

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Codisk-cyclic Mixing Operators

Zeana Zaki Jamil

University of Baghdad, College of Sicence, Mathematics Department, Iraq. Email: zina.z@sc.uobaghdad.edu.iq.

A R T I C L E IN FO

Article history: Received: 01 /11/2022 Rrevised form: 05 /12/2022 Accepted : 08 /12/2022 Available online: 23 /12/2022

Keywords:

mixing operators, direct sum, Hilbert space, Characterization

A B S T R A C T

Let H be an infinite dimensional separable complex Hilbert space, and T be a bounded linear operator. T is called codisk mixing operator, $C\mathbb{D}$ - mixing operator, if for any non-empty open subsets U, V of H, there are $n \in \mathbb{N}$ and $\alpha \in \mathbb{C}$ such that $T^n(\alpha U) \cap U \neq \emptyset$ for all $n \geq N$. In this paper, we studied a necessarily and sufficiently conditions of CD - mixing operators, and discused the direct sum of two \mathcal{CD} - mixing operators.

MSC..

https://doi.org/ 10.29304/jqcm.2022.14.4.1110

1. Introduction

Let **H** be an infinte dimensional separable complex Hilbert space, and **T** be a bounded linear operator, i.e **T** \in **B**(**H**). In 2002, Jamil introduced a codisk-cyclicity concept as: T is called codisk-cyclic operator if there is a non-zero vector $x \in H$ such that $\{ \alpha T^{n} x : n \geq 0, \alpha \in \mathbb{C}; \ |\alpha| \geq 1 \}$ is dense in $H[3].$

She gave criterion to investigate if an operator is codisk-cyclic or not**.** Recently, many authors studied codisk-cyclic operators **]** 2],[4]. Jamil showed that the direct sum of two codisk - cyclic operators is codisk-cyclic. But, in general, the converse is not true [3]. This motivates us to present codiskcyclicity mixing concept. **T** is called a codisk cyclic operator, $\mathcal{L} \mathbb{D}$ - mixing operator, if for any non-empty open subsets U, V of H , there are $n \in \mathbb{N}$ and $\alpha \in \mathbb{C}$; $|\alpha| \geq 1$, such that $T^n(\alpha U) \cap V \neq \emptyset$ for all $n \geq N$. After studied its characterizations, we showed that the direct sum of two operators is codidk-mixing if and if they are, also we proved that the direct sum is a codisk- cyclic operator if one of them is a codisk - cyclic and the other is a \mathcal{CD} - mixing operator. We remark that N in this paper stands for the natural set with zero, and \mathbb{B}^c the complement of the unit ball with zero center.

[∗]Corresponding author

Email addresses:

Communicated by 'sub etitor'

2 The Characterization of Codisk-Cyclic Mixing Operators.

In this section, we introduce the concept of a codisk-mixing operator, and prove some characterization to CD -mixing operators by using CD -return sets.

Definition (2.1): Let $T \in B(H)$. T is said to be a codisk-mixing operator, abbreviate by CD-mixing, if U, V be any nonempty open subsets of H, there exist $N \in \mathbb{N}$ and $\alpha \in \mathbb{B}^c$ such that $T^n(\alpha U) \cap V \neq \emptyset$ for all $n \geq N$.

Now, we discuss the characterization of $\mathbb D$ -mixing operators by C $\mathbb D$ -return sets which is defined as:

Definition (2.2): Let T \in B(H), and U, V be any non-empty open subsets of H, $\alpha \in \mathbb{B}^c$. The set

 $N^{CD}(U, V) = N_T^{CD}(U, V) := \{ n \in \mathbb{N} : T^n(\alpha U) \cap V \neq \emptyset; \alpha \in \mathbb{B}^c \}$

is called CD-return set.

Proposition (2.3): Let T \in B(H) is CD-mixing if and only if for all U, V are non-empty open subsets of H. N^D(U, V) is a co-finite set.

Proof: \Rightarrow) Let T \in B(H) is C \mathbb{D} -mixing, and U, V be any non-empty open subsets of H, then there exist N \in N and $\alpha \in$ \mathbb{B}^c such that

Tⁿ(αU) ∩ V ≠ Ø for all n ≥ N.

Note that

$$
N - N^{CD}(U, V) = N - \{n \in \mathbb{N} : T^n(\alpha U) \cap V \neq \emptyset; \alpha \in \mathbb{B}^c\}
$$

= N - \{n \in \mathbb{N} : n \ge N\} = \{0, ..., N - 1\}

Thus $\mathrm{N}^{\mathrm{CD}}(\mathrm{U},\mathrm{V})$ is a co-finite set.

