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A B S T R A C T 

Our main goal in this note is to introduce several characterizations of Almost approximaitly 
nearly quasiprime submodule in class of multiplication modules. Moreover, we characterized 
Almost approximaitly nearly quasiprime submodules by theirs residual in class of 
multiplication modules with the help of some types of modules as projective, faithful, content 
and 𝑍-regular modules. And we characterized almost approximaitly nearly quasiprime ideal 𝐵 
by almost approximaitly nearly quasiprime of the form 𝐵Ԛ. 
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1. Introduction 

Let 𝑅 be commutative ring with identity and Ԛ be unitary left 𝑅-module. Quasiprime submodules generalization of 
prime submodule was first introduced by [1] in 1999. Many author interesting generalized this concept see [2, 3, 4, 
5]. In the recent time quasiprime submodule generalized in [6] to Almost approximaitly nearly quasiprime 
submodule, where a proper submodule 𝐹 of an 𝑅-module Ԛ is called almost approximaitly nearly quasiprime 
(simply Alappnq-prime) submodule, if whenever  𝑎𝑐𝑞 ∈ 𝐹 , for 𝑎, 𝑐 ∈ 𝑅 , 𝑞 ∈ Ԛ , implies that either 𝑎𝑞 ∈ 𝐹 +
(𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝑐𝑞 ∈ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) [6]. Where 𝑠𝑜𝑐(Ԛ) is the socle of Ԛ defined as intersection of all 
essential submodule in Ԛ, and 𝐽(Ԛ) is the Jacobson radical of Ԛ defined to be intersection of all maximal submodules 
in Ԛ[7]. 
Now, we recalled some concepts that we will be using in this note. An 𝑅-module Ԛ is multiplication if each 
submodule 𝐹  in Ԛ has the form 𝐽Ԛ for some ideal 𝐽  of 𝑅  [8], equivalent to 𝐹 = [𝐹:𝑅 Ԛ]Ԛ  [9], we say that 𝐽  is 
presentation ideal of Ԛ. Every submodule 𝐹 of Ԛ has presentation ideal if and only if Ԛ is multiplication. Let 𝐹 and 𝐿 
are submodules of a multiplication 𝑅-module Ԛ with 𝐹 = 𝐼Ԛ and 𝐿 = 𝐽Ԛ for some ideals 𝐼, 𝐽 of 𝑅, the product of 𝐹 and 
𝐿 denoted by 𝐹𝐿 defined by 𝐹𝐿 = 𝐼𝐽Ԛ [10]. The products of 𝐹 and 𝐿 is independent on presentations of 𝐹 and Ԛ, so 
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the term 𝑥𝑦 for some 𝑥, 𝑦 ∈ Ԛ represents the product 𝑅𝑥 and 𝑅𝑦 [11]. It is well known that if 𝛭 is projective, then 
𝐽(𝑅)𝛭 = 𝐽(𝛭)[12.Theo.(9.2.1)(g)], also in projective module 𝑠𝑜𝑐(𝑅)𝛭 = 𝑠𝑜𝑐(𝛭) [13.pro.(3.24)]. An 𝑅-module Ԛ is 
faithful if 𝑎𝑛𝑛𝑅(Ԛ) = (0)[12]. And Ԛ is content if (⋂ 𝐹𝑖𝑖∈𝐼 )Ԛ = ⋂ 𝐹𝑖𝑖∈𝐼 Ԛ [14]. If Ԛ is content module then 𝐽(𝑅)Ԛ =
𝐽(Ԛ) [15, pro. (1.1)]. Also, Ԛ is 𝑍-regular if for each 𝑞 ∈ Ԛ there exists 𝑓 ∈ Ԛ′ = 𝐻𝑜𝑚𝑅(Ԛ, 𝑅) such that 𝑞 = 𝑓(𝑞)𝑞 
[16]. If Ԛ is 𝑍-regular, then 𝑠𝑜𝑐(Ԛ) = 𝑠𝑜𝑐(𝑅)Ԛ[15, pro. (3.25)]. Finally, 𝑅 is good ring if 𝐽(𝑅)Ԛ = 𝐽(Ԛ) [12] 

2. Characterizations of Alappnq-prime Submodules in multiplication Modules. 

Before we start to introduce the characterizations we need to recall the definition of Almost approximaitly nearly 
quasiprime submodules and some characterizations of this concept which appear in [6], that we needed in the 
sequel. 

Definition 2.1 A proper submodule 𝐹 of an 𝑅-module Ԛ is called almost approximaitly nearly quasiprime (simply 
Alappnq-prime) submodule, if whenever 𝑎𝑐𝑞 ∈ 𝐹, for 𝑎, 𝑐 ∈ 𝑅, 𝑞 ∈ Ԛ, implies that either 𝑎𝑞 ∈ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) 
or 𝑐𝑞 ∈ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). 

