

Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Codisk-cyclic Mixing Operators

Zeana Zaki Jamil

Let *H* be an infinite dimensional separable complex Hilbert space, and *T* be a

bounded linear operator. T is called codisk mixing operator, CD- mixing operator, if for any

non-empty open subsets U, V of H, there are $n \in \mathbb{N}$ and $\alpha \in \mathbb{C}$ such that $T^n(\alpha U) \cap U \neq \emptyset$ for

all $n \ge N$. In this paper, we studied a necessarily and sufficiently conditions of $C\mathbb{D}$ -mixing

operators, and discused the direct sum of two $C\mathbb{D}$ - mixing operators.

University of Baghdad, College of Sicence, Mathematics Department, Iraq. Email: zina.z@sc.uobaghdad.edu.iq.

ABSTRACT

ARTICLEINFO

Article history: Received: 01 /11/2022 Rrevised form: 05 /12/2022 Accepted : 08 /12/2022 Available online: 23 /12/2022

Keywords:

mixing operators, direct sum, Hilbert space, Characterization

MSC..

https://doi.org/ 10.29304/jqcm.%Y.%v.%i.1110

1. Introduction

Let *H* be an infinite dimensional separable complex Hilbert space, and *T* be a bounded linear operator, i.e $T \in B(H)$. In 2002, Jamil introduced a codisk-cyclicity concept as: *T* is called codisk-cyclic operator if there is a non-zero vector $x \in H$ such that $\{\alpha T^n x : n \ge 0, \alpha \in \mathbb{C}; |\alpha| \ge 1\}$ is dense in H[3].

She gave criterion to investigate if an operator is codisk-cyclic or not. Recently, many authors studied codisk-cyclic operators [2],[4]. Jamil showed that the direct sum of two codisk - cyclic operators is codisk-cyclic. But, in general, the converse is not true [3]. This motivates us to present codiskcyclicity mixing concept. T is called a codisk cyclic operator, $C\mathbb{D}$ - mixing operator, if for any non-empty open subsets U, V of H, there are $n \in \mathbb{N}$ and $\alpha \in \mathbb{C}$; $|\alpha| \ge 1$, such that $T^n(\alpha U) \cap V \neq \emptyset$ for all $n \ge N$. After studied its characterizations, we showed that the direct sum of two operators is codisk-cyclic operator if one of them is a codisk - cyclic and the other is a $C\mathbb{D}$ - mixing operator. We remark that \mathbb{N} in this paper stands for the natural set with zero, and \mathbb{B}^c the complement of the unit ball with zero center.

Email addresses:

Communicated by 'sub etitor'

^{*}Corresponding author

2 The Characterization of Codisk-Cyclic Mixing Operators.

In this section, we introduce the concept of a codisk-mixing operator, and prove some characterization to CD-mixing operators by using CD-return sets.

Definition (2.1): Let $T \in B(H)$. T is said to be a codisk-mixing operator, abbreviate by CD-mixing, if U, V be any nonempty open subsets of H, there exist $N \in \mathbb{N}$ and $\alpha \in \mathbb{B}^c$ such that $T^n(\alpha U) \cap V \neq \emptyset$ for all $n \ge N$.

Now, we discuss the characterization of \mathbb{D} -mixing operators by \mathbb{CD} -return sets which is defined as:

Definition (2.2): Let $T \in B(H)$, and U, V be any non-empty open subsets of H, $\alpha \in \mathbb{B}^{c}$. The set

 $N^{\mathbb{CD}}(U,V) = N_{T}^{\mathbb{CD}}(U,V) \coloneqq \{n \in \mathbb{N} : T^{n}(\alpha U) \cap V \neq \emptyset; \alpha \in \mathbb{B}^{c}\}$

is called CD-return set.

Proposition (2.3): Let $T \in B(H)$ is \mathbb{CD} -mixing if and only if for all U, V are non-empty open subsets of H. $\mathbb{N}^{\mathbb{D}}(U, V)$ is a co-finite set.

Proof: ⇒) Let T ∈ B(H) is CD-mixing, and U, V be any non-empty open subsets of H, then there exist N ∈ N and α ∈ \mathbb{B}^c such that

 $T^n(\alpha U) \cap V \neq \emptyset$ for all $n \ge N$.

Note that

2

$$\mathbb{N} - \mathbb{N}^{\mathbb{C}\mathbb{D}}(\mathbb{U}, \mathbb{V}) = \mathbb{N} - \{ n \in \mathbb{N} : \mathbb{T}^{n}(\alpha \mathbb{U}) \cap \mathbb{V} \neq \emptyset; \alpha \in \mathbb{B}^{c} \}$$

= $\mathbb{N} - \{ n \in \mathbb{N} : n \ge \mathbb{N} \} = \{ 0, ..., \mathbb{N} - 1 \}$

Thus $N^{\mathbb{CD}}(U, V)$ is a co-finite set.

