

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Extend Nearly Pseudo Semi-2-Absorbing Submodules (II)

Omar A. Abdullaha, Haibat K. Mohammadali^b

^aDepartment of Mathematics, College of Computer Science and Mathematics, Univ. of Tikrit, Iraq. Email: omer.a.abdullah35383@st.tu.edu.iq

^bDepartment of Mathematics, College of Computer Science and Mathematics, Univ. of Tikrit, Iraq . Email[: H.mohammadali@tu.edu.iq](mailto:H.mohammadali@tu.edu.iq)

ARTICLE INFO

Article history: Received: 20 /10/2022 Rrevised form: 29 /11/2022 Accepted : 04 /12/2022 Available online: 31 /12/2022

Keywords: Multiplication Modules. Faithfull Modules. Projective Modules. Finitily generated Modules. Non-singular Modules, Z-regular Modules, Good rings and Artinian Rings.

ABSTRACT

 In this work we will study the concept of Extend Nearly Pseudo Semi-2-Absorbing submodules in multiplication modules and characterization of Extend Nearly Pseudo Semi-2- Absorbing ideals by of Extend Nearly Pseudo Semi-2-Absorbing submodules.

MSC.

https://doi.org/10.29304/jqcm.2022.14.4.1120

1. Introduction

 It is known that the concept of the 2-Absorbing submodules was studied in previous years by researchers Darani and Soheilinia, where a proper submodule V of an R-module M is called 2-Absorbing submodule if whenever $abw \in$ V for $a, b \in R$ and $w \in M$, then either $aw \in V$ or $bw \in V$ or $ab \in [V:_{R} M][1]$, as $[V:_{R} M] = \{a \in R: aM \subseteq V\}[2]$ ". Also, the concept of Semi-2-Absorbing submodules is one of the important generalizations in this research, where a proper submodule V of an R-module M is called Semi-2-Absorbing submodule if whenever $a^2w \in V$ for $a \in R$ and w ∈ M, then either $aw \in V$ or $a^2 \in [V:_{R} M][3]$. It is known that many concepts were circulated in previous years, such as (WN-2-Absorbing, WNS-2-Absorbing, Weakly Semi2-Absorbing, Quasi Primary-2-Absorbing, WES-2- Absorbing, WEQ-2-Absorbing and Nearly Semi-2-Absorbing) submodules; see [4, 5, 6, 7, and 8]. Also, these concepts are generalizations of Extend Nearly Pseudo Semi-2-Absorbing submodules. It is worth noting that this research is continuations of the research presented in the same journal see [9]. The multiplication module is define by an R module *M* is multiplication, if every submodule K of *M* is of the form $K = IM$ for some ideal *I* of *R*. Equivalently *M* is a multiplication R-module if every submodule K of M of the form $K = [K:_{R} M]M[10]$. Recall that an R-module M is faithful if $ann_R(M) = (0)$, where $ann_R(M) = \{r \in R : rw = (0)\}$ [11]. Also, recall that an R-module M is finitely generated if $M = Rx_1 + Rx_2 + \cdots + Rx_n$ for $x_1, x_2, \ldots, x_n \in M[12]$. And an R-module M is called concellation module if $AM = BM$ for any ideals A and B of R implies that $A = B[13]$. Recall that An R-module M is a projective if for any R-epimorphism f from an R-module M on to an R-module \bar{M} and for any homomorphism g from an R-module \bar{M} to

Email addresses:

Communicated by 'sub etitor'

[∗]Corresponding author

 \bar{M} , there exists a homomorphism h from \bar{M} to M such that $f \circ h = g[12]$, Recall that a ring R is Artinian if R satisfies (DCC) is an ideals of R, that is if $\{I_\alpha\}_{\alpha \in \Lambda}$ is a family of ideals of R such that $I_1 \supseteq I_2 \supseteq \cdots$, then $\exists m \in \mathbb{Z}^+$ such that $In =$ *Im* for any $n \ge m$ [14]. Recall that a ring *R* is said to be local ring *R* if *R* has a unique maximal ideal[15]. non-singular is define by an R-module M is non-singular if $Z(M) = M$, where $Z(M) = \{x \in M : xI = (0),\}$ for some essential ideal I of R}[16]. And the content module is define by an R -module M is said to be content module if $(\bigcap_{i\in I}A_i)M=\bigcap_{i\in I}A_iM$ for each family of ideals A_i in R [17]. Recall that an R-module M is called a Zregular if for each $e \in M$ there exists $f \in M' = Mom_R(M, R)$ such that $e = f(e)e[18]$. In addition, the weak cancellation can be defined as follows an R-module M is called weak cancellation if $IM = JM$, implies that $I +$ $ann_R(M) = J + ann_R(M)$ for I, J are ideals in R[19]. All these basics helped us to present the most important propositions and new equivalents that pertain to this concept.

2. Extend Nearly Pseudo Semi-2-Absorbing Submodules in Multiplication modules.

 In this paper we introduced the concept of Extend Nearly Pseudo Semi-2-Absorbing submodules in multiplication modules. As well as study the relationship between the Extend Nearly Pseudo Semi-2-Absorbing submodules with the residual of this concept.

Definition 2.1 A proper submodule K of an R-module M is said to be Extend Nearly Pseudo Semi-2-Absorbing (for short EXNPS2AB) submodule of M if whenever $a^2w \in K$, where $a \in R$, $w \in M$ implies that either $aw \in K +$ $soc(M) + J(M)$ or $a^2M \subseteq K + soc(M) + J(M)$.

And an ideal I of a ring R is called EXNPS2AB ideal of R, if I is an EXNPS2AB R-submodule of an R-module R.