 \Leftarrow) Since N^{CD}(U, V) is a co-finite set, then there exist k ∈ N such that

 $\mathbb{N} - \{n \in \mathbb{N}; T^n(\alpha U) \cap V \neq \emptyset; \alpha \in \mathbb{B}^c\} = \{0, 1, ..., k\}.$

So, T^{k+n}(α U) \cap V \neq Ø, for all n $>$ k.

Hence T is CD-mixing.

Next proposition gives anther equivalent relation between the CD -mixing operators and CD -return sets with neighborhood of zero. But first we will need the following lemma.

Lemma (2.4) [1]: If U be a non-empty open set in H, then there is a non-empty open subset $U_1 \subset U$ and W be a neighborhood of zero such that $U_1 + W \subset U$. If W is a neighborhood of zero, then there is a neighborhood of zero W_1 such that $W_1 + W_1 \subset W$.

PROPOSITION (2.5): AN OPERATOR T IS CD-MIXING IF AND ONLY IF, FOR ANY NONEMPTY OPEN SUBSET U IN H AND ANY NEIGHBORHOOD OF ZERO, W, THE CD-RETURN SETS $\mathrm{N}^{\mathrm{CD}}(\mathrm{U}, \mathrm{W})$ and $\mathrm{N}^{\mathrm{CD}}(\mathrm{W},\mathrm{U})$ are co-finite set.

Proof: \Rightarrow)Let T be a CD-mixing, U, V be nonempty open sets, and W is a neighborhood of zero, thus there exist an open ball Z such that $0 \in Z \subset W$.

Since T is CD-mixing, therefore, by Proposition (2.3), $N^{CD}(U, W) \supseteq N^{CD}(U, Z)$ is a co-finite set. Similarly, $N^{CD}(W, V) \supseteq N^{CD}(Z, V)$ is a co-finite set.

 \Leftarrow)Let U, V be non-empty open subsets of H. By Lemma (2.4), there are non-empty open subsets U₁, V₁ and W₀, \hat{W}_0 neighborhoods of zero, such that

 $U_1 \subset U$ and $W_0 \subset W$; $U_1 + W_0 \subset U$... (1)

and

$$
V_1 \subset V \text{ and } \widehat{W}_0 \subset W; V_1 + \widehat{W}_0 \subset V \dots (2).
$$

Let $W = W_0 \cap \widehat{W}_0$. By the hypothesis,

 $\mathrm{N}^\mathrm{CD}(\mathrm{U}_1,\mathrm{W}), \mathrm{N}^\mathrm{CD}(\mathrm{W},\mathrm{V}_1), \mathrm{N}^\mathrm{CD}(\mathrm{V}_1,\mathrm{W})$ and $\mathrm{N}^\mathrm{CD}(\mathrm{W},\mathrm{U}_1)$ are co-finite set. Hence there exist $N_i \in \mathbb{N}$, and $\alpha_i \in \mathbb{B}^c$; i = 1,2,3,4. such that

$$
ST^{n_1}(\alpha_1U_1) \cap W \neq \emptyset, \text{ for all } n_1 \ge N_1
$$

\n
$$
T^{n_2}(\alpha_2W) \cap V_1 \neq \emptyset, \text{ for all } n_2 \ge N_2
$$

\n
$$
T^{n_3}(\alpha_3V_1) \cap W \neq \emptyset, \text{ for all } n_3 \ge N_3
$$

\n
$$
T^{n_4}(\alpha_4W) \cap U_1 \neq \emptyset, \text{ for all } n_4 \ge N_4.
$$

\nPut $N = \max\{N_1, N_2, N_3, N_4\}$ for all $n \ge N$, and $\alpha = \max\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$, we get
\n
$$
T^n(\alpha U_1) \cap W \neq \emptyset \qquad ... (3)
$$

\n
$$
T^n(\alpha W) \cap V_1 \neq \emptyset
$$

\n
$$
T^n(\alpha W) \cap V_1 \neq \emptyset
$$

\nFrom (3) there exist $u \in U$ such that $T^n(\alpha u) \in W$.

From (3) there exist $u \in U$ such that $T^{n}(\alpha u) \in W$. While from (4) there exist $w \in W$ such that $T^{n}(\alpha w) \in V_1$. Thus from (1), $u + w \in U$ and from (2) we get $T^{n}(\alpha(u + w) \subset V$. Then $T^{n}(\alpha U) \cap V \neq \emptyset$ for all $n \geq N$. Which implies T is CD-mixing.

