

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Strongly Pseudo Nearly Quasi-2-Absorbing Submodules(II)

Mohmad E. Dahash^a, Haibat K. Mohammadali^b

^bDepartment of Mathematics, College of Computer Science and Mathematics, Univ. of Tikrit, Iraq. Email: mohmad.e.dahash35391@st.tu.edu.iq

^cDepartment of Mathematics, College of Computer Science and Mathematics, Univ. of Tikrit, Iraq . Email: H.mohammadali@tu.edu.iq

ARTICLEINFO

Article history: Received: 03 /11/2022 Rrevised form: 30 /11/2022 Accepted : 04 /12/2022 Available online: 31 /12/2022 Keywords: STPNQ-2-Absorbing submodules. STPNQ-2-Absorbing ideal. faithful module. projective module. Z-regular module.

ABSTRACT

In this research, we presented the concept of Strongly Pseudo Nearly Quasi 2-Absorbing submodules . Which is a generalization of the concepts of 2-Absorbing and Quasi 2-Absorbing submodules and the ideal $[\mathcal{F}_{\vec{R}}\mathcal{H}]$ is not Strongly Pseudo Nearly Quasi 2-Absorbing submodulesand we gave an example of that . We also noted that $[\mathcal{F}_{\vec{R}}\mathcal{H}]$ is STPNS-2-Absorbing ideals under several conditions. Also in this part we introduce the characterization of the concept of STPNS-2-Absorbing ideals by special kind of submodules.

MSC..

https://doi.org/10.29304/jqcm.2022.14.4.1118

Introduction

In our work to start with the common notion which is 2-Absorbing ideal which introduced by Badawi in 2007[1]. Darani and Soheiline in 2011 [2] they expanded the notion of 2-Absorbing ideals to 2-Absorbing submodules. Many author's extend the notion of 2-Absorbing submodule in 2015 to (Semi-2-absorbing, Primary-2-absorbing and Almost-2-Absorbing) submodules see [3, 4, 5]. In 2018 the notion 2-Absorbing submodules they expanded to Nearly 2-Absorbing submodule by [6]. In 2019 they expanded to pseudo 2-Absorbing submodule by [7]. Also they expanded to Quasi 2-Absorbingsubmodule by [8]. In 2019 they expanded to Pseudo Quasi 2-Absorbingsubmodule by [9]. In 2023 they expanded to Nearly Quasi Primary 2-Absorbing submodules by [10]. $[\mathcal{F}_{R}\mathcal{H}] = \{r \in \mathbb{R}: r\mathcal{H} \subseteq \mathcal{F}\}$ where \mathcal{F} is a submodule of an R-module \mathcal{H} [11]. An R – module \mathcal{H} is said to be faithful if $Ann_{R}(\mathcal{H}) =$ (0). Where Ann $(\mathcal{H}) = \{r \in \mathbb{R} : r \mathcal{H} = \{0\}\}$ [12]. An R-module \mathcal{H} is said to be a multiplication, if every submodule \mathcal{F} of \mathcal{H} is of the form $\mathcal{F} = I \mathcal{H}$ for some ideal I of R. Equivalent to $\mathcal{F} = [\mathcal{F}_{R} \mathcal{H}] \mathcal{H}$ [13]. an Rmodule \mathcal{H} is a projective if for every R – epimorphism $f: \mu \to \mu'$ and every R – homomorphism $g: \mathcal{H} \to \mu'$, there exists an R – homomorphism $h: \mathcal{H} \to \mu$ such that the following diagram is commute that is foh = q[12]. $Z(\mathcal{H}) = \{x \in \mathcal{H}: ann(x) essential ideal in R\}$. If $Z(\mathcal{H}) = 0$, then \mathcal{H} is called the non-singular module [14]. An R-module \mathcal{H} is said to be content module if $(\bigcap_{i \in I} A_i)\mathcal{H} = \bigcap_{i \in I} A_i\mathcal{H}$ for each family of ideals A_i in R [15]. An Rmodule \mathcal{H} is called Z-regular if for any $x \in \mathcal{H}$ there exists $g \in \mathcal{H} = \operatorname{Hom}_{\mathbb{R}}(\mathcal{H}, \mathbb{R})$ such that x = g(x) x [16]. An R – module \mathcal{H} is finitely generated if $\mathcal{H} = \langle z_1, z_2, z_3, \dots, z_n \rangle = Rz_1, Rz_2, Rz_3, \dots, Rz_n$, where $z_1, z_2, z_3, \dots, z_n \in \mathbb{R}$ \mathcal{H} [12]. An R-module \mathcal{H} is said to be cancellation if whenever I $\mathcal{H} = J \mathcal{H}$ for any ideals I, J of R, implies that I = J[17].

*Corresponding author

Email addresses:

Communicated by 'sub etitor'

2. Strongly Pseudo Nearly Quasi -2-Absorbing Submodules.

In this section we introduce the definition of Strongly Pseudo Nearly Quasii-2-Absorbing submodule and we introduce several characterizations of STPNQ-2-Absorbing submodules in classes of multiplication modules and other types of modules:

Definition 2.1[18] A proper submodule \mathcal{F} of an *R*-module \mathcal{H} is said to be Strongly pseudo Nearly Quasi-2-Absorbing (for short STPNQ-2-Absorbing) submodule of \mathcal{H} if whenever $abcm \in \mathcal{F}$, where $a,b,c \in R$, $m \in \mathcal{H}$ implies that either $acm \in \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $bcm \in \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $abm \in \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$. And an ideal *I* of a ring R is called STPNQ -2- Absorbing ideal of R, if *I* is an STPNQ-2-Absorbing R-submodule of an R-module R.

The following proposition gives characterization of STPNQ-2-Absorbing submodules in classes of multiplication modules.

Before proving the following proposition we need the following lemma.

Lemma 2.2 [18, prop(2.7)] 2.7 Let \mathcal{H} be module and $\mathcal{F} \subset \mathcal{H}$. Then \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} if and only if for every submodule A of \mathcal{H} and for every ideals I_1, I_2, I_3 of R such that $I_1I_2I_3A \subseteq \mathcal{F}$ implies that either $I_1I_2A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $I_1I_3A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $I_2I_3A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$.