Proposition 2.2 A proper submodule K of a multiplication R-module M is EXNPS2AB submodule of M if and only if $\mathcal{H}^2V \subseteq K$ for E and G are submodules of M, implies that either $EG \subseteq K + soc(M) + I(M)$ or $\mathcal{H}^2 \subseteq K + soc(M) + I(M)$ $I(M)$.

Proof (\Rightarrow) Let $r^2 G \subseteq K$ for $r \in R$, G is a submodule of M. But M is a multiplication module, then $G = IM$ for some ideal I of R, it follows that $r^2IM \subseteq K$, then by hypothesis either $rIM \subseteq K + soc(M) + J(M)$ or $r^2 \in [K + soc(M) +$ $J(M):_R M$]. That is either $rG \subseteq K + soc(M) + J(M)$ or $r^2 \in [K + soc(M) + J(M):_R M]$. Hence K is EXNPS2AB submodule of M .

(←) Let $E^2G \subseteq K$ for E, G are submodules of a multiplication module M, it follows that $(IM)^2(JM) = I^2JM \subseteq K$ for some ideals I, *J* of R. Since K is EXNPS2AB submodule of M, then we have either $IJM \subseteq K + soc(M) + J(M)$ or $I^2 \subseteq$ $[K + soc(M) + J(M) :_R M]$, that is either $EG \subseteq K + soc(M) + J(M)$ or $E^2 \subseteq K + soc(M) + J(M)$.

Proposition 2.3 A proper submodule K of a multiplication R-module *M* is EXNPS2AB submodule of *M* if and only if $h_1^2 \bar{h}_2 \subseteq \mathbb{K}$ for $h_1, h_2 \in M$, implies that either $h_1 h_2 \subseteq \mathbb{K} + \mathit{soc}(M) + \mathit{J}(M)$ or $h_1^2 \subseteq \mathbb{K} + \mathit{soc}(M) + \mathit{J}(M)$.

Proof (\Rightarrow) Let $h_1^2 h_2 \subseteq K$ for $h_1, h_2 \in M$, it follows that $(h_1)^2 (h_2) \subseteq K$. But M is a multiplication module, then $(h_1)^2 =$ $(IM)^2 = I^2M$ and $(h_2) = JM$ for some ideals *I* and *J* of *R*, then $I^2JM \subseteq K$, since *K* is EXNPS2AB submodule of *M*, then either $I/M \subseteq K + soc(M) + J(M)$ or $I^2M \subseteq K + soc(M) + J(M)$. That is either $h_1h_2 \subseteq K + soc(M) + J(M)$ or $h_1^2 \subseteq K$ $K + soc(M) + J(M).$

(⇐**)** Clear.

The corollaries that result directly from Proposition 2.2 are as follows.

Corollary 2.4 A proper submodule K of a multiplication R-module M is EXNPS2AB submodule of M if and only if $\mathcal{H}^2 k \subseteq K$ for H is a submodule of M and $k \in M$, implies that either $\mathcal{H} k \subseteq K + \mathcal{S}oc(M) + J(M)$ or $\mathcal{H}^2 \subseteq K +$ $soc(M) + J(M).$

Corollary 2.5 A proper submodule K of a multiplication R -module M is EXNPS2AB submodule of M if and only if $y^2G \subseteq K$ for G is a submodule of M and $y \in M$, implies that either $yG \subseteq K+soc(M) + J(M)$ or $y^2 \subseteq K+soc(M) +$ $I(M)$.

Remark 2.6 The residual of EXNPS2AB submodule of a module M need not to be EXNPS2AB ideal of R. See the following example.

Example 2.7 Let $M = Z_{48}$, $R = Z$ and the submodule $G = \langle \overline{24} \rangle$ is EXNPS2AB submodule of M. But $[\langle \overline{24} \rangle_{R} Z_{48}] = 24Z$ is not EXNPS2AB ideal of Z, since $2^2.6 \in 24$ Z, for $2.6 \in \mathbb{Z}$, implies that $2.6 = 12 \notin 24$ Z and $4 \notin 24$ Z.

So the following results show that under curtained conditions it becomes true.

Lemma 2.8 [13, Prop. (3.1) **]** If *M* is a multiplication *R*-module, then *M* is concellation if and only if *M* is faithful finitely generated.

Lemma 2.9 **[10, Coro. (2.14) (i)]** Let M be faithful multiplication R-module, then $\text{soc}(R)M = \text{soc}(M)$.

Lemma 2.10 **[11]** Let *M* be faithful multiplication *R*-module, then $I(R)M = I(M)$.

Proposition 2.11 Let K be a proper submodule of a faithful multiplication R-module M. Then K is EXNPS2AB submodule of M if and only if $[K:_{R} M]$ is EXNPS2AB ideal of R .

Proof (\Rightarrow) Let $r^2 J \subseteq [K:_{R} M]$ for some ideal *J* of *R* and $r \in R$, hence $r^2(JM) \subseteq K$. But K is EXNPS2AB submodule of *M*, then by Corollary 2.24 In [9] either $r(JM) \subseteq K + soc(M) + J(M)$ or $r^2 \in [K + soc(M) + J(M):_R M]$. Since *M* is multiplication, then $K = [K:_{R} M]M$ and since M is faithful multiplication, then by Lemma 2.9 $soc(M) = soc(R)M$ and by Lemma 2.10 $J(M) = J(R)M$. Thus either $I(JM) \subseteq [\text{K}:_R M]M + soc(R)M + J(R)M$ or $r^2M \subseteq [\text{K}:_R M]M +$ $soc(R)M + J(R)M$, thus by Lemma 2.8 either $IJ \subseteq [K:_{R} M] + soc(R) + J(R)$ or $r^{2} \in [K:_{R} M] + soc(R) + J(R)$ $[[K:_{R} M] + soc(R) + J(R): R]$. Hence $[K:_{R} M]$ is EXNPS2AB ideal of R.