⇐) Since $N^{\mathbb{CD}}(U, V)$ is a co-finite set, then there exist $k \in \mathbb{N}$ such that

 $\mathbb{N} - \{ n \in \mathbb{N}; \ T^{n}(\alpha U) \cap V \neq \emptyset; \alpha \in \mathbb{B}^{c} \} = \{ 0, 1, \dots, k \}.$

So, $T^{k+n}(\alpha U) \cap V \neq \emptyset$, for all n > k.

Hence T is \mathbb{CD} -mixing.

Next proposition gives anther equivalent relation between the CD-mixing operators and CD-return sets with neighborhood of zero. But first we will need the following lemma.

Lemma (2.4) [1]: If U be a non-empty open set in H, then there is a non-empty open subset $U_1 \subset U$ and W be a neighborhood of zero such that $U_1 + W \subset U$. If W is a neighborhood of zero, then there is a neighborhood of zero W_1 such that $W_1 + W_1 \subset W$.

PROPOSITION (2.5): AN OPERATOR T IS CD-MIXING IF AND ONLY IF, FOR ANY NONEMPTY OPEN SUBSET U IN H AND ANY NEIGHBORHOOD OF ZERO, W, THE CD-RETURN SETS $N^{CD}(U,W)$ AND $N^{CD}(W,U)$ ARE CO-FINITE SET.

Proof: ⇒)Let T be a CD-mixing, U, V be nonempty open sets, and W is a neighborhood of zero, thus there exist an open ball Z such that $0 \in Z \subset W$.

Since T is \mathbb{CD} -mixing, therefore, by Proposition (2.3), $N^{\mathbb{CD}}(U, W) \supseteq N^{\mathbb{CD}}(U, Z)$ is a co-finite set. Similarly, $N^{\mathbb{CD}}(W, V) \supseteq N^{\mathbb{CD}}(Z, V)$ is a co-finite set.

 \Leftarrow)Let U, V be non-empty open subsets of H. By Lemma (2.4), there are non-empty open subsets U₁, V₁ and W₀, \widehat{W}_0 neighborhoods of zero, such that

 $U_1 \subset U$ and $W_0 \subset W$; $U_1 + W_0 \subset U \dots (1)$

and

$$V_1 \subset V$$
 and $\widehat{W}_0 \subset W$; $V_1 + \widehat{W}_0 \subset V \dots (2)$.

Let $W = W_0 \cap \widehat{W}_0$. By the hypothesis,

 $N^{\mathbb{CD}}(U_1, W)$, $N^{\mathbb{CD}}(W, V_1)$, $N^{\mathbb{CD}}(V_1, W)$ and $N^{\mathbb{CD}}(W, U_1)$ are co-finite set. Hence there exist $N_i \in \mathbb{N}$, and $\alpha_i \in \mathbb{B}^c$; i = 1, 2, 3, 4. such that

$$\begin{split} sT^{n_1}(\alpha_1U_1) \cap W \neq \emptyset, \text{ for all } n_1 \geq N_1 \\ T^{n_2}(\alpha_2W) \cap V_1 \neq \emptyset, \text{ for all } n_2 \geq N_2 \\ T^{n_3}(\alpha_3V_1) \cap W \neq \emptyset, \text{ for all } n_3 \geq N_3 \\ T^{n_4}(\alpha_4W) \cap U_1 \neq \emptyset, \text{ for all } n_4 \geq N_4. \end{split}$$
Put N = max{N₁, N₂, N₃, N₄} for all n \geq N, and \alpha = max{\alpha_1, \alpha_2, \alpha_3, \alpha_4}, we get

$$T^n(\alpha U_1) \cap W \neq \emptyset \quad ... (3) \\ T^n(\alpha W) \cap V_1 \neq \emptyset \quad ... (4) \\ T^n(\alpha W) \cap W_1 \neq \emptyset \\ T^n(\alpha W) \cap U_1 \neq \emptyset \end{split}$$
From (3) there exist $u \in U$ such that $T^n(\alpha u) \in W$

From (3) there exist $u \in U$ such that $T^n(\alpha u) \in W$. While from (4) there exist $w \in W$ such that $T^n(\alpha w) \in V_1$. Thus from (1), $u + w \in U$ and from (2) we get $T^n\alpha(u + w) \subset V$. Then $T^n(\alpha U) \cap V \neq \emptyset$ for all $n \ge N$. Which implies T is CD-mixing.