Proposition 2.2 Let Ԛ be an 𝑅-module, and 𝐹 be a submodule of Ԛ. Then 𝐹 is an Alappnq-prime submodule of Ԛ if 
and only if whenever 𝑎𝑐𝐿 ⊆ 𝐹, for 𝑎, 𝑐 ∈ 𝑅 and 𝐿 is submodule of Ԛ, implies that either 𝑎𝐿 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 
𝑐𝐿 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). 

Proof See [6, Pro. 2.6]. 

Proposition 2.3 Let Ԛ be an 𝑅-module, and 𝐹 be a submodule of Ԛ. Then 𝐹 is an Alappnq-prime submodule of Ԛ if 
and only if whenever 𝐼𝐽𝐿 ⊆ 𝐹 , for 𝐼, 𝐽 are ideals of 𝑅 and 𝐿 is submodule of Ԛ, implies that either 𝐼𝐿 ⊆ 𝐹 +
(𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝐽𝐿 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). 

Proof See [6, Cor. 2.7]. 

Now, we are ready to introduce characterizations of Alappnq-prime submodule in multiplication modules. 

Proposition 2.4 Let Ԛ be a multiplication 𝑅-module, and 𝐹 is a proper submodule of Ԛ. Then 𝐹 is an Alappnq-prime 
submodule of Ԛ if and only if whenever 𝐾𝐻𝐿 ⊆ 𝐹 for 𝐾, 𝐻 and 𝐿 are submodules in Ԛ, implies that either 𝐾𝐿 ⊆ 𝐹 +
(𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝐻𝐿 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). 

Proof (⟾) Let 𝐾𝐻𝐿 ⊆ 𝐹 for 𝐾, 𝐻 and 𝐿 are submodules of Ԛ. Since Ԛ is a multiplication, then 𝐾 = 𝐼Ԛ, 𝐻 = 𝐽Ԛ and 
𝐿 = 𝐶Ԛ for some ideals 𝐼, 𝐽 and 𝐶 in 𝑅. That is  𝐼𝐽(𝐶Ԛ) ⊆ 𝐹. But 𝐹 is an Alappnq-prime submodule of Ԛ, so by 
proposition 2.3 we have either 𝐼𝐶Ԛ ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝐽𝐶Ԛ ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). It follows that either 𝐾𝐿 ⊆
𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝐻𝐿 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). 

(⟽) Suppose 𝐼𝐽𝐿 ⊆ 𝐹 for 𝐿 is a submodule of Ԛ, and 𝐼, 𝐽 are ideals in 𝑅. Since Ԛ is a multiplication, then 𝐾𝐻𝐿 = 𝐼𝐽𝐿 ⊆
𝐹, so by hypothesis we have either 𝐾𝐿 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝐻𝐿 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)).That is either 𝐼𝐿 ⊆ 𝐹 +
(𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝐽𝐿 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). Therefore by proposition 2.3 𝐹 is an Alappnq-prime submodule of Ԛ. 

The following corollaries flow directly from proposition 2.4. 

Corollary 2.5 Let Ԛ be a multiplication 𝑅-module, and 𝐹 is a proper submodule of Ԛ. Then 𝐹 is an Alappnq-prime 
submodule of Ԛ if and only if whenever 𝐾𝐻𝑞 ⊆ 𝐹 for 𝐾, 𝐹 are submodules of Ԛ and 𝑞 ∈ Ԛ, implies that either 𝐾𝑞 ⊆
𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝐻𝑞 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). 

Corollary 2.6 Let Ԛ be a multiplication 𝑅-module, and 𝐹 is a proper submodule of Ԛ. Then 𝐹 is an Alappnq-prime 
submodule of Ԛ if and only if whenever 𝑞1𝑞2𝐿 ⊆ 𝐹 for 𝑞1, 𝑞2 ∈ Ԛ, and 𝐿 is submodule of Ԛ, implies that either 𝑞1𝐿 ⊆
𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝑞2𝐿 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). 

Corollary 2.7 Let Ԛ be a multiplication 𝑅-module, and 𝐹 is a proper submodule of Ԛ. Then 𝐹 is an Alappnq-prime 
submodule of Ԛ if and only if whenever 𝑞1𝑞2𝑞3 ⊆ 𝐹 for 𝑞1, 𝑞2, 𝑞3 ∈ Ԛ, implies that either 𝑞1𝑞3 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) 
or 𝑞2𝑞3 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). 

Now, we introduce many characterizations of Alappnq-prime submodules by their residuals. 
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Proposition 2.8 A proper submodule 𝐹 of projective multiplication 𝑅-module Ԛ is an Alappnq-prime submodule of 
Ԛ if and only if [𝐹:𝑅 Ԛ] is an Alappnq-prime ideal of 𝑅. 