Proposition 2.3 Let \mathcal{H} be a multiplication R-module and $\mathcal{F} \subset \mathcal{H}$. Then \mathbb{N} is STPNQ-2-Absorbing submodule of \mathcal{H} if and only if whenever $H_1H_2H_3A \subseteq \mathcal{F}$ for some submodules H_1, H_2, H_3, A of \mathcal{H} , implies that either $H_1H_2A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $H_1H_3A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $H_2H_3A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$.

Proof (\Rightarrow) Let $H_1H_2H_3A \subseteq \mathcal{F}$ for some submodules H_1, H_2, H_3, A of \mathcal{H} . Since \mathcal{H} is a multiplication, then $H_1 = j_1\mathcal{H}$, $H_2 = j_2\mathcal{H}, H_3 = j_3\mathcal{H}$ and $A = j_4\mathcal{H}$ for some ideals j_1, j_2, j_3 and j_3 of \mathcal{R} . That is $H_1H_2H_3A = j_1j_2j_3(j_4\mathcal{H}) \subseteq \mathbb{N}$. But \mathbb{N} is STPNQ-2-Absorbing submodule of \mathcal{H} , hence from lemma 2.2 we get either $j_1j_2(j_4\mathcal{H}) \subseteq \mathbb{N} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $j_2j_3(j_4\mathcal{H}) \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$. Next, following either $H_1H_2A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $H_1H_3A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $H_2H_3A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$.

(⇐) Let $_{J_1J_2J_3}A \subseteq \mathcal{F}$ for $_{J_1,J_2,J_3}$ are ideals of R and A is a submodule of \mathcal{H} . Put $H_1 = _{J_1}\mathcal{H}$, $H_2 = _{J_2}\mathcal{H}$ and $H_3 = _{J_3}\mathcal{H}$. That is $H_1H_2H_3A \subseteq \mathbb{N}$. Now, by hypotheses either $H_1H_2A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $H_1H_3A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $H_2H_3A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$, thus $_{J_1J_2}A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $_{J_1J_3}A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $_{J_2J_3}A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$. Therefore by lemma 2.2 \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} .

Before proving the following proposition we need the following lemma.

Lemma 2.4 [18, coro.(2.9)] Let \mathcal{H} be module and $\mathcal{F} \subset \mathcal{H}$. Then \mathcal{F} is STPNQ -2-Absorbing submodule of \mathcal{H} if and only if for every ideals l_1, l_2, l_3 of R and $x \in \mathcal{H}$ such that $l_1 l_2 l_3 x \subseteq \mathcal{F}$ implies that either $l_1 l_2 x \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $l_1 l_3 x \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $l_2 l_3 x \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$.

Proposition 2.5 Let \mathcal{H} be a multiplication *R*-module and $\mathcal{F} \subset \mathcal{H}$. Then \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} if and only if whenever $\mathbb{K}_1 \mathbb{K}_2 \mathbb{K}_3 x \subseteq \mathcal{F}$ for some submodules $\mathbb{K}_1, \mathbb{K}_2, \mathbb{K}_3$ of $\mathcal{H}, x \in \mathcal{H}$, then either $\mathbb{K}_1 \mathbb{K}_2 x \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $\mathbb{K}_1 \mathbb{K}_3 x \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$.

Proof (\Rightarrow) Let $\mathbb{K}_1\mathbb{K}_2\mathbb{K}_3x \subseteq \mathcal{F}$ for some submodules $\mathbb{K}_1,\mathbb{K}_2$, \mathbb{K}_3 of \mathcal{H} and $x \in \mathcal{H}$. Since \mathcal{H} is a multiplication, then $\mathbb{K}_1 = J_1\mathcal{H}$, $\mathbb{K}_2 = J_2\mathcal{H}$ and $\mathbb{K}_3 = J_3\mathcal{H}$ for some ideals J_1 , J_2 and J_3 of R. That is $\mathbb{K}_1\mathbb{K}_2\mathbb{K}_3x = J_1J_2J_3x \subseteq \mathcal{F}$. But \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} , hence from lemma 2.4 we get either $J_1J_3x \subseteq \mathbb{N} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $J_2J_3x \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$. Next, following either $\mathbb{K}_1\mathbb{K}_3x \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $\mathbb{K}_2\mathbb{K}_3x \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$.

(⇐) Let $j_1 j_2 j_3 x \subseteq \mathcal{F}$ for j_1, j_2, j_3 are ideals of R and $x \in \mathcal{H}$. Put $\mathbb{K}_1 = j_1 \mathcal{H}$, $\mathbb{K}_2 = j_2 \mathcal{H}$ and $\mathbb{K}_3 = j_3 \mathcal{H}$. That is $\mathbb{K}_1 \mathbb{K}_2 \mathbb{K}_3 x \subseteq \mathcal{F}$. Now, by hypotheses either $\mathbb{K}_1 \mathbb{K}_2 x \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $\mathbb{K}_1 \mathbb{K}_3 x \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $\mathbb{K}_2 \mathbb{K}_3 x \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$, thus $j_1 j_2 x \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $j_1 j_3 x \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $j_2 j_3 x \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$. Therefore by lemma 2.4 \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} .

Remark 2.6 If \mathcal{F} is an STPNQ_2_Absorbing submodule of an R_module \mathcal{H} , then $[\mathcal{F}_R^{:}\mathcal{H}]$ need not to be an STPNQ_2_Absorbing ideal of R, the following example explain that:

Consider the Z-module Z_{72} , the submodule $\mathcal{F} = \langle \overline{36} \rangle$ is an STPNQ_2_Absorbing submodule of the Z_module Z_{72} , since $3.3.4.\overline{1} \in \langle \overline{36} \rangle$, implies that $3.4.\overline{1} \in \langle \overline{36} \rangle + (J(Z_{72}) \cap soc(Z_{72})) = \langle \overline{36} \rangle + (\langle \overline{6} \rangle \cap \langle \overline{12} \rangle) = \langle \overline{6} \rangle$, but $[\langle \overline{36} \rangle_R Z_{72}] = 36Z$ is not to be an STPNQ_2_Absorbing ideal of Z, because $3.3.4.1 \in 36Z$, but $3.4.1 \notin 36Z + (soc(Z) \cap J(Z)) = 36Z$ and $3.3.1 \notin 36Z + (soc(Z) \cap J(Z)) = 36Z$.

