type of compact functions. We use T_{ind} to denote the indiscrete topology on a non-empty sets X and T_U to denote the usual topology on the set of real numbers R. Throughout this paper(X, T) and (Y, T)(or simply X and Y) represent to non-empty topological spaces on which no separationaxiom are assumed , unless otherwise mentioned.

Sattar.H\Saied.A

<u>1. Basic Definitions and Notations:</u>

1.1. Definition [1]:

A subset A of a topological space X is called generalized closed (for brief g-closed)set if $cl(A) \subseteq U$ for everyopen set U in X contains A. The complement of g-closed set is called g-open set.

1.2. Example:

Let $X = \{1, 2, 3\}$ with $T = T_{ind}$, then $A = \{1\}$ is g-closed set.

1.3. Example:

Let X = R, $T = T_U$, then A = (a, b) is not g-closed set.

1.4. Remark [1]:

(i) Every closed set is g-closed.

(ii) Every open set is g-open.

The converse of (i, ii) in remark (1.4) is not true in general as the following example shows:

1.5. Example:

In example (1.2), $A = \{1\}$ is g-closed set but not closed and $B = \{2,3\}$ is g-open but its not open.

1.6. Theorem [1]:

A subset A of a topological space X is g-closed set if and only if cl(A)-A contains no non-empty closed set.

1.7. Theorem [1]:

A subset A of a topological space X is g-open if and only if $F \subseteq int(A)$, for every closed set F in X contained in A.

1.8. Theorem [1]:

Let *X* be a topological space, *Y* is a closed (open) set in *X*. Then:

(i) If B is g-closed (g-open) set in X then $B \cap Y$ is g-closed (g-open) set in X.

(ii) If *B* is g-closed (g-open) set in *X* then $B \cap Y$ is g-closed (g-open) set in *Y*.

Sattar.H\Saied.A

1.9. Theorem [1]:

Let *X* be a topological space and $B \subseteq Y \subseteq X$. Then:

(i) if B is g-closed (g-open) set in Y and Y is g-closed (g-open) set in X, then B is g-closed (g-open) set in X.

(ii) if B is g-closed (g-open) set in X then B is g-closed (g-open) in Y.

Note that if B is g-closed (g-open) in Y then B not necessary be g-closed (g-open) set in X as the following example shows:

1.10. Example:

Let $\overline{X} = R$ with $\overline{T} = T_U$ and $\overline{Y} = \{1, 2\}$, then $B = \{1\}$ is g-open set in Y, but B is not g-open in R.

1.11. Definition [2]:

Let *X* be a topological space and $A \subseteq X$. A generalized neighborhood of *A*(for brief g-neighborhood) is any subset of *X* which contains g-open set containing *A*. The family of all g-neighborhoods of a subset *A* of *X* denoted by $\mathcal{N}_g(A)$ and the family of all g-neighborhoods of $x \in X$ denoted by $\mathcal{N}_g(x)$.

1.12. Definition [3]:

A topological space X is called generalized Hausdorff (for brief gT_2) if for any two distinct points $x, y \in X$ there are disjoint g-open sets U, V of X such that $x \in U$ and $y \in V$.

1.13. Remark [3]:

Every T_2 -space is gT_2 -space. But the converse is not true in general. In example (1.2), X is gT_2 -space. But X is not T_2 -space.

1.14. Remark [2]:

The intersection of two g-closed sets need not be g-closed and the union of two g-open sets need not be g-open as the following example shows:

<u>1.15. Example:</u>

Let $X = \{a, b, c\}$ and $T = \{\emptyset, X, \{a\}\}$ be a topology on X, then $\{a, b\}$ and $\{a, c\}$ are g-closed sets in X, but $\{a, b\} \cap \{a, c\} = \{a\}$ is not g-closed set and $\{b\}, \{c\}$ are g-open sets but $\{b\} \cup \{c\} = \{b, c\}$ is not g-open.

1.16. Definition [2]:

A topological space X is called generalized multiplicative space (*IG*-space) if arbitrary intersection of g-closed sets of X is g-closed set .