Proof (⟾) Let 𝐼𝐽𝐶 ⊆ [𝐹:𝑅 Ԛ] for 𝐼, 𝐽 and 𝐶 are ideals in 𝑅, implies that 𝐼𝐽𝐶Ԛ ⊆ 𝐹. Since Ԛ is multiplication, then 
𝐼𝐽𝐶Ԛ = 𝐹𝐾𝐿  by taking 𝐹 = 𝐼Ԛ , 𝐾 = 𝐽Ԛ  and  𝐿 = 𝐶Ԛ  are submodules in Ԛ , hence 𝐹𝐾𝐿 ⊆ 𝐹 . But 𝐹  is an Alappn 
submodule of multiplication 𝑅-module Ԛ, it follows by proposition 2.4 that either 𝐹𝐿 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝐾𝐿 ⊆
𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). Again since Ԛ is multiplication, then 𝐹 = [𝐹:𝑅 Ԛ]Ԛ, and since Ԛ is projective then 𝑠𝑜𝑐(Ԛ) =
𝑠𝑜𝑐(𝑅)Ԛ  and 𝐽(Ԛ) = 𝐽(𝑅)Ԛ . Thus either 𝐼𝐶Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ)  or 𝐽𝐶Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ +
𝐽(𝑅)Ԛ) , it follows that either  𝐼𝐶 ⊆ [𝐹:𝑅 Ԛ] + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅))  or 𝐽𝐶 ⊆ [𝐹:𝑅 Ԛ] + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)) . Thus by 
proposition 2.3 [𝐹:𝑅 Ԛ] is Alappnq-prime ideal of 𝑅. 

(⟽) Let 𝐾𝐻𝐿 ⊆ 𝐹 for 𝐾, 𝐻, 𝐿 are submodules of Ԛ. Since Ԛ is a multiplication, then 𝐾 = 𝐼Ԛ, 𝐻 = 𝐽Ԛ, and 𝐿 = 𝐶Ԛ for 
some ideals 𝐼, 𝐽, 𝐶 in 𝑅, that is 𝐼𝐽𝐶Ԛ ⊆ 𝐹, implies that 𝐼𝐽𝐶 ⊆ [𝐹:𝑅 Ԛ], but [𝐹:𝑅 Ԛ] is an Alappnq-prime ideal of 𝑅, it 
follows by proposition 2.3 that either 𝐼𝐶 ⊆ [𝐹:𝑅 Ԛ] + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)) or 𝐽𝐶 ⊆ [𝐹:𝑅 Ԛ] + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)). Hence 
either 𝐼𝐶Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ) or 𝐽𝐶Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ). For Ԛ is a multiplication and 
projective then either 𝐼𝐶Ԛ ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ))  or 𝐽𝐶Ԛ ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) . That is either 𝐾𝐿 ⊆ 𝐹 +
(𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝐻𝐿 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). Thus by proposition 2.4 𝐹 is Alappnq-prime submodule of Ԛ. 

Before we introduced the next characterization, we must recall this lemma 

Lemma 2.9 Let Ԛ be a faithful multiplication Ɍ module, then: 

1. 𝑠𝑜𝑐(𝑅)Ԛ = 𝑠𝑜𝑐(Ԛ) [8, Cor. 2.14(i)]. 

2. 𝐽(𝑅)Ԛ = 𝐽(Ԛ) [15, Rem. P. 14]. 

Proposition 2.20 A proper submodule 𝐹 of faithful multiplication 𝑅-module Ԛ is an Alappnq-prime submodule of Ԛ 
if and only if [𝐹:𝑅 Ԛ] is an Alappnq-prime ideal of 𝑅. 

Proof (⟾)Let 𝑎𝑐𝑒 ∈ [𝐹:𝑅 Ԛ] for 𝑎, 𝑐, 𝑒 ∈ 𝑅, implies that 𝑎𝑐(𝑒Ԛ) ⊆ 𝐹. But 𝐹 is an Alappnq-prime submodule of Ԛ, it 
follows by proposition 2.2 that either 𝑎(𝑒Ԛ) ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝑐(𝑒Ԛ) ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). Since Ԛ is 
multiplication, then 𝐹 = [𝐹:𝑅 Ԛ]Ԛ, and since Ԛ is faithful multiplication, then by lemma 2.9 we have 𝑠𝑜𝑐(Ԛ) =
𝑠𝑜𝑐(𝑅)Ԛ  and 𝐽(Ԛ) = 𝐽(𝑅)Ԛ . Thus either 𝑎𝑒Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ)  or 𝑐𝑒Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ +
𝐽(𝑅)Ԛ), it follows that either 𝑎𝑒 ∈ [𝐹:𝑅 Ԛ] + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)) or 𝑐𝑒 ∈ [𝐹:𝑅 Ԛ] + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)). Therefore[𝐹:𝑅 Ԛ] is 
an Alappnq-prime ideal of 𝑅. 