3. The Sufficient Conditions Of -Mixing Operator

In this section we investigate a sufficient condition of an operator to be CD -mixing. Proposition (3.1) [CD-mixing Comparism Principle]: Let $T \in B(H)$, $S \in B(K)$. If there $X \in B(H, K)$ such that $SX = XT$, then S is CD-mixing if T is CD-mixing

Proof:

Let U, V be non-empty open sets of K, by continuity of X, X⁻¹U, X⁻¹V are non-empty open sets of H. Since T is CDmixing, then there exist $N \in \mathbb{N}$ and $\alpha \in \mathbb{B}^c$, such that for all $n \ge N$, $T^n(X^{-1}(\alpha U)) \cap X^{-1}V \ne \emptyset$. So, there are $u \in X^{-1}(U)$ such that $T^n(\alpha u) \in X^{-1}(V)$, hence $X(T^n(\alpha u)) \subset V$. Therefore,

$$
S^{n}(X(\alpha u)) = X(T^{n}(\alpha u)) \subset V \quad ... (8).
$$

Since $u \in X^{-1}(U)$, so

$$
\alpha X u \in \alpha U \qquad \qquad \dots (9).
$$

From (8) and (9) we get $S^n(\alpha U) \cap V \neq \emptyset$ for all $n \geq N$. Then S is CD-mixing.

Theorem (3.2) : $[CD-mixing Criterion]$

Let T \in B(H). If there exists $\alpha \in \mathbb{B}^c$ and N \in N, For which there are a dense subsets Y, X in H and a sequence of mappings, $S_n: Y \to H$, for all $n \geq N$ such that:

- 1) $\alpha T^{n}x \to 0$ for all $x \in X$
- 2) a) $\frac{1}{\alpha}S_n y \to 0$ for all $y \in Y$
- b) $T^nS_ny \to y$ for all $y \in Y$

Then T is CD -mixing.

Proof: Let U, V be non-empty open sets of H, let $x \in X \cap U$, $y \in Y \cap V$.

By (2(a)) we get $x + \frac{1}{x}$ $\frac{1}{\alpha}S_n y \to x \in U$ for all $n \ge N$. thus,

$$
\alpha T^n \left(x + \, \frac{1}{\alpha} S_n y \right) = \alpha T^n x + \, T^n S_n y \to y \in V \text{ for all } n \geq N.
$$

Therefore, $T^{n}(\alpha U) \cap V \neq \emptyset$ for all $n \geq N$. Hence T is CD-mixing.

4. The Sufficient Condition of -Mixing Operator

The goal of this section is studying the direct sum of two CD-mixing operators.

Proposition (4.1): Let T, $S \in B(H)$. Then $S \oplus T$ is $C \mathbb{D}$ -mixing in H $\oplus H$ if and only if S and T are $C \mathbb{D}$ -mixing operators. Proof: \Rightarrow)Let U₁, U₂, V₁, V₂ be any non-empty open subsets of H, since S \oplus T is CD-mixing, then there exist N \in N and $\alpha \in \mathbb{B}^c$ such that for all $n \geq N$,

 $(S^n(\alpha U_1) \cap V_1) \oplus (T^n(\alpha U_2) \cap V_2) = (S \oplus T)^n(\alpha(U_1 \oplus U_2)) \cap (V_1 \oplus V_2) \neq \emptyset.$ Thus, for all $n \ge N$, $Sⁿ(\alpha U_1) \cap V_1 \ne \emptyset$ and $Tⁿ(\alpha U_2) \cap V_2) \ne \emptyset$. So S and T are CD-mixing. \Leftarrow)Let S and T be CD-mixing operators, then for any U₁, U₂, V₁, V₂ of non-empty open subsets of H, there exist $N_1, N_2 \in \mathbb{N}$ and $\alpha_i \in \mathbb{B}^c$: $i = 1, 2$, such that for all $n_1 \ge N_1$ and $n_2 \ge N_2$ we get S^{n₁}(α_1 U₁) \cap V₁ \neq Ø and T^{n₂(α_2 U₂) \cap V₂ \neq Ø}

Let N = max{N₁, N₂} and
$$
\alpha
$$
 = max{ α_1 , α_2 }. Hence, for all n \ge N
(Sⁿ(α U₁) \cap V₁) \oplus (Tⁿ(α U₂) \cap V₂) = (S \oplus T)ⁿ(α (U₁ \oplus U₂)) \cap (V₁ \oplus V₂) $\neq \emptyset$

So S \oplus T is CD-mixing.

Recall that a bounded linear operator T is called codisk-cyclic operator if there is a non-zero vector $x \in H$ such that $\{aT^n x : n \ge 0, a \in \mathbb{B}^c\}$ is dense in H.[3]. It is well – know that there is a direct sum of two codisk cyclic operators which is not codisk -cyclic operator [3]. The following proposition discuss this case. But first we need the following lemma

Lemma (4.2): Let $T \in \text{CD}(H)$, then for any pair U, V of non-empty open subsets of H, $\alpha \in \mathbb{B}^c$, $T^n(\alpha U) \cap V \neq \emptyset$ is infinite.