1.17. Remark [2]:

(i) gcl(A) need not be g-closed, since the intersection of g-closed sets is not to be g-closed. (ii) $x \in gcl(A)$ if and only if for every g-open set U containing x, $U \cap A \neq \emptyset$. (iii) If X be an *IG*-space, then gcl(A) is g-closed set.

(iv) Every T_1 -space is an *IG*-space.

Sattar.H\Saied.A

<u>1.18. Definition [4]:</u> Let $f: X \to Y$ be a function from a topological space X into a topological space Y, then f is called:

(i)generalized continuous (g-continuous) function if $f^{-1}(A)$ is g-closed set in X for every closed set A in Y.

(ii) generalized irresolute continuous (gI-continuous) function if $f^{-1}(A)$ is g-closed set in X for everyg-closed set A in Y.

1.19. Definition [4]:

A function $f: X \rightarrow Y$ is called:

(i)generalized closed (g-closed) if f(B) is g-closed set in Y for every closed set B in X. (ii) generalized irresolute closed (gI-closed) function if f(B) is g-closed set in Y for every g-closed set B in X.

1.20. Definition [4]:

A function $f: X \to Y$ is called:

(i) generalized open (g-open) function if f(B) is g-open set in Y for every openset B in X. (ii) generalized irresolute open (gI-open) function if f(B) is g-open set in Y for every g-open set B in X.

1.21. Definition [3]:

A topological space X is called generalized compact (g-compact) space if every g-open cover of X has finite subcover.

1.22. Remark [5]:

Every g-compact space is compact. The converse is not true in general as the following example shows:

1.23. Example [5]:

Let $X = \{x\} \cup \{x_i : i \in I\}$, *I*uncountable, $T = \{\emptyset, X, \{x\}\}$ be a topology on X. Then X is compact but is not g-compact, since $\{\{x, x_i\}: i \in I\}$ is g-open cover of X and has no finite subcover.

1.24. Theorem [2] ,[3],[5]:

(i) Every g-closed subset of g-compact space is g-compact.

(ii) The intersection of g-compact subset with g-closed subset is g-compact.

(iii) Every g-compact subspace of gT_2 -space is g-closed.

- (iv) Every finite subset is g-compact.
- (v) Every T_1 compact space is g-compact.

1.25. Theorem [3]:

(i)Let X be a topological space and F is g-closed subset of X. Then $F \cap K$ is g-compact in F for every g-compact set K in X.

(ii) Let *Y* be a g-open set of a topological X and $K \subseteq Y$, then K is g-compact set in *Y* if and only if *K* is g-compact set in *X*.

Sattar.H\Saied.A

1.26. Theorem [3]:

(i)Let f be gI-continuous function from g-compact space X onto a topological space Y, then Y is g-compact space.

(ii)Let $f: X \to Y$ be gI-continuous function, then the image f(A) of any g-compact set A in X is g-compact set in Y.

(iii)Let f be gI-continuous function from g-compact space X into agT_2 -space Y is gI-closed.

1.27. Definition [3]:

Let $f: X \to Y$ be a function, then f is called generalized irresolute compact (gI-compact) if $f^{-1}(K)$ is g-compact set in X for every g-compact set K in Y.

1.28. Definition [6]:

A set *D* is called a directed if there is a relation \leq on *D* satisfying: (i) $d \leq d$ for each $d \in D$. (ii) If $d_1 \leq d_2$ and $d_2 \leq d_3$ then $d_1 \leq d_3$. (iii) If $d_1, d_2 \in D$, there is some $d_3 \in D$ with $d_1 \leq d_3$ and $d_2 \leq d_3$.

1.29. Definition [7]:

A netin a set X is a function $\chi: D \to X$, where D is directed set. The point $\chi(d)$ is usually denoted by χ_d .

1.30. Definition [7]:

A subnet of a net $\chi: D \to X$ is the composition $\chi o \varphi$, where $\varphi: M \to D$ and M is directed set, such that :

 $(\mathbf{i})\varphi(m_1) \leq \varphi(m_2)$, where $m_1 \leq m_2$.