(⟽) Let 𝑞1𝑞2𝑞3 ⊆ 𝐹 for 𝑞1, 𝑞2, 𝑞3 ∈ Ԛ. Since Ԛ is a multiplication then 𝑞1 = 𝑅𝑞1 = 𝐼1Ԛ, 𝑞2 = 𝑅𝑞2 = 𝐼2Ԛ, and 𝑞3 =
𝑅𝑞3 = 𝐼3Ԛ for some ideals 𝐼1, 𝐼2, 𝐼3 of 𝑅, that is 𝐼1𝐼2𝐼3Ԛ ⊆ 𝐹, implies that 𝐼1𝐼2𝐼3 ⊆ [𝐹:𝑅 Ԛ], but [𝐹:𝑅 Ԛ] is an Alappnq-
prime ideal of 𝑅, it follows by proposition 2.3 that either 𝐼1𝐼3 ⊆ [𝐹:𝑅 Ԛ] + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)) or 𝐼2𝐼3 ⊆ [𝐹:𝑅 Ԛ] +
(𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)). Hence either 𝐼1𝐼3Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ) or 𝐼2𝐼3Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ). For 
Ԛ is faithful multiplication we have either 𝐼1𝐼3Ԛ ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝐼2𝐼3Ԛ ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). That is 
either 𝑞1𝑞3 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ))  or 𝑞2𝑞3 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). Thus by corollary 2.7 𝐹 is an Alappnq-prime 
submodule of Ԛ. 

Proposition 2.21 A proper submodule 𝐹 of a content multiplication 𝑍-regular 𝑅-module Ԛ is an Alappnq-prime 
submodule of Ԛ if and only if [𝐹:𝑅 Ԛ] is an Alappnq-prime ideal of 𝑅. 

Proof (⟾) Let 𝑎𝑐𝐼 ∈ [𝐹:𝑅 Ԛ] for 𝑎, 𝑐 ∈ 𝑅 and 𝐼 is an ideal of 𝑅, implies that 𝑎𝑐𝐼Ԛ ⊆ 𝐹. But 𝐹 is an Alappnq-prime 
submodule of Ԛ, it follows by proposition 2.2 that either 𝑎𝐼Ԛ ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝑐𝐼Ԛ ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). 
Since Ԛ is multiplication, then 𝐹 = [𝐹:𝑅 Ԛ]Ԛ, and since Ԛ is content 𝑅-module then 𝐽(Ԛ) = 𝐽(𝑅)Ԛ and Ԛ is 𝑍-regular 
then 𝑠𝑜𝑐(Ԛ) = 𝑠𝑜𝑐(𝑅)Ԛ. Thus either 𝑎𝐼Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ) or 𝑐𝐼Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ), 
we have either 𝑎𝐼 ⊆ [𝐹:𝑅 Ԛ] + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)) or 𝑐𝐼 ⊆ [𝐹:𝑅 Ԛ] + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)). Hence [𝐹:𝑅 Ԛ] is an Alappnq-
prime ideal of 𝑅. 

(⟽) Let 𝐾𝐻𝑞 ⊆ 𝐹 for 𝐾, 𝐻 are submodules in Ԛ, and 𝑞 ∈ Ԛ. Since Ԛ is a multiplication, then 𝐾 = 𝐼Ԛ, 𝐻 = 𝐽Ԛ and 𝑞 =
𝑅𝑞 = 𝐶Ԛ for some ideals 𝐼, 𝐽, 𝐶 in 𝑅, that is 𝐼𝐽𝐶Ԛ ⊆ 𝐹, implies that 𝐼𝐽𝐶 ⊆ [𝐹:𝑅 Ԛ], but [𝐹:𝑅 Ԛ] is an Alappnq-prime 
ideal of 𝑅, it follows by proposition 2.3 that either 𝐼𝐶 ⊆ [𝐹:𝑅 Ԛ] + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)) or 𝐽𝐶 ⊆ [𝐹:𝑅 Ԛ] + (𝑠𝑜𝑐(𝑅) +
𝐽(𝑅)) . Hence either 𝐼𝐶Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ)  or 𝐽𝐶Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ) . Since Ԛ  is 
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content 𝑍-regular then either 𝐼𝐶Ԛ ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝐽𝐶Ԛ ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). That is either 𝐾𝑞 ⊆ 𝐹 +
(𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ))  or 𝐻𝑞 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). Thus by corollary 2.5 𝐹 is an Alappnq-prime submodule of Ԛ. 