(←) Let $M^2 L \subseteq K$ for M and L are a submodules of M. Since M is a multiplication, then $M = IM$ and $L = JM$ for some ideals *I*, *J* of *R*, that is $I^2JM\subseteq K$, implies that $I^2J\subseteq [K:_{R}M]$, but $[K:_{R}M]$ is EXNPS2AB ideal of *R*, then either $IJ \subseteq [K:_{R} M] + soc(R) + J(R)$ or $I^{2} \subseteq [[K:_{R} M] + soc(R) + J(R):_{R} R] = [K:_{R} M] + soc(R) + J(R)$, thus either $IJM \subseteq$ $[K:_{R} M]M + soc(R)M + J(R)M$ or $I^{2}M \subseteq [K:_{R} M]M + soc(R)M + J(R)M$. Hence by Lemma 2.9 and Lemma 2.10 either IJM \subseteq K + soc(M) + J(M) or I²M \subseteq K + soc(M) + J(M), thus either ML \subseteq K + soc(M) + J(M) or M² \subseteq K + $soc(M) + I(M)$. Hence by Proposition 2.2 K is EXNPS2AB submodule of M.

Lemma 2.12[12, Theo. (9.2.1) (g)] For any projective R-module M, we have $J(R)M = J(M)$.

Lemma 2.13[11, Prop. (3.24] For any projective R-module M, we have $\text{soc}(R)M = \text{soc}(M)$.

Proposition 2.14 Let K be a proper submodule of a multiplication projective R-module M. Then K is EXNPS2AB submodule of *M* if and only if $[K:_{R} M]$ is EXNPS2AB ideal of *R*.

Proof (\Rightarrow **)** Let $I^2r \subseteq [K:_{R} M]$ for $r \in R$ and some ideal *I* of *R*, hence $I^2rM \subseteq K$. But K is EXNPS2AB submodule of *M*, then by Proposition 2.20 in [9] either $I r M \subseteq K + soc(M) + J(M)$ or $I^2 \subseteq [K + soc(M) + J(M):_R M]$. Since M is multiplication, then $K = [K:_{R} M]M$ and since M is projective multiplication, then by Lemma 2.13 soc(M) = soc(R)M and by Lemma 2.12 $J(M) = J(R)M$. Thus either $IrM \subseteq [K:_{R} M]M + soc(R)M + J(R)M$ or $I^{2}M \subseteq [K:_{R} M]M +$ $soc(R)M + J(R)M$, hence either $Ir \subseteq [K:_{R} M] + soc(R) + J(R)$ or $I^{2} \subseteq [K:_{R} M] + soc(R) + J(R) = [[K:_{R} M] +$ $soc(R) + J(R)$: R Therefore by Corollary 2.22 in [9] [K:_R M] is EXNPS2AB ideal of R.

(←) Let $M^2m \subseteq K$ for M is a submodule of M and $m \in M$, that is $M^2(m) \subseteq K$ Since M is a multiplication, then $M =$ *IM* and $(m) = JM$ for some ideals *I*, *J* of *R*, that is $I^2JM \subseteq K$, implies that $I^2J \subseteq [K:_{R} M]$, but $[K:_{R} M]$ is EXNPS2AB ideal of R, then either $IJ \subseteq [K:_{R} M] + soc(R) + J(R)$ or $I^{2} \subseteq [[K:_{R} M] + soc(R) + J(R):_{R} R] = [K:_{R} M] + soc(R) +$ $J(R)$, thus either $I/M \subseteq [\mathcal{K}:_R M]M + soc(R)M + J(R)M$ or $I^2M \subseteq [\mathcal{K}:_R M]M + soc(R)M + J(R)M$. Hence by Lemma 2.12 and Lemma 2.13 either $I/M \subseteq K + soc(M) + J(M)$ or $I^2M \subseteq K + soc(M) + J(M)$, thus either $Mm \subseteq K +$ $soc(M) + J(M)$ or $M^2 \subseteq K + soc(M) + J(M)$, hence by Corollary 2.4 K is EXNPS2AB submodule of M.

Remark 2.15[12] *R* is a good ring if $J(R)M = J(M)$.

Lemma 2.16[11, Prop. (3.25] Let *M* be a *Z*-regular *R*-module, then $\text{soc}(M) = \text{soc}(R)M$.

Proposition 2.17 Let K be a proper submodule of Z-regular multiplication module *M* over a good ring R. Then K is EXNPS2AB submodule of M if and only if $[K:_{R} M]$ is EXNPS2AB ideal of R.

Proof (\Rightarrow **)** Let $I^2J \subseteq [\mathbb{K}:_R M]$ for some ideals *I* and *J* of *R*, then $I^2JM \subseteq \mathbb{K}$. But K is EXNPS2AB submodule of *M*, then either $I/M \subseteq K + soc(M) + J(M)$ or $I^2 \subseteq [K + soc(M) + J(M):_R M]$. Since M is multiplication, then $K = [K:_R M]M$ and since *M* is *Z*-regular multiplication module, then by Lemma 2.16 $soc(M) = soc(R)M$ and since *R* is a good ring,

then by Remark 2.15 $J(M) = J(R)M$. Thus either $IJM \subseteq [K:_{R} M]M + soc(R)M + J(R)M$ or $I^{2}M \subseteq [K:_{R} M]M +$ $\mathit{soc}(R)M + J(R)M$, then either $IJ \subseteq [\mathit{K} :_R M] + \mathit{soc}(R) + J(R)$ or $I^2 \subseteq [\mathit{K} :_R M] + \mathit{soc}(R) + J(R) = [[\mathit{K} :_R M] + J(R)]$ $soc(R) + J(R): R$. Hence $[K:_{R} M]$ is EXNPS2AB ideal of R.