Under certain conditions, the above observation is fulfilled.

Before proving the following proposition we need the following lemmas.

Lemma 2.7 [19, corollary. (2.1.14) (i)] Let \mathcal{H} be a faithful multiplication R – module, then Soc (\mathcal{H}) = Soc (R) \mathcal{H} .

Lemma 2.8 [20] Let \mathcal{H} be a faithful multiplication R – module, then $J(\mathcal{H}) = J(R)\mathcal{H}$.

Lemma 2.9 [18, proposition.(2.5)] A proper submodule \mathcal{F} of \mathcal{H} is STPNQ-2-A submodule of \mathcal{H} if and only if $abcL \subseteq \mathcal{F}$, for $a, b, c \in R$ and L is a submodule of \mathcal{H} , implies that either $acL \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $bcL \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $abL \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$.

Proposition 2.10 Let \mathcal{F} be a proper submodule of a faithful multiplication *R*-module \mathcal{H} . Then \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} if and only if $[\mathcal{F}:_R \mathcal{H}]$ is STPNQ-2-Absorbing ideal of *R*.

Proof (\Rightarrow) Assume that $l_1l_2l_3l_4 \in [\mathcal{F}:_{\mathbb{R}}\mathcal{H}]$ for some ideals l_1 , l_2 , l_3 and l_4 of \mathbb{R} , then $l_1l_2l_3l_4\mathcal{H} \subseteq \mathcal{F}$. But \mathcal{H} is a multiplication, then $l_1l_2l_3l_4\mathcal{H} = \mathbb{K}_1_1\mathbb{K}_2\mathbb{K}_3\mathbb{K}_4 \subseteq \mathcal{F}$, by taking $l_1\mathcal{H} = \mathbb{K}_1$, $l_2\mathcal{H} = \mathbb{K}_2$, $l_3\mathcal{H} = \mathbb{K}_3$ and $l_4\mathcal{H} = \mathbb{K}_4$. But \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} , then by proposition 2.3 either $\mathbb{K}_1\mathbb{K}_3\mathbb{K}_4 \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $\mathbb{K}_2\mathbb{K}_3\mathbb{K}_4 \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$. Since \mathcal{H} is multiplication, then $\mathcal{F} = [\mathcal{F}:_{\mathbb{R}}\mathcal{H}]\mathcal{H}$, and since \mathcal{H} is faithful multiplication, then by lemmas 2.7, 2.8 $soc(\mathcal{H}) = soc(\mathbb{R})\mathcal{H}$ and $J(\mathcal{H}) = J(\mathbb{R})\mathcal{H}$. Thus either $l_1l_3l_4\mathcal{H} \subseteq [\mathcal{F}:_{\mathbb{R}}\mathcal{H}]\mathcal{H} + (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$ or $l_2l_3l_4\mathcal{H} \subseteq [\mathcal{F}:_{\mathbb{R}}\mathcal{H}]\mathcal{H} + (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$. Hence either $l_1l_3l_4\mathcal{H} \subseteq [\mathcal{F}:_{\mathbb{R}}\mathcal{H}] + (J(\mathbb{R}) \cap soc(\mathbb{R})\mathcal{H})$ or $l_2l_3l_4\mathcal{H} \subseteq [\mathcal{F}:_{\mathbb{R}}\mathcal{H}] + (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$. Hence either $l_1l_3l_4 \subseteq [\mathcal{F}:_{\mathbb{R}}\mathcal{H}] + (J(\mathbb{R}) \cap soc(\mathbb{R}))$ or $l_2l_3l_4 \subseteq [\mathcal{F}:_{\mathbb{R}}\mathcal{H}] + (J(\mathbb{R}) \cap soc(\mathbb{R})\mathcal{H})$.

(⇐) Let $rstA \subseteq \mathcal{F}$ for $r, s, t \in R$ and A is a submodule of \mathcal{H} , since \mathcal{H} is a multiplication, then $A = I\mathcal{H}$ for some ideal I of R, that is $rstI\mathcal{H} \subseteq \mathcal{F}$, implies that $rstI \subseteq [\mathcal{F}:_R \mathcal{H}]$, but $[\mathcal{F}:_R \mathcal{H}]$ is STPNQ-2-Absorbing ideal of R, then by lemma 2.9 either $rsI \subseteq [\mathcal{F}:_R \mathcal{H}] + (J(\mathbb{R}) \cap soc(\mathbb{R}))$ or $rtI \subseteq [\mathcal{F}:_R \mathcal{H}] + (J(\mathbb{R}) \cap soc(\mathbb{R}))$ or $stI \subseteq [\mathcal{F}:_R \mathcal{H}] + (J(\mathbb{R}) \cap soc(\mathbb{R}))$. Thus either $rsI\mathcal{H} \subseteq [\mathcal{F}:_R \mathcal{H}]\mathcal{H} + (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$ or $rtI\mathcal{H} \subseteq [\mathcal{F}:_R \mathcal{H}]\mathcal{H} + (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$ or $stI\mathcal{H} \subseteq [\mathcal{F}:_R \mathcal{H}]\mathcal{H} + (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$. Since \mathcal{H} is a faithful multiplication, then $[\mathcal{F}:_R \mathcal{H}]\mathcal{H} = \mathcal{F}$ and by lemmas 2.7, 2.8 either $rsA \subseteq (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $rtA \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $stA \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$. Thus by lemma 2.9 \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} .

Before proving the following proposition we need the following lemmas.

Lemma 2.11 [20, proposition. (3.24)] Let \mathcal{H} be a projective R – module, then $Soc(\mathcal{H}) = Soc(R)\mathcal{H}$.

Lemma 2.12 [12, Theorem. (9.2.1) (a)] For any projective R – module \mathcal{H} , we have $J(\mathcal{H}) = J(R)\mathcal{H}$.