Proposition 2.22 Let Ԛ be a 𝑍-regular multiplication module over a good ring 𝑅, and 𝐹 be a proper submodule of Ԛ. 
Then 𝐹 is an Alappnq-prime submodule of Ԛ if and only if [𝐹:𝑅 Ԛ] is an Alappnq-prime ideal of 𝑅. 

Proof (⟾) Let 𝑎𝑐𝑒 ∈ [𝐹:𝑅 Ԛ] for 𝑎, 𝑐, 𝑒 ∈ 𝑅, implies that 𝑎𝑐(𝑒Ԛ) ⊆ 𝐹. But 𝐹 is an Alappnq-prime submodule of Ԛ, it 
follows by proposition 2.2 that either 𝑎(𝑒Ԛ) ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝑐(𝑒Ԛ) ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). Since Ԛ is 
multiplication, then 𝐹 = [𝐹:𝑅 Ԛ]Ԛ, and since Ԛ 𝑍-regular then 𝑠𝑜𝑐(Ԛ) = 𝑠𝑜𝑐(𝑅)Ԛ and 𝑅  is a good ring 𝐽(Ԛ) = 𝐽(𝑅)Ԛ. 
Thus either 𝑎𝑒Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ) or 𝑐𝑒Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ), it follows that either 
𝑎𝑒 ∈ [𝐹:𝑅 Ԛ] + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)) or 𝑐𝑒 ∈ [𝐹:𝑅 Ԛ] + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)). Therefore [𝐹:𝑅 Ԛ] is  an Alappnq-prime ideal of 𝑅. 

(⟽) Let 𝑞1𝑞2𝐿 ⊆ 𝐹 for 𝑞1, 𝑞2 ∈ Ԛ, and 𝐿 is a submodule of Ԛ. Since Ԛ is a multiplication, then 𝑞1 = 𝑅𝑞1 = 𝐼Ԛ, 𝑞2 =
𝑅𝑞2 = 𝐽Ԛ, and 𝐻 = 𝐴Ԛ, for some ideals 𝐼, 𝐽 and 𝐴 in 𝑅, that is 𝐼𝐽𝐴Ԛ ⊆ 𝐹, implies that 𝐼𝐽𝐴 ⊆ [𝐹:𝑅 Ԛ], but [𝐹:𝑅 Ԛ] is an 
Alappnq-prime ideal of 𝑅, it follows by proposition 2.3 that either 𝐼𝐴 ⊆ [𝐹:𝑅 Ԛ] + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)) or 𝐽𝐴 ⊆ [𝐹:𝑅 Ԛ] +
(𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)). Hence either  𝐼𝐴Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ) or 𝐽𝐴Ԛ ⊆ [𝐹:𝑅 Ԛ]Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ), it 
follows that either 𝐼𝐴Ԛ ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝐽𝐴Ԛ ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) [for Ԛ is 𝑍- regular multiplication over 
good ring]. That is either 𝑞1𝐿 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝑞2𝐿 ⊆ 𝐹 + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). Thus by corollary 2.6 𝐹 is 
Alappnq-prime submodule of Ԛ. 

It is known that Artinian ring is good ring [12]. We get the following direct result of proposition 2.22. 

Corollary 2.13 Let Ԛ be a 𝑍-regular multiplication module over Artinian ring 𝑅, and 𝐹 be a proper submodule of Ԛ. 
Then 𝐹 is an Alappnq-prime submodule of Ԛ if and only if [𝐹:𝑅 Ԛ] is an Alappnq-prime ideal of 𝑅. 

3. Characterizations of Alappnq-prime Ideals By Alappnq-prime Submodules. 

We start this section by recalling the following lemma which appears in [17]. 

Lemma 3.1 Let Ԛ be finitely generated multiplication Ɍ-module, 𝐼 and 𝐽 are ideals in 𝑅. Then 𝐼Ԛ ⊆ 𝐽Ԛ if and only if 
𝐼 ⊆ 𝐽 + 𝑎𝑛𝑛Ɍ(Ԛ). 

Proposition 3.2 Let Ԛ be a finitely generated multiplication projective 𝑅-module, and 𝐵 is an ideal of 𝑅 with 
𝑎𝑛𝑛𝑅(Ԛ) ⊆ 𝐵. Then 𝐵 is an Alappnq-prime ideal of 𝑅 if and only if 𝐵Ԛ is an Alappnq-prime submodule of Ԛ. 