(ii) For all $d \in D$ there is some $m \in M$ such that $d \leq \varphi(m)$ for $m \in M$. The point $\chi o \varphi(m)$ is often written χ_{dm} .

1.31. Definition [7]:

Let $(\chi_d)_{d\in D}$ be a net in a topological space X and $A \subseteq X, x \in X$ then: (i) $(\chi_d)_{d\in D}$ is eventually in A if there is $d_0 \in D$ such that $\chi_d \in A$ for all $d \ge d_0$. (ii) $(\chi_d)_{d\in D}$ is frequently in A if for all $d \in D$ there is $d_0 \in D$ with $d \ge d_0$ such that $\chi_{d_0} \in A$. **1.32. Definition [5]:**

Let $(\chi_d)_{d\in D}$ be a net in a topological space $X, x \in X$. Then $(\chi_d)_{d\in D}$ is said to be generalized converges to a point x (for brief g-converges) if $(\chi_d)_{d\in D}$ eventually in every g-neighborhood of x (written $\chi_d \xrightarrow{g} x$). A point x is called generalized limit point (for brief g-limit point) of $(\chi_d)_{d\in D}$.

1.33. Theorem:

Let *X* be a topological space and $A \subseteq X$, $x \in X$. Then $x \in gcl(A)$ if and only if there is a net $(\chi_d)_{d \in D}$ in *A* such that $\chi_d \xrightarrow{g} x$.

Sattar.H\Saied.A

Proof:

Suppose that there is a $\operatorname{net}(\chi_d)_{d\in D}$ in A such that $\chi_d \xrightarrow{g} x$. To prove that $x \in gcl(A)$. Let $U \in \mathcal{N}_g(x)$, since $\chi_d \xrightarrow{g} x$, there is $d_0 \in D$ with $\chi_d \in U$ for all $d \ge d_0$. But $\chi_d \in U$ for all $d \in D$. So $A \cap U \neq \emptyset$ for all $U \in \mathcal{N}_g(x)$. By remark (1.17.ii), $x \in gcl(A)$. **Conversely:**

Suppose that $x \in gcl(A)$. To prove that there is a net $(\chi_d)_{d\in D}$ in A such that $\chi_d \xrightarrow{g} x$. Since $x \in gcl(A)$, by remark (1.17.ii), $A \cap U \neq \emptyset$ for all $U \in \mathcal{N}_g(x)$. Then $D = \mathcal{N}_g(x)$ is directed set by inclusion. Since $\cap U \neq \emptyset \forall U \in \mathcal{N}_g(x)$, there is $\chi_U \in A \cap U$. Define $\chi: D \to \mathbb{C}$

A by $\chi(U) = \chi_U$ for all $U \in \mathcal{N}_g(x)$. Hence $(\chi_U)_{U \in \mathcal{N}_g(x)}$ is a net in A. To prove that $\chi_U \xrightarrow{g} x$. Let $U \in \mathcal{N}_g(x)$ to find $d_0 \in D$ such that $\chi_d \in U$ for all $d \ge d_0$. Let $d_0 = U$, then for all $d \ge d_0$ we have $d = V \in \mathcal{N}_g(x)$ i.e., $V \ge U \Leftrightarrow V \subseteq U$.

 $\chi_d = \chi(d) = \chi(V) = \chi_V \in V \cap A \subseteq V \subseteq U$, then $\chi_V \in U$ for all $d \ge d_0$. Thus $\chi_U \xrightarrow{g} \chi$.

1.34. Corollary:

Let *X* be a topological space and $A \subseteq X$, $x \in X$. Then $x \in gcl(A)$ if and only if there is a net $(\chi_d)_{d \in D}$ in *A* such that $\chi_d \overset{g}{\underset{\alpha}{\sim}} x$.

1.35. Theorem [8]:

Let X be aT_2 -space. Then X is g-compact if and only if every net in X has a g-cluster point in X.