Lemma 2.13 [18, corollary. (2.11)] Let \mathcal{H} be module and $\mathcal{F} \subset \mathcal{H}$. Then \mathcal{F} is STPNQ -2-Absorbing submodule of \mathcal{H} if and only if for any $r, s \in R$ and any ideal I of R and every submodule A of \mathcal{H} with $rsIA \subseteq \mathcal{F}$ implies that either $rsA \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $rIA \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$.

Proposition 2.14 Let \mathcal{F} be a proper submodule of a multiplication projective *R*-module \mathcal{H} . Then \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} if and only if $[\mathcal{F}:_R \mathcal{H}]$ is STPNQ-2-Absorbing ideal of *R*.

Proof (\Rightarrow)Assume that $I_1I_2I_3b \subseteq [\mathcal{F}:_R\mathcal{H}]$ for some ideals I_1 , I_2 , I_3 of R and $b \in R$, then $I_1I_2I_3(b\mathcal{H}) \subseteq \mathcal{F}$. But \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} , then by lemma 2.4 either $I_1I_3b\mathcal{H} \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $I_2I_3b\mathcal{H} \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $I_2I_3b\mathcal{H} \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $I_2I_3b\mathcal{H} \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $I_3I_3b\mathcal{H} \subseteq \mathcal{F}$

 $(J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $I_1I_2b\mathcal{H} \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$. Since \mathcal{H} is multiplication, then $\mathcal{F} = [\mathcal{F}:_R \mathcal{H}]\mathcal{H}$, and since \mathcal{H} is projective *R*-module \mathcal{H} , then by lemmas 2.11, 2.12 $soc(\mathcal{H}) = soc(R)\mathcal{H}$ and $J(\mathcal{H}) = J(R)\mathcal{H}$. Thus either $I_1I_3b\mathcal{H} \subseteq [\mathcal{F}:_R \mathcal{H}]\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $I_2I_3b\mathcal{H} \subseteq [\mathcal{F}:_R \mathcal{H}]\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $I_1I_2b\mathcal{H} \subseteq [\mathcal{F}:_R \mathcal{H}]\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$. Henceeither $I_1I_3b \subseteq [\mathcal{F}:_R \mathcal{H}] + (J(R) \cap soc(R)\mathcal{H})$. Therefore by lemma 2.4 $[\mathcal{F}:_R \mathcal{H}]$ is STPNQ-2-Absorbing ideal of *R*.

(⇐) Let $rsIA \subseteq \mathcal{F}$ for $r, s \in R$ and some submodule A of \mathcal{H} and for some ideal I of R since \mathcal{H} is a multiplication, then $A = J\mathcal{H}$ for some ideal J of R, that is $rsIJ\mathcal{H} \subseteq \mathcal{F}$, implies that $rsIJ \subseteq [\mathcal{F}:_R \mathcal{H}]$, but $[\mathcal{F}:_R \mathcal{H}]$ is STPNQ-2-Absorbing ideal of R, then by lemma 2.13 either $rsJ \subseteq [\mathcal{F}:_R \mathcal{H}] + (J(R) \cap soc(R))$ or $rIJ \subseteq [\mathcal{F}:_R \mathcal{H}] + (J(R) \cap soc(R))$. Thus either $rsJ\mathcal{H} \subseteq [\mathcal{F}:_R \mathcal{H}]\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $rIJ\mathcal{H} \subseteq [\mathcal{F}:_R \mathcal{H}]\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $rIJ\mathcal{H} \subseteq [\mathcal{F}:_R \mathcal{H}]\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $rIJ\mathcal{H} \subseteq [\mathcal{F}:_R \mathcal{H}]\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $rIJ\mathcal{H} \subseteq [\mathcal{F}:_R \mathcal{H}]\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $rIA \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $sIA \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$. Thus by lemma 2.4 \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} .

Before proving the following proposition we need the following lemmas.

Lemma 2.15 [18, corollary. (2.10)] Let \mathcal{H} be module and $\mathcal{F} \subset \mathcal{H}$. Then \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} if and only if for each $r \in R$ and any ideals I, J of R and every submodule A of \mathcal{H} with $rIJA \subseteq \mathcal{F}$ implies that either $rIA \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $rJA \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$.

Lemma 2.16[14, corollary. (1.26)] Let \mathcal{H} be a non-singular R – module, then Soc (\mathcal{H}) = Soc (R) \mathcal{H} .

Lemma 2.17[20 , proposition (1.11)] If \mathcal{H} is content module, then $J(\mathcal{H}) = J(R)\mathcal{H}$.

Proposition 2.18 Let \mathcal{F} be a proper submodule of a content multiplication non-singular *R*-module \mathcal{H} . Then \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} if and only if $[\mathcal{F}:_R \mathcal{H}]$ is STPNQ-2-bsorbing ideal of *R*.

Proof (⇒)Let *bIJa* ∈ [*F*:_{*R*} *H*] for *J*,*I* are ideals of *R* and *a*, *b* ∈ *R*, so *bIJ*(*aH*) ⊆ *F*. But *F* is STPNQ-2-Absorbing submodule of *H*, then by lemma 2.15 either *bI*(*aH*) ⊆ *F* + (*J*(*H*) ∩ *soc*(*H*)) or *bJ*(*aH*) ⊆ *F* + (*J*(*H*) ∩ *soc*(*H*)) or *IJ*(*aH*) ⊆ *F* + (*J*(*H*) ∩ *soc*(*H*)). Since *H* is multiplication, then *F* = [*K*:_{*R*} *H*]*H*, and since *H* is non-singular multiplication content *R*-module , then by lemmas 2.16, 2.17 *soc*(*H*) = *soc*(*R*)*H* and *J*(*H*) = *J*(*R*)*H*. Thus either *bIaH* ⊆ [*F*:_{*R*} *H*]*H* + (*J*(*R*)*H* ∩ *soc*(*R*)*H*) or *H* ⊆ [*F*:_{*R*} *H*]*H* + (*J*(*R*)*H* ∩ *soc*(*R*)*H*) or *IJaH* ⊆ [*F*:_{*R*} *H*]*H* + (*J*(*R*)*H* ∩ *soc*(*R*)*H*), it follows that either *bIa* ⊆ [*F*:_{*R*} *H*] + (*J*(*R*) ∩ *soc*(*R*)) or *bJa* ⊆ [*F*:_{*R*} *H*] + (*J*(*R*) ∩ *soc*(*R*)). Hence by lemma 2.15 [*F*:_{*R*} *H*] is STPNQ-2-Absorbing ideal of *R*.