Proof (⟾) Let 𝑞1𝑞2𝑞3 ⊆ 𝐵Ԛ for 𝑞1, 𝑞2, 𝑞3 ∈ Ԛ. Since Ԛ is a multiplication then 𝑞1 = 𝑅𝑞1 = 𝐼1Ԛ, 𝑞2 = 𝑅𝑞2 = 𝐼2Ԛ, and 
𝑞3 = 𝑅𝑞3 = 𝐼3Ԛ for some ideals 𝐼1, 𝐼2, 𝐼3 of 𝑅, that is 𝐼1𝐼2𝐼3Ԛ ⊆ 𝐵Ԛ. But Ԛ is a finitely generated multiplication 𝑅-
module then by lemma 3.1 𝐼1𝐼2𝐼3 ⊆ 𝐵 + 𝑎𝑛𝑛𝑅(Ԛ). For 𝑎𝑛𝑛𝑅(Ԛ) ⊆ 𝐵, implies that 𝐵 + 𝑎𝑛𝑛𝑅(Ԛ) = 𝐵, thus 𝐼1𝐼2𝐼3 ⊆ 𝐵. 
Now, by assumption 𝐵  is an Alappnq-prime ideal of 𝑅  it follows by proposition 2.3 that either 𝐼1𝐼3 ⊆ 𝐵 +
(𝑠𝑜𝑐(𝑅) + 𝐽(𝑅))  or 𝐼2𝐼3 ⊆ 𝐵 + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)) , it follows that either 𝐼1𝐼3Ԛ ⊆ 𝐵Ԛ + 𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ  or 𝐼2𝐼3Ԛ ⊆
𝐵Ԛ + 𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ. Since Ԛ is a projective then 𝑠𝑜𝑐(𝑅)Ԛ = 𝑠𝑜𝑐(Ԛ) and 𝐽(𝑅)Ԛ = 𝐽(Ԛ), it follows that either 
𝑞1𝑞3 ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ))  or 𝑞2𝑞3 ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ))  Hence by corollary 2.7 𝐵Ԛ  is an Alappnq-prime 
submodule of Ԛ. 

(⟽) Let 𝑎𝑐𝐼 ⊆ 𝐵 , for 𝑎, 𝑐 ∈ 𝑅  and 𝐼  is an ideal of 𝑅 , implies that 𝑎𝑐(𝐼Ԛ) ⊆ 𝐵Ԛ. But 𝐵Ԛ  is an Alappnq-prime 
submodule of Ԛ , it follows by proposition 2.2 that either 𝑎(𝐼Ԛ) ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ))  or 𝑐(𝐼Ԛ) ⊆ 𝐵Ԛ +
(𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) . But Ԛ  is a projective then (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) = (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ) . Thus either 𝑎(𝐼Ԛ) ⊆ 𝐵Ԛ +
𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ  or 𝑐(𝐼Ԛ) ⊆ 𝐵Ԛ + 𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ , it follows that either 𝑎𝐼 ⊆ 𝐵 + 𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)  or 𝑐𝐼 ⊆ 𝐵 +
𝑠𝑜𝑐(𝑅) + 𝐽(𝑅). Hence by proposition 2.2 𝐵 is an Alapp-quasiprime ideal of 𝑅. 

Proposition 3.3 Let Ԛ be a faithful finitely generated multiplication 𝑅-module, and 𝐵 be an Alappnq-prime ideal of 
𝑅. Then 𝐵Ԛ is an Alappnq-prime submodule of Ԛ. 

Proof (⟾) Let 𝑞1𝑞2𝐾 ⊆ 𝐵Ԛ, for 𝑞1, 𝑞2 ∈ Ԛ and 𝐾 is a submodule of Ԛ. Since Ԛ is a multiplication, then 𝑞1 = 𝑅𝑞1 = 𝐼Ԛ, 
𝑞2 = 𝑅𝑞2 = 𝐽Ԛ  and 𝐾 = 𝐶Ԛ for some ideals 𝐼, 𝐽  and 𝐶  in 𝑅 , that is 𝐼𝐽𝐶Ԛ ⊆ 𝐵Ԛ . But Ԛ  is a finitely generated 
multiplication 𝑅-module then by lemma 3.1 𝐼𝐽𝐶 ⊆ 𝐵 + 𝑎𝑛𝑛𝑅(Ԛ), since Ԛ is faithful then 𝑎𝑛𝑛𝑅(Ԛ) = 0, implies that 
𝐼𝐽𝐶 ⊆ 𝐵. But 𝐵 is an Alappnq-prime ideal of 𝑅 it follows by proposition 2.3 that either 𝐼𝐶 ⊆ 𝐵 + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)) or 
𝐽𝐶 ⊆ 𝐵 + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)). Thus either 𝐼𝐶Ԛ ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ) or 𝐽𝐶Ԛ ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ). But Ԛ is 
faithful multiplication, then (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) = (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ). Hence either 𝐼𝐶Ԛ ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 
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𝐽𝐶Ԛ ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). That is either 𝑞1𝐾 ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝑞2𝐾 ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). Therefore 
by corollary 2.6 𝐵Ԛ is an Alappnq-prime submodule of Ԛ. 