 ϵ Let $m^2 L \subseteq K$ for $m \in M$ and L is a submodule of M. Since M is a multiplication, then $(m) = IM$ and $L = JM$ for some ideals *I*, *J* of *R*, that is $I^2JM \subseteq K$, implies that $I^2J \subseteq [K:_{R} M]$, but $[K:_{R} M]$ is EXNPS2AB ideal of *R*, then either $IJ \subseteq [K:_{R} M] + soc(R) + J(R)$ or $I^{2} \subseteq [[K:_{R} M] + soc(R) + J(R):_{R} R] = [K:_{R} M] + soc(R) + J(R)$, thus either $IJM \subseteq$ $[K:_{R} M]M + soc(R)M + J(R)M$ or $I^{2}M \subseteq [K:_{R} M]M + soc(R)M + J(R)M$. Hence by Lemma 2.16 and Remark 2.15 either $mL \subseteq K + soc(M) + J(M)$ or $m^2 \subseteq K + soc(M) + J(M)$. Thus by Corollary 2.5 K is EXNPS2AB submodule of M

Lemma 2.18 [12, Coro. (9.7.3) (a)] If $(R//(R))$ is a semi-simple ring, then R is a good ring.

Lemma 2.19 [12, Coro. $(9.7.3)$ [b]] If R is an Artinian ring, then R is a good ring.

The corollaries that result directly from Proposition 2.17 are as follows.

Corollary 2.20 Let *M* be a *Z*-regular multiplication *R*-module such that $(R/(R))$ is a semi-simple ring, and K be a proper submodule of M. Then K is EXNPS2AB submodule of M if and only if $[K:_{R} M]$ is EXNPS2AB ideal of R.

Corollary 2.21 Let *M* be a *Z*-regular multiplication module over Artinian ring R, and K be a proper submodule of *M*. Then K is EXNPS2AB submodule of M if and only if $[K:_{R} M]$ is EXNPS2AB ideal of R.

Lemma 2.22 [21, Prop. (1.12)] If M is an R-module over local ring R, then $I(R)M = I(M)$.

Proposition 2.23 Let *M* be a *Z*-regular multiplication R -module over a local ring R , and K be a proper submodule of M. Then K is EXNPS2AB submodule of M if and only if $[K:_{R} M]$ is EXNPS2AB ideal of R.

Proof Similarly of Proposition 2.17 by using Lemma 2.19.

Lemma 2.24 [16, Coro. (1.26)] Let M be is a non-singular R-module, then $\text{soc}(R)M = \text{soc}(M)$.

Lemma 2.25 [11, Prop. (1.11)] If *M* is content module, then $J(R)M = J(M)$.

Proposition 2.26 Let K be a proper submodule of a content multiplication non-singular R-module M. Then K is EXNPS2AB submodule of *M* if and only if $[K:_{R} M]$ is EXNPS2AB ideal of *R*.

Proof (⇒) Let $a^2b \in [K:_{R} M]$ for $a, b \in R$, it follows that $a^2(bM) \subseteq K$. But K is EXNPS2AB submodule of M, then by Corollary 2.24 in [9] either $a(bM) \subseteq K + soc(M) + J(M)$ or $a^2 \subseteq [K + soc(M) + J(M):_R M]$. Since M is multiplication, then $K = [K:_{R} M M]$ and since M is non-singular R-module, then by Lemma 2.24 $soc(M) = soc(R)M$ and since *M* is a content, then by Lemma 2.25 $J(M) = J(R)M$. Thus either $abM \subseteq [K:_{R} M]M + soc(R)M + J(R)M$ or $a^2M \subseteq [K:_{R} M]M + soc(R)M + J(R)M$, hence either $ab \subseteq [K:_{R} M] + soc(R) + J(R)$ or $a^2 \in [K:_{R} M] + soc(R) +$ $J(R) = \left[[\mathbf{K} :_{R} M] + \mathit{soc}(R) + J(R) : R \right]$. Hence $[\mathbf{K} :_{R} M]$ is EXNPS2AB ideal of R.

(←) Let $a^2L \subseteq K$ for $a \in R$, L is a submodule of M. Since M is a multiplication, then $L = JM$ for some ideal J of R, that is $a^2JM\subseteq K$, implies that $a^2J\subseteq [K:_{R}M]$. But $[K:_{R}M]$ is EXNPS2AB ideal of R, then either $aJ\subseteq [K:_{R}M]+soc(R)+$ $J(R)$ or $a^2 \in [[\mathcal{K}:_R M] + soc(R) + J(R):_R R] = [\mathcal{K}:_R M] + soc(R) + J(R)$, thus either $aJM \subseteq [\mathcal{K}:_R M]M + soc(R)M +$ $J(R)M$ or $a^2M \subseteq [\mathcal{K}:_R M]M + soc(R)M + \tilde{J}(R)M$. Since M is multiplication, then $\mathcal{K} = [\mathcal{K}:_R M]M$ and since M is nonsingular R-module, then by Lemma2.24 $soc(M) = soc(R)M$ and since M is a content, then by Lemma 2.25 $J(M)$ = $J(R)M$, then either $aL \subseteq K + soc(M) + J(M)$ or $a^2 \in [K + soc(M) + J(M):_R M]$. Thus by Corollary 2.24 in [9] K is EXNPS2AB submodule of M .

By Proof of Proposition 2.26 and using Remark 2.15 we get the following.