(⇐) Let $rIJL \subseteq \mathcal{F}$ for some submodule L of $\mathcal{H}, r \in \mathcal{H}$ and I, J are ideals of R. Since \mathcal{H} is a multiplication, then $L = \mathcal{AH}$ for some ideal \mathcal{A} of R, that is $rIJ\mathcal{AH} \subseteq \mathcal{F}$, implies that $rIJ\mathcal{A} \subseteq [\mathcal{F}:_R \mathcal{H}]$, but $[\mathcal{F}:_R \mathcal{H}]$ is STPNQ-2-Absorbing ideal of R, then by lemma 2.9 either $rI\mathcal{A} \subseteq [\mathcal{F}:_R \mathcal{H}] + (J(R) \cap soc(R))$ or $rJ\mathcal{A} \subseteq [\mathcal{F}:_R \mathcal{H}] + (J(R) \cap soc(R))$ or $IJ\mathcal{A} \subseteq [\mathcal{F}:_R \mathcal{H}] + (J(R) \cap soc(R))$. Thus either $rI\mathcal{AH} \subseteq [\mathcal{F}:_R \mathcal{H}]\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $rJ\mathcal{AH} \subseteq [\mathcal{F}:_R \mathcal{H}]\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $rJ\mathcal{AH} \subseteq [\mathcal{F}:_R \mathcal{H}]\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $rJ\mathcal{L} \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $rJL \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $IJL \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$. Thus by lemma 2.15 \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} .

Before proving the following proposition we need the following lemma.

Lemma 2.19[20, proposition (3.25)] Let \mathcal{H} be a Z - regular R - module then $Soc(\mathcal{H}) = Soc(R)\mathcal{H}$.

Proposition 2.20 Let \mathcal{F} be a proper submodule of a content multiplication Z-regular *R*-module \mathcal{H} . Then \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} if and only if $[\mathcal{F}:_R \mathcal{H}]$ is STPNQ-2-bsorbing ideal of *R*.

Proof By proof of proposition 2.18 and use lemma 2.19.

3. Characterization of STPNQ-2-Absorbing ideals by special kind of submodules

In this section we introduce the characterization of the concept of STPNQ-2-Absorbing ideals by special kind of submodules.

The following proposition gives characterization of the concept of STPNQ-2-Absorbing ideals

But before that we need the following lemmas.

Lemma 3.1 [21, coro. of theo. (9)] Let \mathcal{H} be a finitely generated multiplication R – module and I, J ideals of R. Then $I \mathcal{H} \subseteq J \mathcal{H}$ if and only if $I \subseteq J + \operatorname{ann}_{R}(\mathcal{H})$.

Lemma 3.2 [18, proposition. (2.7)] Let \mathcal{H} be module and $\mathcal{F} \subset \mathcal{H}$. Then \mathcal{F} is STPNQ-2-A submodule of \mathcal{H} ifandonly if for every submodule A of \mathcal{H} and for every ideals I_1, I_2, I_3 of R such that $I_1I_2I_3A \subseteq \mathcal{F}$ implies that either $I_1I_2A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $I_1I_3A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $I_2I_3A \subseteq \mathcal{F} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$.

Proposition 3.3 Let \mathcal{H} be a finitely generated multiplication projective *R*-module, and *B* is an ideal of *R* with $ann_{R}(\mathcal{H}) \subseteq B$. Then *B* is STPNQ-2-Absorbing ideal of *R* if and only if $B\mathcal{H}$ is STPNQ-2-Absorbing submodule of \mathcal{H} .

Proof (⇒) Let $sI_1I_2A \subseteq B\mathcal{H}$, for $s \in R$, I_1 , I_2 are ideals of R and A is a submodule of \mathcal{H} . Since \mathcal{H} is a multiplication, then $A = I_3\mathcal{H}$, for some ideal I_3 of R, that is $sI_1I_2A = sI_1I_2I_3\mathcal{H} \subseteq B\mathcal{H}$. But \mathcal{H} is a finitely generated multiplication R-module then by lemma 3.1 $sI_1I_2I_3 \subseteq B + ann_R(\mathcal{H})$, but $ann_R(\mathcal{H}) \subseteq B$, implies that $B + ann_R(\mathcal{H}) = B$, thus $sI_1I_2I_3 \subseteq B$. Now, by assumption B is STPNQ-2-Absorbing ideal of R then by lemma 2.15 either $sI_1I_3 \subseteq B + (J(\mathbb{R}) \cap soc(\mathbb{R}))$ or $sI_2I_3 \subseteq B + (J(\mathbb{R}) \cap soc(\mathbb{R}))$ or $I_1I_2I_3 \subseteq B + (J(\mathbb{R}) \cap soc(\mathbb{R}))$, it follows that either $sI_1I_3\mathcal{H} \subseteq B\mathcal{H} + (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$ or $sI_2I_3\mathcal{H} \subseteq B\mathcal{H} + (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$ or $I_1I_2I_3\mathcal{H} \subseteq B\mathcal{H} + (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$. Since \mathcal{H} is a projective then by lemmas 2.11, 2.12 $(J(\mathcal{H}) \cap soc(\mathcal{H})) = (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$, it follows that either $sI_1A \subseteq B\mathcal{H} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $sI_2A \subseteq B\mathcal{H} + (J(\mathcal{H}) \cap soc(\mathcal{H})) = (J(\mathbb{R})\mathcal{H} \cap soc(\mathcal{H}))$. Hence by corollary lemma 2.15 $B\mathcal{H}$ is STPNQ-2-Absorbing submodule of \mathcal{H} .