Proof: Let U, V be non-empty open subsets of H. Since T \in CD(H), there exist $n_1 \in \mathbb{N}$, $\alpha_i \in \mathbb{D}$; i = 1,2, such that $T^{n_1}(\alpha_1 U) \cap V \neq \emptyset$. So, U $\cap T^{-n_1}\left(\frac{1}{\alpha_1}\right)$ $\left(\frac{1}{\alpha_1}V\right) \neq \emptyset$. Let $W = T^{-n_1}\left(\frac{1}{\alpha_1}\right)$ $\frac{1}{\alpha_1}$ V), since T is continues, then W is open. But T \in CD(H), so there exist $n_2 \in \mathbb{R}$, $\alpha_2 \in \mathbb{B}^c$, such that $T^{n_2}(\alpha_2 U) \cap W \neq \emptyset$.

So, $T^{n_2}(\alpha_2 U) \cap T^{-n_1}\left(\frac{1}{\alpha_2}\right)$ $\frac{1}{\alpha_1}V$ $\neq \emptyset$, hance $T^{n_2+n_1}(\alpha_1\alpha_2 U) \cap V \neq \emptyset$, and so on. Therefore, there are infinite natural number n such that $T^{n}(\alpha U) \cap V \neq \emptyset$.

Proposition (4.3): Let T, $S \in B(H)$. If T is a C $\mathbb D$ -mixing operator and S is a codisk-cyclic operator, then S \bigoplus T is a codisk-cyclic operator.

Proof: Let U_1, U_2, V_1, V_2 be any non-empty open subsets of H, since T is CD-mixing and S is codisk-cyclic, then there exist N, $k \in \mathbb{N}$ and $\alpha_1, \alpha_2 \in \mathbb{B}^c$

such that $T^{n}(\alpha_2 U_2) \cap V_2 \neq \emptyset$ for all $n \geq N$ and $S^{k}(\alpha_1 U_1) \cap V_1 \neq \emptyset$.

Now, if k < N, then by Lemma (4.2), there exist m \geq N, such that $S^m(\alpha_1U_1) \cap V_1 \neq \emptyset$. Put $\alpha = \max{\alpha_1, \alpha_2}$, m

> (S $(\alpha U_1) \cap V_1 \oplus T^m(\alpha U_2) \cap V_2) = (S \oplus T)^m(\alpha(U_1 \oplus U_2) \cap (V_1 \oplus V_2).$

Therefore $(S\oplus T)^m(\alpha(U_1\oplus U_2)\cap (V_1\oplus V_2)\neq \emptyset$. Hence $S\oplus T$ is a codisk-cyclic operator. The result is done when $k \geq N$.

Here a natural question appears, can we generalize the proposition (4.3) to a finite number of direct summand operators?

Corollary (3.4): Let T₁ be a codisk-cyclic operator, and $(T_i)_{i=2}^n$ be a sequence of CD-mixing operator, then for all n \in $\mathbb{N}, \bigoplus_{i=1}^n T_i$ is a codisk-cyclic operator.

Proof: By induction. If $n = 2$, then by proposition (2.3), $T_1 \oplus T_2$ is a disk-cyclic operator. Suppose it is true when $n =$ k. Now that $n = k + 1$ thus

 $\bigoplus_{i=1}^n T_i = \bigoplus_{i=1}^k T_i \bigoplus T_{k+1}$. So by Proposition (4.3), $\bigoplus_{i=1}^k T_i \in \mathbb{CD}(H)$.

4. Conclusion

Let H be an infinite dimensional separable complex Hilbert space, and T be a bounded linear operator. T is called codisk-mixing operator, $\mathcal{L} \mathbb{D}$ -mixing operator, if for any non-empty open subsets U, V of H, there are $n \in \mathbb{N}$ and $\alpha \in$ \mathbb{B}^c such that $T^n(\alpha U) \cap V \neq \emptyset$ for all $n \geq N$.

In this paper, we studied a characterization of CD - mixing operators, and discussed when a direct sum of two codisk cyclic operators which is codisk -cyclic operator. We showed that if one of them is \mathcal{CD} - mixing operator and the other is codisk- cyclic operator, then the direct sum of them is codisk-cyclic operator.

References

- [2] Y. Wang and H. Zeng, Disk-cyclic and codisk-cyclic weighted pseudo-shifts, Bull. Belg. Math. Soc. Simon Stevin 25(2): 209-224 (june 2018).
- [3] Z. Jamil, Cyclic phenomena of operators on Hilbert space, Ph.D. Thesis, University of Baghdad, 2002.

^[1] K.Grosse-Erdmann and A. Manguillot ," Linear chaos", Springer VerLag London Limited, 2011.

^[4] Z. Jamil, On hereditarily codisk-cyclic operators, Baghdad Science Journal, 2022, 19(2), pp. 309–312.