Proposition 2.27 Let K be a proper submodule of non-singular multiplication R-module *M* over a good ring R. Then K is EXNPS2AB submodule of M if and only if $[K:_{R} M]$ is EXNPS2AB ideal of R.

As a direct application of Proposition 2.26, we get the following corollaries.

Corollary 2.28 Let K be a proper submodule of non-singular multiplication R-module *M* over Artinian ring R. Then K is EXNPS2AB submodule of M if and only if $[K:_{R} M]$ is EXNPS2AB ideal of R.

Corollary 2.29 Let *M* be a non-singular multiplication R-module such that($R/(R)$) is a semi-simple ring, and K be a proper submodule of M. Then K is EXNPS2AB submodule of M if and only if $[K:_{R} M]$ is EXNPS2AB ideal of R.

Corollary 2.30 Let K be a proper submodule of non-singular multiplication R -module M over local ring R . Then K is EXNPS2AB submodule of M if and only if $[K:_{R} M]$ is EXNPS2AB ideal of R .

Lemma 2.31 [17, Coro. (15)] Let *M* be finitely generated multiplication *R*-module with $JM \neq M$ for all maximal ideal *I* of *R*, then $J(M) = J(R)M$.

Proposition 2.32 Let *M* be finitely generated multiplication non-singular *R*-module with $IM \neq M$ for all $maximal$ ideal I of R, and K be a proper submodule of M. Then K is EXNPS2AB submodule of M if and only if $[K:_{R} M]$ is EXNPS2AB ideal of R.

Proof Clear.

3. More Result of Extend Nearly Pseudo Semi-2-Absorbing Submodules in Multiplication Modules.

 In this part we studied more result of Extend Nearly Pseudo Semi-2-Absorbing submodules in multiplication modules. And we got the most important results.

Lemma 3.1[20, Coro of Theo. (9)] Let M be a finitely generated multiplication R -module I and J are ideals of R . Then $IM \subseteq IM$ if and only if $I \subseteq J + ann_R(M)$.

Proposition 3.2 Let M be a finitely generated multiplication projective R -module, and B is an ideal of R with $ann_p(M) \subseteq B$. Then B is EXNPS2AB ideal of R if and only if BM is EXNPS2AB submodule of M.

Proof (⇒) Let $M^2m \subseteq BM$, for M is a submodule of M and $m \in M$, that is $M^2(m) \subseteq BM$. Since M is a multiplication, then $M^2 = I^2M$ and $(m) = JM$ for some ideals I, J of R, that is $I^2JM \subseteq BM$. But M is a finitely generated multiplication R-module then by Lemma 3.1 $I^2J \subseteq B + ann_R(M)$, but $ann_R(M) \subseteq B$, implies that $B + ann_R(M) = B$, thus $I^2J \subseteq B$. Now, by assumption B is EXNPS2AB ideal of R, then either $IJ \subseteq B + (soc(R) + J(R))$ or $I^2 \subseteq$ $[B + (soc(R) + J(R))$:_R R = $B + (soc(R) + J(R))$, it follows that either $I/M \subseteq BM + soc(R)M + J(R)M$ or $I^2M \subseteq$ $BM + soc(R)M + I(R)M$. Since M is a projective then by Lemma 2.12 and Lemma 2.13 (soc(M) + $I(M)$) = $(soc(R)M + (R)M)$, it follows that either $M(m) \subseteq BM + (soc(M) + (M))$ or $M^2 \subseteq \left[BM + (soc(M) + (M)) \cdot_R M \right]$. Hence by Corollary 2.4 BM is EXNPS2AB submodule of M .

 $\left($ \Leftarrow) Let r^2 I ⊆ B, for I is an ideal of R and $r \in R$, implies that r^2 (IM) ⊆ BM. But BM is EXNPS2AB submodule of M, then by Corollary 2.24 in [9] either $r(IM) \subseteq BM + (soc(M) + J(M))$ or $r^2M \subseteq BM + (soc(M) + J(M))$. But M is a projective then $\big(\mathit{soc}(M) + \mathit{J}(M) \big) = (\mathit{soc}(R)M + \mathit{J}(R)M)$. Thus either $\mathit{r}IM \subseteq BM + \mathit{soc}(R)M + \mathit{J}(R)M$ or $\mathit{r}^2M \subseteq$ $BM + soc(R)M + J(R)M$, it follows that either $rI \subseteq B + soc(R) + J(R)$ or $r^2 \in B + soc(R) + J(R) = [B + soc(R) + J(R)]$ $J(R):_R R$. Hence by Corollary 2.24 in [9] *B* is EXNPS2AB ideal of R.

Proposition 3.3 Let M be a faithful finitely generated multiplication R -module and B is an ideal of R . Then B is EXNPS2AB ideal of R if and only if BM is EXNPS2AB submodule of M .

Proof (\Rightarrow) Let $y^2 G \subseteq BM$, for $y \in M$ and G is a submodule of M, it follows that $(y^2)G \subseteq BM$. Since M is a multiplication, then $(y)^2 = I^2M$ and $G = JM$ for some ideals I, J of R, that is $I^2JM \subseteq BM$. But M is a finitely generated multiplication R-module then by Lemma 3.1 $I^2 J \subseteq B + ann_R(M)$ and since *M* is faithful, then $ann_R(M) = (0)$, implies that $B + ann_R(M) = B$, hence $I^2 J \subseteq B$. But B is EXNPS2AB ideal of R then either $IJ \subseteq B + (soc(R) + J(R))$ or $I^2 \subseteq [B + (soc(R) + J(R)) :_R R] = B + (soc(R) + J(R))$. Thus either $IJM \subseteq BM + (soc(R)M + J(R)M)$ or $I^2M \subseteq I^2$ $BM + (soc(R)M + (R)M)$. Since *M* is a faithful multiplication, then by Lemma 2.9 soc(R) $M = soc(M)$ and by Lemma 2.10 $J(R)M = J(M)$. Hence either $I/M \subseteq BM + (soc(M) + J(M))$ or $I^2M \subseteq BM + (soc(M) + J(M))$. That is either yG ⊆ BM + (soc(M) + J(M)) or y^2 ⊆ BM + (soc(M) + J(M)). Therefore by Corollary 2.5 BM is EXNPS2AB submodule of M .