(⇐) Let $I_1I_2I_3I_4 \subseteq B$, for I_1 , I_2 , I_3 and I_4 are ideals in R, implies that $I_1I_2I_3(I_4\mathcal{H}) \subseteq B\mathcal{H}$. But $B\mathcal{H}$ is STPNQ-2-Absorbing submodule of \mathcal{H} , then by lemma 3.2 either $I_1I_2(I_4\mathcal{H}) \subseteq B\mathcal{H} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $I_1I_3(I_4\mathcal{H}) \subseteq B\mathcal{H} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $I_2I_3(I_4\mathcal{H}) \subseteq B\mathcal{H} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$. But \mathcal{H} is a projective then $(J(\mathcal{H}) \cap soc(\mathcal{H})) = (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$. Thus either $I_1I_2I_4\mathcal{H} \subseteq B\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $I_1I_3I_4\mathcal{H} \subseteq B\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $I_2I_3I_4\mathcal{H} \subseteq B\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$, it follows that either $I_1I_2I_4 \subseteq B + (J(R) \cap soc(R))$ or $I_1I_3I_4 \subseteq B + (J(R) \cap soc(R))$. Hence by lemma 3.2 *B* is STPNQ-2-Absorbing ideal of *R*.

Proposition 3.4 Let \mathcal{H} be a faithful finitely generated multiplication *R*-module and \mathcal{A} is ideal of *R* with $ann_R(\mathcal{H}) \subseteq \mathcal{A}$. Then \mathcal{A} is STPNQ-2-Absorbing ideal of *R* if and only if \mathcal{AH} is STPNQ-2-Absorbing submodule of \mathcal{H} .

Proof (\Rightarrow) Let $rIJ_X \subseteq \mathcal{AH}$ for any $r \in R$, $x \in \mathcal{H}$ and I, J are ideals of \mathbb{R} , it follows that $rIJ_{X} \subseteq \mathcal{AH}$. Since \mathcal{H} is a multiplication, then $\langle x \rangle = I_1\mathcal{H}$ for some ideal I_1 of R, that is $rIJI_1\mathcal{H} \subseteq \mathcal{AH}$. Thus by lemma 3.1 we get $rIJI_1 \subseteq \mathcal{A} + ann(\mathcal{H})$, but \mathcal{H} is faithful, it follows $ann(\mathcal{H}) = (0)$, that is $rIJI_1 \subseteq \mathcal{A} + (J(\mathbb{R}) \cap soc(\mathbb{R}))$ or $IJI_1 \subseteq \mathcal{A} + (J(\mathbb{R}) \cap soc(\mathbb{R}))$ or $rII_1 \subseteq \mathcal{A} + (J(\mathbb{R}) \cap soc(\mathbb{R}))$ or $rII_1 \subseteq \mathcal{A} + (J(\mathbb{R}) \cap soc(\mathbb{R}))$ or $IJI_1 \subseteq \mathcal{A} + (J(\mathbb{R}) \cap soc(\mathbb{R}))$ or $IJI_1\mathcal{H} \subseteq \mathcal{AH} + (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$ or $IJI_1\mathcal{H} \subseteq \mathcal{AH} + (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$ or $rJ\langle x \rangle \subseteq \mathcal{AH} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $IJ\langle x \rangle \subseteq \mathcal{AH} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$. Thus by lemma 2.15 \mathcal{AH} is an STPNQ-2-Absorbing submodule of \mathcal{H} .

(⇐) Let $rstI \subseteq \mathcal{A}$ for $r, s, t \in R$ and I ideal of R, hence $rst(I\mathcal{H}) \subseteq \mathcal{AH}$, but \mathcal{AH} is an STPNQ-2-Absorbing submodule of \mathcal{H} , then either $rs(I\mathcal{H}) \subseteq \mathcal{AH} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $rt(I\mathcal{H}) \subseteq \mathcal{AH} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $st(I\mathcal{H}) \subseteq \mathcal{AH} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$. Thus by lemmas 2.7,2.8 either $rsI\mathcal{H} \subseteq \mathcal{AH} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $rtI\mathcal{H} \subseteq \mathcal{AH} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $stI\mathcal{H} \subseteq \mathcal{AH} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$, hence either $rsI \subseteq \mathcal{A} + (J(R) \cap soc(R))$ or $rtI \subseteq \mathcal{A} + (J(R) \cap soc(R))$ or $stI \subseteq \mathcal{A} + (J(R) \cap soc(R))$. Therefore \mathcal{A} is EXNPQ-2-Absorbing ideal of R.

Proposition 3.5 Let \mathcal{H} be a finitely generated multiplication non-singular content *R*-module, and *B* is an ideal of *R* with $ann_R(\mathcal{H}) \subseteq B$. Then *B* is STPNQ-2-Absorbing ideal of *R* if and only if $B\mathcal{H}$ is STPNQ-2-Absorbing submodule of \mathcal{H} .

Proof (\Rightarrow) Let $sI_1I_2A \subseteq B\mathcal{H}$, for $s \in R$, I_1 , I_2 are ideals of R and A is a submodule of \mathcal{H} . Since \mathcal{H} is a multiplication, then $A = I_3\mathcal{H}$, for some ideal I_3 of R, that is $sI_1I_2A = sI_1I_2I_3\mathcal{H} \subseteq B\mathcal{H}$. But \mathcal{H} is a finitely generated multiplication R-module then by lemma 3.1 $sI_1I_2I_3 \subseteq B + ann_R(\mathcal{H})$, but $ann_R(\mathcal{H}) \subseteq B$, implies that $B + ann_R(\mathcal{H}) = B$, thus $sI_1I_2I_3 \subseteq B$

B. Now, by assumption *B* is STPNQ-2-Absorbing ideal of *R* then by lemma 2.15 either $sI_1I_3 \subseteq B + (J(\mathbb{R}) \cap soc(\mathbb{R}))$ or $sI_2I_3 \subseteq B + (J(\mathbb{R}) \cap soc(\mathbb{R}))$ or $I_1I_2I_3 \subseteq B + (J(\mathbb{R}) \cap soc(\mathbb{R}))$, it follows that either $sI_1I_3\mathcal{H} \subseteq B\mathcal{H} + (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$ or $sI_2I_3\mathcal{H} \subseteq B\mathcal{H} + (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$ or $I_1I_2I_3\mathcal{H} \subseteq B\mathcal{H} + (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$. Since \mathcal{H} is a projective then by lemmas 2.16, 2.17 $(J(\mathcal{H}) \cap soc(\mathcal{H})) = (J(\mathbb{R})\mathcal{H} \cap soc(\mathbb{R})\mathcal{H})$, it follows that either $sI_1A \subseteq B\mathcal{H} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $sI_2A \subseteq B\mathcal{H} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $I_1I_2A \subseteq B\mathcal{H} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$. Hence by corollary lemma 2.15 $B\mathcal{H}$ is STPNQ-2-Absorbing submodule of \mathcal{H} .