1.36. Remark [7]:

Let $f: X \to Y$ be a function from a set X into a set Y, then: (i) If $(\chi_d)_{d\in D}$ is a net in X, then $\{f(\chi_d)\}_{d\in D}$ is a net in Y. (ii) If f is onto and $(y_d)_{d\in D}$ be a net in Y, then there is a net $(\chi_d)_{d\in D}$ in X such that $f(\chi_d) = y_d$, for each $d \in D$.

1.37. Theorem:

Let X and Y be topological spaces. A function $f: X \to Y$ is g-continuous if and only if whenever $(\chi_d)_{d \in D}$ is a net in X such that $\chi_d \xrightarrow{g} x$, then $f(\chi_d) \to f(x)$ in Y.

Proof: Clear.

1.38. Corollary:

Let X and Y be topological spaces. A function $f: X \to Y$ is gI-continuous if and only if whenever $(\chi_d)_{d \in D}$ is a net in X such that $\chi_d \xrightarrow{g} x$, then $f(\chi_d) \xrightarrow{g} f(x)$ in Y.

Sattar.H\Saied.A

Proof:

Suppose that $f: X \to Y$ is gI-continuous and $(\chi_d)_{d \in D}$ is a net in X such that $\chi_d \xrightarrow{g} x$. To prove that $f(\chi_d) \xrightarrow{g} f(x)$. Let $V \in \mathcal{N}_g(f(x))$ in Y, then $f^{-1}(V) \in \mathcal{N}_g(x)$, for some $d_0 \in D$, $d \ge d_0$ implies that $\chi_d \in f^{-1}(V)$. Thus showing that $f(\chi_d) \xrightarrow{g} f(x)$, since $(\chi_d)_{d \in D}$ is eventually in each g-neighborhood of f(x), then by remark (1.36.i), $\{f(\chi_d)\}$ is a net in Y which is eventually in each g-neighborhood of f(x). Therefore $f(\chi_d) \xrightarrow{g} f(x)$. **Conversely:**

To prove that *f* is gI-continuous, suppose not, then there is $V \in \mathcal{N}_g(f(x))$ such that $f(U) \not\subset V$ for any $U \in \mathcal{N}_g(x)$. Thus for all $U \in \mathcal{N}_g(x)$ we can $\chi_U \in U$ such that $f(\chi_U) \notin V$, but $(\chi_U)_{U \in \mathcal{N}_g(x)}$ is a net in X with $\chi_U \xrightarrow{g} x$, while $\{f(\chi_U)\}_{U \in \mathcal{N}_g(x)}$ is not g-convergent to f(x). This is a contradiction.

2. Compactly g-closed and g-compactly g-closed spaces:

This section is devoted to a new concept which is called compactly g-closed space and generalized compactly g-closed space. Several various examples, theorems and remarks on these concepts are proved. Furthermore theorems are stated as well as the relationships between these concepts.

2.1. Definition:

Let *X* be a topological space. A subset $A \subseteq X$ is called compactly generalized closed (for brief cgc-set) if $A \cap K$ is g-compact set for every g-compact set*K* in *X*.

2.2. Example:

(i) Every finite subset of a topological space is cgc-set.

(ii) Every subset of indiscrete space is cgc-set.

2.3. Theorem:

Every g-closed subset of a topological space is cgc-set.

Proof:

Let *A*be a g-closed subset of a topological space *X* and *K*be a compact subset of *X*, by Theorem(1.24.ii), $A \cap K$ is g-compact set. Thus *A* is cgc-set.

The converse of theorem (2.3) need not true in general as the following example shows:

2.4. Example:

Let $X = \{a, b, c\}$ and $T = \{\emptyset, X, \{a, b\}\}$ be a topology on X, then $A = \{a, b\}$ is cgc-set but it is not g-closed set.

Sattar.H\Saied.A

2.5. Theorem:

Let *X* be a T_2 -space and $A \subseteq X$. Then *A* is cgc-set if and only if it is g-closed set.