 $\left($ \Leftarrow) Let r^2 s ∈ B, for $r, s \in R$, implies that r^2 (sM) \subseteq BM. Since BM is EXNPS2AB submodule of M, then either $r(sM) \subseteq BM + (soc(M) + J(M))$ or $r^2 \in [BM + (soc(M) + J(M)) :_R M]$. That is either $rsM \subseteq BM + (soc(M) +$ $J(M)$) or $r^2M \subseteq BM + (soc(M) + J(M))$. But M is a faithful multiplication, then either $rsM \subseteq BM + (soc(R)M +$ $J(R)M$) or $r^2M \subseteq BM + (soc(R)M + J(R)M)$, it follows that either $rs \in B + (soc(R) + J(R))$ or $r^2 \in B + soc(R) +$ $J(R) = [B + soc(R) + J(R):_R R]$. Hence B is EXNPS2AB ideal of R.

Proposition 3.4 Let M be a finitely generated non-singular multiplication module over good ring R and B is an ideal of R with $ann_p(M) \subseteq B$. Then B is EXNPS2AB ideal of R if and only if BM is EXNPS2AB submodule of M.

Proof (\Rightarrow **)** Let $M^2 G \subseteq BM$, for M, G are a submodules of M. Since M is a multiplication, then $M^2 = I^2 M$ and $G = JM$ for some ideals I, J of R, that is $I^2JM\subseteq BM$. But M is a finitely generated multiplication R-module then by Lemma 3.1 $I^2J \subseteq B + ann_R(M)$, since $ann_R(M) \subseteq B$, implies that $B + ann_R(M) = B$, implies that $I^2J \subseteq B$. But B is EXNPS2AB ideal of *R* then either $IJ \subseteq B + (soc(R) + J(R))$ or $I^2 \subseteq [B + (soc(R) + J(R)) :_R R] = B + (soc(R) + J(R))$. Thus either $I/M \subseteq BM + (soc(R)M + J(R)M)$ or $I^2M \subseteq BM + (soc(R)M + J(R)M)$. Since M is non-singular multiplication, then by Lemma 2.24 $soc(R)M = soc(M)$ and since R is good ring, then by Remark 2.15 $J(R)M =$ $J(M)$. Hence either $IJM \subseteq BM + (soc(M) + J(M))$ or $I^2M \subseteq BM + (soc(M) + J(M))$. That is either $MG \subseteq BM +$ $(\mathcal{S}oc(M) + J(M))$ or $M^2 \subseteq BM + (\mathcal{S}oc(M) + J(M))$. Therefore by Proposition 2.2 BM is EXNPS2AB submodule of M.

 $\left($ \Leftarrow) Let I^2 s ⊆ B, for some ideal I of R and s ∈ R, implies that I^2 (sM) ⊆ BM. Since BM is EXNPS2AB submodule of *M*, then by Proposition 2.20 in [9] either $I(sM) \subseteq BM + (soc(M) + J(M))$ or $I^2 \subseteq [BM + (soc(M) + J(M)) :_R M]$. That is either $Im \subseteq BM + (soc(M) + J(M))$ or $I^2M \subseteq BM + (soc(M) + J(M))$. But M is finitely generated nonsingular multiplication module over good ring R, then either $Im \subseteq BM + (soc(R)M + J(R)M)$ or $I^2M \subseteq BM +$ $(soc(R)M + J(R)M)$, thus either $Is \subseteq B + (soc(R) + J(R))$ or $I^2 \subseteq B + soc(R) + J(R) = [B + soc(R) + J(R) :_R R]$. Hence by Corollary 2.4 B is EXNPS2AB ideal of R .

Corollary 3.5 Let *M* be a finitely generated non-singular multiplication module over Artinia ring R and B is an ideal of R with $ann_p(M) \subseteq B$. Then B is EXNPS2AB ideal of R if and only if BM is EXNPS2AB submodule of M.

Proposition 3.6 Let *M* be a finitely generated multiplication *Z*-regular module over a good ring *R*, and *B* is an ideal of R with $ann_p(M) \subseteq B$. Then B is EXNPS2AB ideal of R if and only if BM is EXNPS2AB submodule of M.

Proof (\Rightarrow) Let $A^2K \subseteq BM$, for A, K are a submodules of M. Since M is a multiplication, then $A^2 = I^2M$ and $K = JM$ for some ideals *I*, *J* of *R*, that is $I^2/M \subseteq BM$. But *M* is a finitely generated multiplication *R*-module then by Lemma 3.1 $I^2J \subseteq B + ann_R(M)$, since $ann_R(M) \subseteq B$, implies that $B + ann_R(M) = B$, implies that $I^2J \subseteq B$. But B is EXNPS2AB ideal of R then by Proposition 2.20 in [9] either $IJ \subseteq B + (soc(R) + J(R))$ or $I^2 \subseteq [B + (soc(R) + J(R))]$ $J(R)$:_R R] = $B + (soc(R) + J(R))$. Thus either $IJM \subseteq BM + (soc(R)M + J(R)M)$ or $I^2M \subseteq BM + (soc(R)M + J(R)M)$ $J(R)M$). Since *M* is *Z*-regular multiplication, then by Lemma 2.16 $soc(R)M = soc(M)$ and since *R* is good ring, then by Remark 2.15 $J(R)M = J(M)$. Hence either $IJM \subseteq BM + (soc(M) + J(M))$ or $I^2M \subseteq BM + (soc(M) + J(M))$. That is either $AK \subseteq BM + (soc(M) + J(M))$ or $A^2 \subseteq BM + (soc(M) + J(M))$. Therefore by Proposition 2.2 BM is EXNPS2AB submodule of M .