(⟽) Let 𝑎𝑐𝑒 ∈ 𝐵, for 𝑎, 𝑐, 𝑒 ∈ 𝑅, implies that 𝑎𝑐(𝑒Ԛ) ⊆ 𝐵Ԛ. But 𝐵Ԛ is an Alappnq-prime submodule of Ԛ, it follows by 
proposition 2.2 that either 𝑎(𝑒Ԛ) ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝑐(𝑒Ԛ) ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). Since Ԛ is faithful 
multiplication then either 𝑎(𝑒Ԛ) ⊆ 𝐵Ԛ + 𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ or 𝑐(𝑒Ԛ) ⊆ 𝐵Ԛ + 𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ, it follows that either 
𝑎𝑒 ∈ 𝐵 + 𝑠𝑜𝑐(𝑅) + 𝐽(𝑅) or 𝑐𝑒 ∈ 𝐵 + 𝑠𝑜𝑐(𝑅) + 𝐽(𝑅). Therefore 𝐵 is an Alappnq-prime ideal of 𝑅. 

Proposition 3.4 Let Ԛ be a finitely generated multiplication 𝑍-regular module over a good ring 𝑅, and 𝐵 is an ideal 
of 𝑅 with 𝑎𝑛𝑛𝑅(Ԛ) ⊆ 𝐵. Then 𝐵 is an Alappnq-prime ideal of 𝑅 if and only if 𝐵Ԛ is an Alappnq-prime submodule of Ԛ. 

Proof (⟾) Let 𝐾𝐻𝑞 ⊆ 𝐵Ԛ, for 𝑞 ∈ Ԛ and 𝐾, 𝐻 are submodules of Ԛ. Since Ԛ is a multiplication, then 𝐾 = 𝐼Ԛ, 𝐻 = 𝐽Ԛ 
and 𝑞 = 𝑅𝑞 = 𝐴Ԛ for some ideals 𝐼, 𝐽 and 𝐴 in 𝑅, that is 𝐼𝐽𝐴Ԛ ⊆ 𝐵Ԛ. But Ԛ is a finitely generated multiplication 𝑅-
module then by lemma 3.1 𝐼𝐽𝐴 ⊆ 𝐵 + 𝑎𝑛𝑛𝑅(Ԛ), since 𝑎𝑛𝑛𝑅(Ԛ) ⊆ 𝐵, implies that 𝐵 + 𝑎𝑛𝑛𝑅(Ԛ) = 𝐵 implies that 𝐼𝐽𝐴 ⊆
𝐵. But 𝐵 is an Alappnq-prime ideal of 𝑅 it follows by proposition 2.3 that either 𝐼𝐴 ⊆ 𝐵 + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)) or 𝐽𝐴 ⊆
𝐵 + (𝑠𝑜𝑐(𝑅) + 𝐽(𝑅)). Thus either 𝐼𝐴Ԛ ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ) or 𝐽𝐴Ԛ ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ). Since Ԛ is 𝑍-
regular then 𝑠𝑜𝑐(𝑅)Ԛ = 𝑠𝑜𝑐(Ԛ) and 𝑅 is good ring then 𝐽(𝑅)Ԛ = 𝐽(Ԛ). Hence either 𝐼𝐴Ԛ ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 
𝐽𝐴Ԛ ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). That is either 𝐾𝑞 ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝐻𝑞 ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). Therefore 
by corollary 2.5 𝐵Ԛ is an Alappnq-prime submodule of Ԛ. 

(⟽) Let 𝐼𝐽𝐶 ⊆ 𝐵, for 𝐼, 𝐽 and 𝐶 are ideals in 𝑅, implies that 𝐼𝐽(𝐶Ԛ) ⊆ 𝐵Ԛ. Since 𝐵Ԛ is an Alappnq-prime submodule of 
Ԛ, it follows by proposition 2.3 that either 𝐼(𝐶Ԛ) ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) or 𝐽(𝐶Ԛ) ⊆ 𝐵Ԛ + (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)). But Ԛ is 
𝑍-regular and 𝑅 is good ring then (𝑠𝑜𝑐(Ԛ) + 𝐽(Ԛ)) = (𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ). Thus either 𝐼(𝐶Ԛ) ⊆ 𝐵Ԛ + 𝑠𝑜𝑐(𝑅)Ԛ +
𝐽(𝑅)Ԛ or 𝐽(𝐶Ԛ) ⊆ 𝐵Ԛ + 𝑠𝑜𝑐(𝑅)Ԛ + 𝐽(𝑅)Ԛ, it follows that either 𝐼𝐶 ⊆ 𝐵 + 𝑠𝑜𝑐(𝑅) + 𝐽(𝑅) or 𝐽𝐶 ⊆ 𝐵 + 𝑠𝑜𝑐(𝑅) + 𝐽(𝑅). 
Hence by proposition 2.3 𝐵 is an Alappnq-prime ideal of 𝑅. 