Proof:

Let *A* be a cgc-set in *X* and $x \in gcl(A)$. By theorem (1.33), there is a net $(\chi_d)_{d\in D}$ in *A* such that $\chi_d \xrightarrow{g} x$. Then $K = \{\chi_d, x\}$ is g-compact set. Since *A* is cgc-set, then $A \cap K$ is g-compact set in *X*. But *X* is a T_2 , then $A \cap K$ is g-closed. Since $\chi_d \xrightarrow{g} x$ and $\chi_d \in A \cap K$, then by theorem (1.33), $x \in A \cap K$, hence $x \in A$. Thus *A* is g-closed set. **Conversely:** By using Theorem (2.3).

2.6. Theorem:

Let $f: X \to Y$ is a bijective, gI-continuous, gI-compact function and $A \subseteq X$. Then A is cgc-set in X if and only if f(A) is cgc-set in Y.

Proof:

Let *A* be a cgc-set in *X* and let *K* be a g-compact set in *Y*. Since *f* be a gI-compact, then $f^{-1}(K)$ is g-compact set in *X*. Thus $A \cap f^{-1}(K)$ is g-compact set in *X*. By theorem (1.26.ii), $f(A \cap f^{-1}(K))$ is g-compact set in *Y*. But $f(A \cap f^{-1}(K)) = f(A) \cap K$ is g-compact set in *Y*.

Hence f(A) is cgc-set in Y.

Conversely:

Let f(A) be a cgc-set in Y. To prove that A is cgc-set in . Let K be a g-compact set in X. Since f be a gI-continuous, then by theorem (1.26.ii), f(K) is g-compact set in Y. Thus $f(A) \cap f(K)$ is g-compact set in Y, thus $f^{-1}(f(A) \cap f(K))$ is g-compact set in X. (since f gI-compact). But $f^{-1}(f(A) \cap f(K)) = A \cap K$. Thus A is cgc-set in X.

2.7. Theorem:

Let *B*be a g-open subset of a topological space *X*. Then *B* is cgc-set in *X* if and only if the inclusion function $i: B \rightarrow X$ is gI-compact.

Proof:

Suppose that *B* be a cgc-set and *K* be a g-compact set in *X*. Then $B \cap K$ is g-compact set in *X*, by theorem (1.25.ii), $B \cap K$ is g-compact set in *B*. But $B \cap K = i^{-1}(K)$, then $i^{-1}(K)$ is g-compact set in *B*. Thus $i: B \to X$ is gI-compact.

Conversely:

Let K be a g-compact set inX, since $i: B \to X$ is gI-compact. Then $i^{-1}(K) = B \cap K$ is g-compact set inB, thus by theorem (1.25.ii), $B \cap K$ is g-compact set in X for every g-compact set K in X, Therefore B is cgc-set in X.

2.8. Definition:

A subset A of a topological space X is said to be generalized compact generalized closed set (for brief gcgc-set), if $A \cap K$ is g-closed set in X for every g-compact set K in X.

2.9. Example:

Sattar.H\Saied.A

Every subset of a discrete space is gcgc-set.

2.10. Remark:

Not every set of a topological space is gcgc-set as the example (2.4) shows.

2.11. Theorem:

Every gcgc-set in a topological space is gcg-set.

Proof:

Let *A* be a gcgc-set of a topological space *X* and let *K* be a g-compact subset of *X*. Then $A \cap K$ is g-closed set in *X*. Since $A \cap K \subseteq K$, then by remark (1.24.i), $A \cap K$ is g-compact set. Therefore *A* is cgc-set in *X*.

2.12. Theorem:

Let X be a T_2 -space and $A \subseteq X$, the following statements are equivalent: (i) A is cgc-set. (ii) A is gcgc-set. (iii) A is g-closed set.

Proof:

 $(\mathbf{i} \Rightarrow \mathbf{i}\mathbf{i})$ Let *A* is cgc-set in*X* and let *K* be a g-compact set in*X*. Then $A \cap K$ is g-compact set in *X*. Since *X* is a T_2 -space, then by theorem (1.24.iii), $A \cap K$ is g-closed set in *X*. Thus *A* is gcgc-set in*X*.