 $\left($ \Leftarrow) Let $I^2r \subseteq B$, for *I* is an ideals of *R* and $r \in R$, implies that $I^2(rM) \subseteq BM$. Since *BM* is EXNPS2AB *submodule* of *M*, then by Proposition 2.20 in [9] either $I(rM) \subseteq BM + (soc(M) + J(M))$ or $I^2 \subseteq [BM + (soc(M) + J(M)) :_R M]$. That is either $IrM \subseteq BM + (soc(M) + J(M))$ or $I^2M \subseteq BM + (soc(M) + J(M))$. But M is finitely generated multiplication Z-regular module over a good ring R, then either $I r M \subseteq BM + (soc(R)M + J(R)M)$ or $I^2 M \subseteq BM +$ $(soc(R)M + J(R)M)$, it follows that either $Ir \subseteq B + (soc(R) + J(R))$ or $I^2 \subseteq B + soc(R) + J(R) = [B + soc(R) +$ $J(R):_R R$. Hence by Corollary 2.4 *B* is EXNPS2AB ideal of *R*.

Corollary 3.7 Let *M* be a finitely generated multiplication *Z*-regular module over an Artinian ring *R*, and *B* is an ideal of R with $ann_p(M) \subseteq B$. Then B is EXNPS2AB ideal of R if and only if BM is EXNPS2AB submodule of M.

Directly from Proposition 3.6 and using Lemma 2.22 we will get the following result.

Proposition 3.8 Let *M* be a finitely generated multiplication *Z*-regular module over local ring R , and B is an ideal of R with $ann_p(M) \subseteq B$. Then B is EXNPS2AB ideal of R if and only if BM is EXNPS2AB submodule of M.

Now, from Proposition 2.11 and Proposition 3.3 we get the following.

Proposition 3.9 Let *M* be a faithful finitely generated multiplication R-module and K be a proper submodule of *M*, Consequently, the following claims are equal:

- 1. K is EXNPS2AB submodule of M .
- 2. $[K:_{R} M]$ is EXNPS2AB ideal of R.
- 3. $K = BM$ for some EXNPS2AB ideal B of R.

Lemma 3.10 [13, Prop. (3.9) **]** If *M* is a multiplication *R*-module, then *M* is *finitely generated* if and only if *M* is weak cancellation.

Proposition 3.11 Let M be a finitely generated multiplication projective R -module and K be a proper submodule of M with $ann_R(M) \subseteq [\mathcal{K}:_R M]$. Consequently, the following claims are equal:

1. K is EXNPS2AB submodule of M .

2. $[K:_{R} M]$ is EXNPS2AB ideal of R.

3. K = BM for some EXNPS2AB ideal B of R with $ann_R(M) \subseteq B$.

Proof (1⇔2**)** It follows by Proposition 2.14.

(2⇒3) Since [K:_R *M*] is EXNPS2AB ideal of *R* and $ann_R(M)$ ⊆ [0:_R *M*] ⊆ [K:_R *M*], then by Proposition 3.2 [K:_R *M*]*M* is EXNPS2AB submodule of M. Since M is a multiplication, then $K = [K:_{R} M | M = BM$, where $B = [K:_{R} M]$ is EXNPS2AB ideal of R .

(3⇒1) Since K = *BM* for some EXNPS2AB ideal *B* of R such that $ann_R(M) \subseteq B$. From other hand M is a multiplication, then $K = [K:_{R} M]M$, but *M* is a finitely generated, then by Lemma 3.10 *M* is weak cancellation, it follows that $[\text{K}:_{R} M] + ann_{R}(M) = B + ann_{R}(M)$, but $ann_{R}(M) \subseteq B$, and $ann_{R}(M) \subseteq [\text{K}:_{R} M]$ implies that $ann_R(M) + B = B$ and $[K: _R M] + ann_R(M) = [K: _R M]$. Thus $B = [K: _R M]$, but B is EXNPS2AB ideal of R, hence $[K:_{R} M]$ is EXNPS2AB ideal of R. Therefore by Proposition 2.14 we have K is EXNPS2AB submodule of M.

Proposition 3.12 Let *M* be a non-singular finitely generated multiplication module over a good ring R and K be a proper submodule of M with $ann_R(M) \subseteq [\mathbf{K:}_R M]$. Consequently, the following claims are equal:

1. K is EXNPS2AB submodule of M .

2. $[K:_{R} M]$ is EXNPS2AB ideal of R.

3. K = BM for some EXNPS2AB ideal B of R with $ann_R(M) \subseteq B$.

Proof Clear.

Proposition 3.13 Let *M* be a non-singular finitely generated multiplication module over an Artinian ring R, and K be a proper submodule of M with $ann_R(M) \subseteq [\mathop{\rm K}\nolimits_R M].$ Consequently, the following claims are equal:

1. K is EXNPS2AB submodule of M .

2. $[K:_{R} M]$ is EXNPS2AB ideal of R.

3. K = BM for some EXNPS2AB ideal B of R with $ann_R(M) \subseteq B$.

Proof Direct.