3. The Sufficient Conditions Of CD-Mixing Operator

In this section we investigate a sufficient condition of an operator to be CD-mixing. Proposition (3.1) [CD-mixing Comparism Principle]:

Let $T \in B(H)$, $S \in B(K)$. If there $X \in B(H, K)$ such that SX = XT, then S is CD-mixing if T is CD-mixing

Proof:

Let U, V be non-empty open sets of K, by continuity of X, $X^{-1}U, X^{-1}V$ are non-empty open sets of H. Since T is CDmixing, then there exist $N \in \mathbb{N}$ and $\alpha \in \mathbb{B}^c$, such that for all $n \ge N$, $T^n(X^{-1}(\alpha U)) \cap X^{-1}V \ne \emptyset$. So, there are $u \in X^{-1}(U)$ such that $T^n(\alpha u) \in X^{-1}(V)$, hence $X(T^n(\alpha u)) \subset V$. Therefore,

$$S^{n}(X(\alpha u)) = X(T^{n}(\alpha u)) \subset V$$
 ... (8).

...(9).

Since $u \in X^{-1}(U)$, so

From (8) and (9) we get $S^n(\alpha U) \cap V \neq \emptyset$ for all $n \ge N$. Then S is CD-mixing.

Theorem (3.2): [CD-mixing Criterion]

Let $T \in B(H)$. If there exists $\alpha \in \mathbb{B}^c$ and $N \in \mathbb{N}$, For which there are a dense subsets Y, X in H and a sequence of mappings, $S_n: Y \to H$, for all $n \ge N$ such that:

- 1) $\alpha T^n x \rightarrow 0$ for all $x \in X$
- 2) a) $\frac{1}{\alpha}$ S_ny $\rightarrow 0$ for all y \in Y

b) $T^n S_n y \to y$ for all $y \in Y$

Then T is CD-mixing.

Proof: Let U, V be non-empty open sets of H, let $x \in X \cap U$, $y \in Y \cap V$.

By (2(a)) we get $x + \frac{1}{\alpha}S_n y \to x \in U$ for all $n \ge N$. thus,

$$\alpha T^n\left(x+\frac{1}{\alpha}S_ny\right) = \alpha T^nx + T^nS_ny \rightarrow y \in V \text{ for all } n \ge N.$$

Therefore, $T^n(\alpha U) \cap V \neq \emptyset$ for all $n \ge N$. Hence T is CD-mixing.

4. The Sufficient Condition of CD-Mixing Operator

The goal of this section is studying the direct sum of two CD-mixing operators.

Proposition (4.1): Let $T, S \in B(H)$. Then $S \oplus T$ is \mathbb{CD} -mixing in $H \oplus H$ if and only if S and T are \mathbb{CD} -mixing operators. Proof: \Rightarrow)Let U_1, U_2, V_1, V_2 be any non-empty open subsets of H, since $S \oplus T$ is \mathbb{CD} -mixing, then there exist $N \in \mathbb{N}$ and $\alpha \in \mathbb{B}^c$ such that for all $n \ge N$,

 $(S^{n}(\alpha U_{1}) \cap V_{1}) \oplus (T^{n}(\alpha U_{2}) \cap V_{2}) = (S \oplus T)^{n}(\alpha (U_{1} \oplus U_{2})) \cap (V_{1} \oplus V_{2}) \neq \emptyset.$

Thus, for all $n \ge N$, $S^n(\alpha U_1) \cap V_1 \ne \emptyset$ and $T^n(\alpha U_2) \cap V_2) \ne \emptyset$. So S and T are CD-mixing.

 \Leftarrow)Let S and T be CD-mixing operators, then for any U_1, U_2, V_1, V_2 of non-empty open subsets of H, there exist $N_1, N_2 \in \mathbb{N}$ and $\alpha_i \in \mathbb{B}^c$: i = 1, 2, such that for all $n_1 \ge N_1$ and $n_2 \ge N_2$ we get

 $S^{n_1}(\alpha_1 U_1) \cap V_1 \neq \emptyset$ and $T^{n_2}(\alpha_2 U_2) \cap V_2 \neq \emptyset$ Let N = max{N₁, N₂} and α = max{ α_1, α_2 }. Hence, for all n > N

$$(S^{n}(\alpha U_{1}) \cap V_{1}) \oplus (T^{n}(\alpha U_{2}) \cap V_{2}) = (S \oplus T)^{n}(\alpha(U_{1} \oplus U_{2})) \cap (V_{1} \oplus V_{2}) \neq \emptyset$$

So $S \oplus T$ is $C \mathbb{D}$ -mixing.

Recall that a bounded linear operator T is called codisk-cyclic operator if there is a non-zero vector $x \in H$ such that $\{\alpha T^n x : n \ge 0, \alpha \in \mathbb{B}^c\}$ is dense in H.[3]. It is well – know that there is a direct sum of two codisk cyclic operators which is not codisk -cyclic operator [3]. The following proposition discuss this case. But first we need the following lemma

Lemma (4.2): Let $T \in CD(H)$, then for any pair U, V of non-empty open subsets of H, $\alpha \in \mathbb{B}^c$, $T^n(\alpha U) \cap V \neq \emptyset$ is infinite.