(ii \Rightarrow i) By using theorem (2.11). (iii \Rightarrow i) By using theorem (2.3).

2.13. Remark:

If X is not T_2 -space, then it is not necessary that cgc-set is gcgc-set as the following example shows:

Let $X = \{a, b, c\}$ and $T = \{U \subseteq X : a \in U\} \cup \{\emptyset\}$ be a topology on X, clear that (X, T) is not T_2 -space. Since $\{a, b\}, \{b\} \subset X$ and $\{b\}$ is g-compact set in X and $\{a, b\} \cap \{b\} = \{b\}$ is g-closed but $\{a, b\}$ is not g-closed set.

Recall that a bijective function $f: X \to Y$ is called generalized irresolute homeomorphism (gI-homeomorphism) if f and f^{-1} are gI-continuous [7].

2.14. Theorem [9]:

A bijection function $f: X \to Y$ is gI-homeomorphism if f is gI-continuous and gI-open (gI-closed) function.

Sattar.H\Saied.A

2.15. Theorem:

The following conditions on a Hausdorff space *Y* are equivalent: (i)The only g-open subset of *Y* which is gcgc-set is the whole space and the empty set.

(ii) Every gI-open, gI-continuous and gI-compact function from a topological space X into Y is onto .

(iii) Every one to one, gI-open, gI-continuous and gI-compact function from topological space *X* into *Y* is gI-homeomorphism.

Proof:

 $(\mathbf{i} \Rightarrow \mathbf{ii})$ Let $f: X \to Y$ be a gI-open, gI-continuous and gI-compact function .SinceXisnon empty g-open set, then f(X) is non-empty g-open set in Y. To prove f(X) is gcgc-set in Y. Let K be a g-compact set in Y then $f^{-1}(K)$ is g-compact set in X, since f is gI-compact. Thus by theorem (1.26.ii), $f(f^{-1}(K))$ is g-compact set in Y. By theorem (1.24.iii), $f(f^{-1}(K))$ is g-closed set in Y. Since $f(X) \cap K = f(f^{-1}(K))$, then $f(X) \cap K$ is g-closed set in Y. So f(X) is gcgc-set.But $f(X) \neq \emptyset$, then f(X) = Y. Thus f is onto.

 $(ii \Rightarrow iii)$ Let $f: X \to Y$ be an one to one, gI-open, gI-continuous and gI-compact function. Then by (ii), f is onto and one to one ,hence it is bijection. Then by theorem (2.14), f is gI-homeomorphism.

(iii \Rightarrow i)Let *A* be a non-empty g-open subset of *Y* which is gcgc-set. Then by theorem (2.11), *A* is cgc-set, since *A* is g-open. Then by theorem (2.7), theinclusion function $i: A \rightarrow Y$ is gI-compact. To prove $i: A \rightarrow Y$ is gI-continuous, let *B* is g-open set in *Y*, then $A \cap B$ is g-open set. But $A \cap B = i^{-1}(B)$ is g-open set in *A*. Thus, the inclusion function is gI-continuous, by (iii), the inclusion function is gI-homeomorphism. Thus A = Y, this complete proof.

2.16. Definition:

A topological space *X* is said to be compactly generalized closed space (for brief cgc-space) if every cgc-set of *X* is g-closed.

2.17. Example:

(i) Every indiscrete space is cgc-space.
(ii) Every T₂-space is cgc-space.

2.18. Remark:

The example in remark (2.13) shows that not every topological space is cgc-space.

2.19. Theorem:

Let *X* be a topological space and *Y* is cgc-space. Then every gI-continuous and gI-compact onto function $f: X \to Y$ is gI-closed.

Sattar.H\Saied.A

Proof:

Let *F* be a g-closed subset of *X*. To prove that f(F) is g-closed subset of *Y*. Let *K* be a g-compact subset of *Y*. Since *f* is gI-compact, then $f^{-1}(K)$ is g-compact set in *X*. By remark (1.24.ii) $F \cap f^{-1}(K)$ is g-compact set in *X*.