(⇐) Let $I_1I_2I_3I_4 \subseteq B$, for I_1 , I_2 , I_3 and I_4 are ideals in R, implies that $I_1I_2I_3(I_4\mathcal{H}) \subseteq B\mathcal{H}$. But $B\mathcal{H}$ is STPNQ-2-Absorbing submodule of \mathcal{H} , then by lemma 3.2 either $I_1I_2(I_4\mathcal{H}) \subseteq B\mathcal{H} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $I_1I_3(I_4\mathcal{H}) \subseteq B\mathcal{H} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$ or $I_2I_3(I_4\mathcal{H}) \subseteq B\mathcal{H} + (J(\mathcal{H}) \cap soc(\mathcal{H}))$. But \mathcal{H} is a non-singular content R-module then $(J(\mathcal{H}) \cap soc(\mathcal{H})) = (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$. Thus either $I_1I_2I_4\mathcal{H} \subseteq B\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $I_2I_3I_4\mathcal{H} \subseteq B\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$ or $I_2I_3I_4\mathcal{H} \subseteq B\mathcal{H} + (J(R)\mathcal{H} \cap soc(R)\mathcal{H})$, it follows that either $I_1I_2I_4 \subseteq B + (J(R) \cap soc(R))$ or $I_1I_3I_4 \subseteq B + (J(R) \cap soc(R))$ or $I_2I_3I_4 \subseteq B + (J(R) \cap soc(R))$. Hence by lemma 3.2 B is STPNQ-2-Absorbing ideal of R.

Proposition 3.6 Let \mathcal{H} be a finitely generated multiplication Z-regular content *R*-module, and *B* is an ideal of *R* with $ann_R(\mathcal{H}) \subseteq B$. Then *B* is STPNQ-2-Absorbing ideal of *R* if and only if $B\mathcal{H}$ is STPNQ-2-Absorbing submodule of \mathcal{H} .

Proof Similar to the proof of proposition 3.5 by using lemma 2.19.

Proposition 3.7 Let \mathcal{H} be a faithful finitely generated multiplication *R*-module and $\mathcal{F} \subset \mathcal{H}$, then the following statements are equivalent:

1. \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} .

2. $[\mathcal{F}_{:_R} \mathcal{H}]$ is STPNQ-2-Absorbing ideal of *R*.

3. $\mathcal{F} = B\mathcal{H}$ for some STPNQ-2-Absorbing ideal *B* of *R*.

Proof (1) \Leftrightarrow (2) It follows by Proposition 2.10.

 $(2) \Rightarrow (3)$ Since $[\mathcal{F}:_{R}\mathcal{H}]$ is STPNQ-2-Absorbing ideal of R and \mathcal{H} is a faithful, that is $(0) = \operatorname{ann}_{R}(\mathcal{H}) = [0:_{R}\mathcal{H}] \subseteq [\mathcal{F}:_{R}\mathcal{H}]$ and \mathcal{H} is a multiplication, so $\mathcal{F} = [L:_{R}\mathcal{H}]\mathcal{H}$, implies that $\mathcal{F} = J\mathcal{H}$ for some STPNQ-2-Absorbing ideal $J = [\mathcal{F}:_{R}\mathcal{H}]$ of R.

 $(3) \Rightarrow (2)$ Clearly.

But before that we need the following lemma.

Lemma 3.8 [17 , proposition. (3.1)] If \mathcal{H} is a multiplication R-module, then \mathcal{H} is cancellation if and only if \mathcal{H} is a faithful finitely generated.

Proposition 3.9 Let \mathcal{H} be a finitely generated multiplication projective R-module and $\mathcal{F} \subset \mathcal{H}$ with $ann_R(\mathcal{H}) \subseteq [\mathcal{F}_{:_R} \mathcal{H}]$. Then the following statements are equivalent:

1. \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} .

2. $[\mathcal{F}_{:_R} \mathcal{H}]$ is STPNQ-2-Absorbing ideal of *R*.

3. $\mathcal{F} = B\mathcal{H}$ for some STPNQ-2-Absorbing ideal *B* of *R*.

Proof (1) \Leftrightarrow (2) It follows by proposition 2.14.

(2) \Rightarrow (3) Suppose that $[\mathcal{F}:_{R}\mathcal{H}]$ is STPNQ-2-Absorbing ideal of R. Since \mathcal{H} is a multiplication, then $\mathcal{F} = [\mathcal{F}:_{R}\mathcal{H}]\mathcal{H} = B\mathcal{H}$, where $B = [\mathcal{F}:_{R}\mathcal{H}]$ is STPNQ-2-Absorbing ideal of R with $\operatorname{ann}_{R}(\mathcal{H}) \subseteq [\mathcal{F}:_{R}\mathcal{H}] = B$, implies that $\operatorname{ann}_{R}(\mathcal{H}) \subseteq B$.