Proof: Let U, V be non-empty open subsets of H. Since $T \in C\mathbb{D}(H)$, there exist $n_1 \in \mathbb{N}$, $\alpha_i \in \mathbb{D}$; i = 1,2, such that $T^{n_1}(\alpha_1 U) \cap V \neq \emptyset$. So, $U \cap T^{-n_1}(\frac{1}{\alpha_1}V) \neq \emptyset$. Let $W = T^{-n_1}(\frac{1}{\alpha_1}V)$, since T is continues, then W is open. But $T \in C\mathbb{D}(H)$, so there exist $n_2 \in \mathbb{N}$, $\alpha_2 \in \mathbb{B}^c$, such that $T^{n_2}(\alpha_2 U) \cap W \neq \emptyset$.

So, $T^{n_2}(\alpha_2 U) \cap \overline{T^{-n_1}(\frac{1}{\alpha_1}V)} \neq \emptyset$, hance $T^{n_2+n_1}(\alpha_1\alpha_2 U) \cap V \neq \emptyset$, and so on. Therefore, there are infinite natural number n such that $T^n(\alpha U) \cap V \neq \emptyset$.

Proposition (4.3): Let T, S \in B(H). If T is a CD-mixing operator and S is a codisk-cyclic operator, then S \oplus T is a codisk-cyclic operator.

Proof: Let U_1, U_2, V_1, V_2 be any non-empty open subsets of H, since T is CD-mixing and S is codisk-cyclic, then there exist N, $k \in \mathbb{N}$ and $\alpha_1, \alpha_2 \in \mathbb{B}^c$

such that $T^n(\alpha_2 U_2) \cap V_2 \neq \emptyset$ for all $n \ge N$ and $S^k(\alpha_1 U_1) \cap V_1 \neq \emptyset$.

Now, if k < N, then by Lemma (4.2), there exist m \geq N, such that $S^{m}(\alpha_{1}U_{1}) \cap V_{1} \neq \emptyset$. Put $\alpha = \max \{\alpha_{1}, \alpha_{2}\}$,

 $(\overset{\cdots}{S}(\alpha U_1) \cap V_1 \oplus T^m(\alpha U_2) \cap V_2) = (S \oplus T)^m(\alpha (U_1 \oplus U_2) \cap (V_1 \oplus V_2).$

Therefore $(S \oplus T)^m (\alpha(U_1 \oplus U_2) \cap (V_1 \oplus V_2) \neq \emptyset$. Hence $S \oplus T$ is a codisk-cyclic operator. The result is done when k > N.

Here a natural question appears, can we generalize the proposition (4.3) to a finite number of direct summand operators?

Corollary (3.4): Let T_1 be a codisk-cyclic operator, and $(T_i)_{i=2}^n$ be a sequence of CD-mixing operator, then for all $n \in \mathbb{N}, \bigoplus_{i=1}^n T_i$ is a codisk-cyclic operator.

Proof: By induction. If n = 2, then by proposition (2.3), $T_1 \oplus T_2$ is a disk-cyclic operator. Suppose it is true when n = k. Now that n = k + 1 thus

 $\bigoplus_{i=1}^{n} T_{i} = \bigoplus_{i=1}^{k} T_{i} \oplus T_{k+1}$. So by Proposition (4.3), $\bigoplus_{i=1}^{k} T_{i} \in CD(H)$.

4. Conclusion

Let *H* be an infinite dimensional separable complex Hilbert space, and *T* be a bounded linear operator. *T* is called codisk-mixing operator, $C\mathbb{D}$ - mixing operator, if for any non-empty open subsets *U*, *V* of *H*, there are $n \in \mathbb{N}$ and $\alpha \in \mathbb{B}^c$ such that $T^n(\alpha U) \cap V \neq \emptyset$ for all $n \ge N$.

In this paper, we studied a characterization of $C\mathbb{D}$ - mixing operators, and discussed when a direct sum of two codisk cyclic operators which is codisk -cyclic operator. We showed that if one of them is $C\mathbb{D}$ - mixing operator and the other is codisk- cyclic operator, then the direct sum of them is codisk-cyclic operator.

References

- [2] Y. Wang and H. Zeng, Disk-cyclic and codisk-cyclic weighted pseudo-shifts, Bull. Belg. Math. Soc. Simon Stevin 25(2): 209-224 (june 2018).
- [3] Z. Jamil, Cyclic phenomena of operators on Hilbert space, Ph.D. Thesis, University of Baghdad, 2002.

^[1] K.Grosse-Erdmann and A. Manguillot," Linear chaos", Springer VerLag London Limited, 2011.

^[4] Z. Jamil, On hereditarily codisk-cyclic operators, Baghdad Science Journal, 2022, 19(2), pp. 309–312.