Since f is gI-continuous, then by theorem (1.26.ii), $f(F \cap f^{-1}(K))$ is g-compact set of Y. But $f(F \cap f^{-1}(K)) = f(F) \cap K$, thus $f(F) \cap K$ is g-compact set of Y. Hence f(F) is cgc-set in Y. Since Y is cgc-space, then f(F) is g-closed set in Y. Thus f is gI-closed function.

2.20. Definition:

A topological space *X* is said to be generalized compactly generalized closed (for brief gcgc-space) if every gcgc-set of *X* is g-closed.

2.21. Example:

(i) Every T_2 -space is gcgc-space.

(ii) Every indiscrete space is gcgc-space.

2.22. Theorem:

Let *X* be a T_2 -space . Then cgc-space and gcgc-space are equivalent.

Proof: By using theorem (2.12).

2.23. Definition:

Let X and Y be topological spaces. A function $f: X \to Y$ is called generalized coercive (for brief g-coercive) if for every g-compact subset B of Y there is g-compact subset A of X such that $f(X \setminus A) \subseteq (Y \setminus B)$.

2.24. Example:

The identity function of any topological space is g-coercive.

2.25. Theorem:

If $f: X \to Y$ is a function, such that X is g-compact space, then f is g-coercive.

Proof:

Let *B* be a g-compact subset of *Y*. Since *X* is g-compact space. Then $(X \setminus X) = f(\emptyset) = \emptyset \subseteq f(Y \setminus B)$. Thus *f* is g-coercive function.

2.26. Theorem:

Let X and Y be T_2 -spaces and $f: X \to Y$ is gI-continuous function. Then f is g-coercive if and only if f is gI-compact.

Sattar.H\Saied.A

Proof:

Suppose that *f* is g-coercive and let *B* be a g-compact subset of *Y*. To prove that *f* is g-compact, since Y is T₂-space then by (1.24.iii), B is g-closed but f is gI-continuous. Then $f^{-1}(B)$ is gclosed subset of X. Since f is g-coercive function, then there is a g-compact set Ain X such that $f(X \setminus A) \subseteq (Y \setminus B)$.

since $f^{-1}(B)$ is g-closed, then by corollary (1.34), every net in $f^{-1}(B)$ has g-cluster in itself itself. Then by theorem (1.35), $f^{-1}(B)$ is g-compact subset in X. Therefore f is gIcompactfunction.

Conversely: By using theorem (2.25).

2.27. Theorem:

Let *X* and *Y* betopological spaces and $f: X \to Y$ be a function. Then:

(i) If $f: X \to Y$ be a g-coercive function with F is g-closed and open subset of X, then the restriction function $f_{/F}: F \to Y$ is g-coercive.

(ii) If X is g-compact and F is g-closed subset of X, then $f_{/F}: F \to Y$ is g-coercive function.

Proof:

(i) Let B be a g-compact subset of Y, since f is a g-coercive. Then there is a g-compact subset AofX such that $f(X \setminus A) \subseteq (Y \setminus B)$.

Since *F* is g-closed subset of *X*, then by theorem (1.24.ii), $F \cap A$ is g-compact set in *X*. Since F is open in X, by theorem (1.25.ii), $F \cap A$ is g-compact set in F. Since $f_{F}(F \cap A) = f(F \setminus A)$ and $F \setminus A \subseteq X \setminus A$, then $f(F \setminus A) \subseteq f(X \setminus A)$.

Thus $f_{/F}(F \setminus F \cap A) \subseteq Y \setminus B$, hence $f_{/F}: F \to Y$ is g-coercive.

(ii) By using theorem (2.25) and (i).

2.28. Theorem:

A composition of two g-coercive functions is g-coercive.

Proof:

Let $f: X \to Y$ and $h: Y \to Z$ be a g-coercive functions. Let C is a g-compact subset of Z, then there is a g-compact subset B of Y such that $h(Y \setminus B) \subseteq Z \setminus C$.