 $(3) \Rightarrow (2)$ Assume that $\mathcal{F} = B\mathcal{H}$ (1) for some STPNQ-2Absorbing ideal B of R with $\operatorname{ann}_{R}(\mathcal{H}) \subseteq B$. But \mathcal{H} is a multiplication, then $\mathcal{F} = [\mathcal{F}:_{R}\mathcal{H}]\mathcal{H}$(2), from (1) and (2) we have $[\mathcal{F}:_{R}\mathcal{H}]\mathcal{H} = B\mathcal{H}$. Since \mathcal{H} is a finitely generated, then by lemma 3.8 \mathcal{H} is weak cancellation, it follows that $[\mathcal{F}:_{R}\mathcal{H}] + \operatorname{ann}_{R}(\mathcal{H}) = B + \operatorname{ann}_{R}(\mathcal{H})$, but $\operatorname{ann}_{R}(\mathcal{H}) \subseteq B$, and $\operatorname{ann}_{R}(\mathcal{H}) \subseteq [\mathcal{F}:_{R}\mathcal{H}]$ implies that $\operatorname{ann}_{R}(\mathcal{H}) + B = B$ and $[\mathcal{F}:_{R}\mathcal{H}] + \operatorname{ann}_{R}(\mathcal{H}) = [\mathcal{F}:_{R}\mathcal{H}]$. Thus $B = [\mathcal{F}:_{R}\mathcal{H}]$, but B is STPNQ-2-Absorbing ideal of R, hence $[\mathcal{F}:_{R}\mathcal{H}]$ is STPNQ-2-Absorbing ideal of R.

(3) \Leftrightarrow (1) It follows by proposition 3.3.

Proposition 3.10 Let \mathcal{H} be a finitely generated multiplication non-singular contentR-module and $\mathcal{F} \subset \mathcal{H}$ with $ann_R(\mathcal{H}) \subseteq [\mathcal{F}_{:_R} \mathcal{H}]$. Then the following statements are equivalent:

1. \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} .

2. $[\mathcal{F}_{:_R} \mathcal{H}]$ is STPNQ-2-Absorbing ideal of *R*.

3. $\mathcal{F} = B\mathcal{H}$ for some STPNQ-2-Absorbing ideal *B* of *R*.

Proof (1) \Leftrightarrow (2) It follows by proposition 2.18.

(2) \Leftrightarrow (3) Follows in the same way as the proof of Proposition 3.9.

Proposition 3.11 Let \mathcal{H} be a finitely generated multiplication Z-regular content R-module and $\mathcal{F} \subset \mathcal{H}$ with $ann_R(\mathcal{H}) \subseteq [\mathcal{F}_{:_R} \mathcal{H}]$. Then the following statements are equivalent:

- 1. \mathcal{F} is STPNQ-2-Absorbing submodule of \mathcal{H} .
- 2. $[\mathcal{F}_{:_R} \mathcal{H}]$ is STPNQ-2-Absorbing ideal of *R*.
- 3. $\mathcal{F} = B\mathcal{H}$ for some STPNQ-2-Absorbing ideal *B* of *R*.

Proof (1) \Leftrightarrow (2) It follows by proposition 2.20.

(2) \Leftrightarrow (3) Follows in the same way as the proof of Proposition 3.9.

References

- [1] Badawi, A. On 2-Absorbing Ideals of Commutative Rings, Bull. Austral. Math. Soc, (75) (2007), 417-429.
- [2] Darani, A.Y and Soheilniai. F. 2-Absorbing and Weakly 2-Absorbing Submodules, Tahi Journal. Math, (9) (2011), 577-584.
- [3] Innam, M. A and Abdulrahman, A. H. Semi- 2-Absorbing Submodules and Semi-2-absorbing Modules, international Journal of Advanced Scientific and Technical Research, RS Publication, 5 (3) (2015), 521-530.
- [4] Dubey M. and Aggarwal P. On 2-Absorbing Primary Submodules, asian European J. of Math. 8 (4) (2015), 243-251.
- [5] Mohammad Y. and Rashid A. On Almost 2-Absorbing Submodules, italian Journal of Pure and App. Math. (30) (2015), 923-928.
- [6] Reem T. and Shwkea M. Nearly 2-Absorbing Submodules and Related Concept, tikrit Journal for Pure Sci. 2 (3) (2018), 215-221.
- [7] Haibat, K. Mohammedali and Omar, A. Abdalla. Pseudo-2-Absorbing and Pseudo Semi-2- Absorbing Submodules, AIP Conference Proceedings 2096,020006,(2019), 1-9.
- [8] Mostafanasat H. and Tekir U. Quasi-2Absorbing Submodules, european Journal of Pure Math. 8 (3), 417-430.
- [9] Omer A. and Haibat K. Pseudo quasi 2-Absorbing Submodules, ibn Al-Haitham Journal for Pure and Apple Sci. 32 (2) (2019), 114-122.
- [10] Omer A. Mohamad, E. D. Haibat, K. M. Nearly Quasi Primary-2-Absorbing Submodules, journal of Al-Qadisiyah for Computer Science and Mathematics, 14 (13) (2022), 59-64.
- [11] Lu, C. P. Prime Submodule of Modules, Comm. Math, University Spatula, (1981), vol.(33), pp.(61-69).
- [12] Kasch, F. Modules and Rings, London Math. Soc. Monographs, New York, Academic press, (1982).
- [13] Barnard A. Multiplication Modules, Journal of Algebra, (7) (1981), 174-178.
- [14] Goodearl, K. R. Ring Theory, Marcel Dekker, Inc. New York and Basel.(1976).
- [15] Lu, C. P. M-radical of Submodule in modules, Math. Japanica, (1989), Vol. (34), No. (2), P. (211-219)...
- [16] Zelmanowitz, J. Regular Modules, Trans. American Math. Soc. (1973), Vol (163), PP. (341-355).
- [17] Ali, S. M. On Cancellation Modules, M. Sc. Thesis, University of Baghdad, (1993).
- [18] Mohamad, E. D. Haibat, K. M. Strongly Pseudo Nearly Quasi-2-Absorbing Submodules(I), journal of Al-Qadisiyah for Computer Science and Mathematics (2022), to appear online.
- [19] El Bast, Z. A. and Smith, P. F. Multiplication Modules, Comm. In Algebra. (1988), Vol. (16) No.(4), PP.(755-779).
- [20] Nuha H. H. The Radical of Modules, M. Sc. Thesis, University of Baghdad, (1996).
- [21] Smith, P. F. Some Remarks on Multiplication Modules, Arch. Math. (1988), Vol. (50), PP. (223-235).