Corollary 3.5 Let Ԛ be a finitely generated multiplication 𝑍-regular module over Artinian ring 𝑅, and 𝐵 is an ideal in 
𝑅 with 𝑎𝑛𝑛𝑅(Ԛ) ⊆ 𝐵. Then 𝐵 is an Alappnq-prime ideal of 𝑅 if and only if 𝐵Ԛ is an Alappnq-prime submodule of Ԛ. 

Proposition 3.6 Let Ԛ be a finitely generated multiplication projective 𝑅-module, and 𝐹 ⊂ Ԛ with 𝑎𝑛𝑛𝑅(Ԛ) ⊆
[𝐹:𝑅 Ԛ] then the sentences that follow are comparable: 

1. 𝐹 is an Alappnq-prime submodule of Ԛ. 

2. [𝐹:𝑅 Ԛ] is an Alappnq-prime ideal of 𝑅. 

3. 𝐹 = 𝐵Ԛ for some Alappnq-prime ideal 𝐵 of  𝑅 with 𝑎𝑛𝑛𝑅(Ԛ) ⊆ 𝐵. 

Proof (1) ⇔ (2) It follows by proposition 2.8. 

(2) ⟹ (3) Since Ԛ is a multiplication, then 𝐹 = [𝐹:𝑅 Ԛ]Ԛ = 𝐵Ԛ, where 𝐵 = [𝐹:𝑅 Ԛ] is an Alappnq-prime ideal of 𝑅 
with 𝑎𝑛𝑛𝑅(Ԛ) = [0:𝑅 Ԛ] ⊆ [𝐹:𝑅 Ԛ] = 𝐵, implies that 𝑎𝑛𝑛𝑅(Ԛ) ⊆ 𝐵. 

(3) ⟹ (2) It is given 𝐹 = 𝐵Ԛ for some Alappnq-prime ideal 𝐵 of 𝑅 with 𝑎𝑛𝑛𝑅(Ԛ) ⊆ 𝐵. Since Ԛ is a multiplication, 
then 𝐹 = [𝐹:𝑅 Ԛ]Ԛ, thus we have [𝐹:𝑅 Ԛ]Ԛ = 𝐵Ԛ . But Ԛ is a finitely generated, so Ԛ is weak cancellation [18], it 
follows that [𝐹:𝑅 Ԛ] + 𝑎𝑛𝑛𝑅(Ԛ) = 𝐵 + 𝑎𝑛𝑛𝑅(Ԛ). But 𝑎𝑛𝑛𝑅(Ԛ) ⊆ 𝐵, and 𝑎𝑛𝑛𝑅(Ԛ) ⊆ [𝐹:𝑅 Ԛ], implies that 𝑎𝑛𝑛𝑅(Ԛ) +
𝐵 = 𝐵 and [𝐹:𝑅 Ԛ] + 𝑎𝑛𝑛𝑅(Ԛ) = [𝐹:𝑅 Ԛ]. Thus [𝐹:𝑅 Ԛ] = 𝐵, but 𝐵 is an Alappnq-prime ideal of 𝑅, hence [𝐹:𝑅 Ԛ] is an 
Alappnq-prime ideal of 𝑅. 

Proposition 3.7 Let Ԛ be a faithful finitely generated multiplication 𝑅-module, and 𝐹 ⊂ Ԛ, then the sentences that 
follow are comparable: 

1. 𝐹 is an Alappnq-prime submodule of Ԛ. 

2. [𝐹:𝑅 Ԛ] is an Alappnq-prime ideal of 𝑅. 

3. 𝐹 = 𝐵Ԛ for some Alappnq-prime ideal 𝐵 of  𝑅. 

Proof (1) ⇔ (2) It follows by proposition 2.20.  

(2) ⟹ (3) Since Ԛ is a multiplication, then 𝐹 = [𝐹:𝑅 Ԛ]Ԛ, put 𝐵 = [𝐹:𝑅 Ԛ] is an Alappnq-prime ideal of 𝑅 and 𝐹 = 𝐵Ԛ. 
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(3) ⟹ (2) We have 𝐹 = 𝐵Ԛ for some Alappnq-prime ideal 𝐵 of 𝑅. Since Ԛ is a multiplication, then 𝐹 = [𝐹:𝑅 Ԛ]Ԛ. 
Thus [𝐹:𝑅 Ԛ]Ԛ = 𝐵Ԛ. But Ԛ is a faithful finitely generated multiplication, then Ԛ is cancellation [18], it follows that 
[𝐹:𝑅 Ԛ] = 𝐵, hence [𝐹:𝑅 Ԛ] is an Alappnq-prime ideal of 𝑅. 
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