Since f is a g-coercive, then there is a g-compact subset AofX such that $(X \setminus A) \subseteq Y \setminus B$. So $h(f(X \setminus A)) \subseteq h(Y \setminus B)$, but $h(Y \setminus B) \subseteq Z \setminus C$. Hence $h(f(X \setminus A)) = hof(X \setminus A) \subseteq A$ $Z \setminus C$, therefore *hof* is g-coercive function.

2.29. Theorem:

If $f: X \to Y$ is bijective, gI-compact and $h: Y \to Z$ is a g-coercive function, then hof is gcoercive function.

Proof:

Let C be a g-compact subset of Z, then there is a g-compact subset B of Y such that $h(Y \setminus$ $B \subseteq Z \setminus C$. Put $A = f^{-1}(B)$, since f is gI-compact then A is a g-compact subset of X. Thus $hof(X \setminus A) = h(f(X \cap A^c)) = h(f(X) \cap f(A^c)).$

Since f is a bijective, then $hof(X \setminus A) = h(f(X) \cap f(A^c)) = h(Y \setminus f(f^{-1}(B))^c) = h(Y \cap B^c)$ $= h(Y \setminus B) \subseteq Z \setminus C$. Thus *hof* is g-coercive function.

Sattar.H\Saied.A

Reference:

[1] N. Levine . Generalized closed sets in topology . Rend. Circ. Mat. Palermo, 19(2), 89-96 , (1970) .

- [2]. S. Selvarani . Generalization of extreme value theorems in g-compact spaces , generalization of Intermediate value theorem g-connected spaces and generalization
- of Urysohon's Lemma and Tietze extension theorem in g-multiplicative spaces , International Journal of Computer, Vol. 2, April, (2013).

, International Journal of Computer, Vol. 2, April, (2013).

[3] . H. J. Ali and J. Mohammed . On g , g*, g**-compact functions , Journal of Al -Nahrain University Vol. 13(2) , pp. 205-209 , (2010) .

[4] . K. Balahandram , P. Sundaram and H. Maki . On generalized continuous maps in topological spaces , Mem. Fac. Sci. Kochi Univ. Ser. A. Math. , 12, 5-13 , (1991) .

[5]. M. Caldas, S. Jafari, P. Moshokoa and T. Noiri. On Go-Compact Spaces, Factually of Sci. and Math., Univ. of Nis, Serbia, 22:1, 47-55, (2008).

[6] . E. H. Moore and H.L. Smith . A General theory of limits . Amer. J. Math., 44 , 102-121 , (1922) .

[7]. S. Willard . General topology . Addison -Wesley Publishing Company, Inc., (1970).

[8] M. Caldas, S. Jafari M. Latif and O. Ozbakir GO-Compact and GO-(m, n)- Compact Spaces, Technical Report Series, TR 399, July, (2008).

[9]. H. Maki, P. Sundaram and H. Maki. On generalized homeomorphisms in topological spaces. Bull. Fukuoka Univ. Part III, 40, 13-21, (1991).

[10] N. Bourbaki Elements of mathematics . *General topology*, Spring verlog, Berlin, Heidelberg, New York, London, Paris, Tokyo 2nd, Edition, (1989).

أنماط معينة من الفضاءات المرصوصة

من قبل د • ستار حميد حمزة الجنابي جامعة القادسية ، كلية التربية ، قسم الرياضيات

و سعيد عبد الكاظم جوني جامعة القادسية ، كلية علوم الحاسوب والرياضيات ، قسم الرياضيات

المستخلص:

في هذا البحث أستخدمنا مفهومي المجموعات المغلقة المعممة (المغلقة-g) و المرصوصة المعممة (المرصوصة-g) لأنشاء أنواع جديدة من الفضاءات المرصوصة والدوال أسميناهاالفضاءاتالمرصوصة المغلقة المعممة (الفضاءات -cgc)و الفضاءات المعممة المرصوصة المعممة (الفضاءات-gcg) و الدوال الأضطر ارية المعممة (الأضطر ارية-g)و درسنا خواص هذه المفاهيم .