Proposition 3.14 Let *M* be a non-singular finitely generated multiplication module over a local ring R and K be a proper submodule of M with $ann_R(M) \subseteq [\mathop{\rm K}\nolimits;_R M]$. Consequently, the following claims are equal:

1. K is EXNPS2AB submodule of M .

2. $[K:_{R} M]$ is EXNPS2AB ideal of R.

3. K = BM for some EXNPS2AB ideal B of R with $ann_R(M) \subseteq B$.

Proof (1⇔2**)** It follows by Corollary 2.30.

(2⇔3**)** Follows in the same way as the Proof of Proposition 3.11.

From Proposition 2.17 and Proposition 3.6 we get.

Proposition 3.15 Let *M* be a finitely generated multiplication *Z*-regular module over a good ring R, and K be a proper submodule of M with $ann_R(M) \subseteq [\mathcal{K} :_R M]$. Consequently, the following claims are equal:

1. K is EXNPS2AB submodule of M .

2. $[K:_{R} M]$ is EXNPS2AB ideal of R.

3. $K = BM$ for some EXNPS2AB ideal *B* of *R* with $ann_R(M) \subseteq B$.

Proposition 3.16 Let *M* be a finitely generated multiplication *Z*-regular module over an Artinian ring R and K be a proper submodule of M with $ann_R(M) \subseteq [\mathbf{K:}_R M]$. Consequently, the following claims are equal:

1. K is EXNPS2AB submodule of M .

2. $[K:_{R} M]$ is EXNPS2AB ideal of R.

3. $K = BM$ for some EXNPS2AB ideal *B* of *R* with $ann_R(M) \subseteq B$.

Proof Direct.

Proposition 3.17 Let *M* be a finitely generated multiplication *Z*-regular module over a local ring R and K be a proper submodule of M with $ann_R(M) \subseteq [\mathcal{K} :_R M]$. Consequently, the following claims are equal:

1. K is EXNPS2AB submodule of M .

2. $[K:_{R} M]$ is EXNPS2AB ideal of R.

3. K = BM for some EXNPS2AB ideal B of R with $ann_R(M) \subseteq B$.

Proof (1⇔**2)** It follows by Proposition 2.23.

(2⇔**3)** Follows in the same way as the Proof of Proposition 3.8.

References

[1] Darani, A.Y and Soheilniai. F. 2-Absorbing and Weakly 2-Absorbing Submodules, Tahi Journal. Math, (9) (2011), 577-584.

[2] Lu, C. P., "*M-radical of Submodules in Modules*" , Math. Japan, vol.(34) 1989, pp. 211-219.

- [3] Innam, M. A and Abdulrahman, A. H. Semi- 2-Absorbing Submodules and Semi-2-absorbing Modules, international Journal of Advanced Scientific and Technical Research, RS Publication, 5 (3) (2015), 521-530.
- [4] Wissam A. Hussain and Haibt K. Mohammdali "WN-2-Absorbing Submodules and WVS-2-Absorbing Submodules", Ibn Al-Haitham Journal, for Pure and Appl.Sci, 31(3)(2018), 118-125.
- [5] Haibt K. Mohammdali and Khalaf H. Alhabeeb "Weakly Semi-2-Absorbing Submodules", Journal of University of Anbar, for Pure.Sci, 21(2)(2018), 57-62.

[6] Omar, A. Abdalla, Mohmed E. Dahash and Haibat, K. Mohammedali. Nearly Quasi Primary-2-Absorbing submodules, Journal of AL-Qadisiya for Computer Science and Mathematics. Under publication. 2022.

[7] Wissam A. Hussain and Haibt K. Mohammdali "WES-2-Absorbing Submodules and WEQ-2-Absorbing Submodules", Tikrit Journal of Pure Sci, 24(2)(2019), 104-108.

[8] Haibat, K. M and Akram, S. M, "NEARLY SEMI-2-ABSORBING SUBMODULES AND RELATED CONCEOTS", Italian Journal of pure and applied mathematics, 54(40) 2019, pp. (620-627).

- [9] Omar, A. Abdalla and Haibat, K. Mohammedali. Extend Nearly Pseudo Semi-2-Absorbing Submodules, Journal of AL-Qadisiya for Computer Science and Mathematics. Under publication. 2022.
- [10] El-Bast, Z. A and Smith, P. F., "Multiplication Modules" ,Comm. In Algebra, 16(4), pp.(755-779). 1988.
- [11] Nuha, H.H., "The Radicals of Modules", M.sc. Thesis, university of Baghdad. 1996.
- [12] Kasch, F. "Modules and Rings", *London Math. Soc. Monographs, New York, Academic press*, 1982.
- [13] Ali, S. M, "On Cancellation Modules", M.Sc. Thesis, University of Baghdad. 1992.
- [14] Barnard A. , " Multiplication Modules " , Journal of Algebra , Vol . (7) , PP. (174 178). 1981.
- [15] Behboodi, M. and Koohi, H., " Weakly Prime Modules " , Vietnam J. of Math., 32(2), pp. (185-195). 2004.
- [16] Goodearl, K. R., "Ring Theory", Marcel Dekker, Inc. New York and Basel.,p.206. 1976.
- [17] Lu, C. P., "M-radical of Submodules in Modules" , Math. Japan, 34, pp. (211-219). 1989.
- [18] Zelmanowitz, J., "Regular Modules", Trans. Amerecan, Math. Soc. Vol. (163), pp.(341-355). 1973.
- [19] Mijbass, A. S., "On Cancellation Modules" M.Sc. Theses, University of Baghdad. 1993.
- [20] Smith, P.F., "Some Remarks of Multiplication Modules", Arch. Math, vol. (50), pp. (223-225). 1986.
- [21] Payman, M. H.," Hollow Modules and Semi Hollow Modules ". M. Sc. Thesis, University of Baghbad. 2005.