

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Extend Nearly Pseudo Semi-2-Absorbing Submodules⁽¹⁾

Omar A. Abdullah^a, Haibat K. Mohammadali^b

^aDepartment of Mathematics, College of Computer Science and Mathematics, Univ. of Tikrit, Iraq. Email: omer.a.abdullah35383@st.tu.edu.iq

^bDepartment of Mathematics, College of Computer Science and Mathematics, Univ. of Tikrit, Iraq . Email: H.mohammadali@tu.edu.iq

ARTICLEINFO

Article history: Received: 27 /10/2022 Rrevised form: 03 /12/2022 Accepted : 04 /12/2022 Available online: 31 /12/2022

Keywords: 2-Absorbing submodules. Semi-2-Absorbing submodules. Jacobson of modules. Socal of submodules. Multiplication modules and Boolian Rings.

ABSTRACT

In this article, we will present a generalization on the (2-Absorbing, Semi-2-Absorbing, Pseudo-2-Absorbing, Pseudo Semi-2-Absorbing and Nearly-2-Absorbing) submodules. We will study the relationship between this generalization and the basic generalizations studied previously. We have provided many Propositions, Remarks, Examples and characterizations in this article.

MSC.

https://doi.org/10.29304/jqcm.2022.14.4.1125

1. Introduction

2-Absorbing submodules was introduced in 2011 by Darani and Soheilinia, where a proper submodule G of an R*module* M is called 2-Absorbing submodule if whenever $abh \in G$ for $a, b \in R$ and $h \in M$, then either $ah \in G$ or $bh \in G$ G or $ab \in [G_R M][1]$, as $[G_R M] = \{a \in R : aM \subseteq V\}[2]$. And the concept of Semi-2-Absorbing submodules was introduce by Innam and Abdulrahman in 2015, where a proper submodule G of an R-module M is called Semi-2-Absorbing submodule if whenever $a^2 h \in G$ for $a \in R$ and $h \in M$, then either $ah \in G$ or $a^2 \in [G_R M][3]$. These two concepts are generalized in article to Extend Nearly Pseudo Semi-2-Absorbing submodules, but the converse is not true in general see Proposition 2.2 And 2.5. Many generalizations have been studied in previous years on the concept of 2-Absorbing submodules and Semi-2-Absorbing submodules, such as (WN-2-Absorbing, WVS-2-Absorbing, Weakly Semi2-Absorbing, Quasi Primary-2-Absorbing, WES-2-Absorbing, WEQ-2-Absorbing and Nearly Semi-2-Absorbing) submodules, see [4, 5, 6, 7, 8]. Also the following concepts (Pseudo-2-Absorbing, Pseudo Semi-2-Absorbing and Nearly-2-Absorbing) submodules are generalizations of Extend Nearly Pseudo Semi-2-Absorbing submodules see Propositions 2.8, 2.11 and 2.14. Where a proper submodule G of an R-module M is called Pseudo-2-Absorbing submodule if whenever $abh \in G$ for $a, b \in R$ and $h \in M$, then either $ah \in G + soc(M)$ or $bh \in G + soc(M)$ or $ab \in [G + soc(M)]_R M$ [9], socal of an *R*-module *M* defined to be the intersection of all essential submodule of *M* [10], where anon-zero submodule G of an R-module M is called essential in M if $G \cap E \neq (0)$ for each non-zero submodule *E* of *M* [11]. And a proper submodule G of an *R*-module *M* is called Nearly-2-Absorbing submodule if

Email addresses:

Communicated by 'sub etitor'

^{*}Corresponding author

whenever $abh \in G$ for $a, b \in R$ and $h \in M$, then either $ah \in G + J(M)$ or $bh \in G + J(M)$ or $ab \in [G + J(M):_R M][12]$, the Jacobean of an *R*-module *M* defined to be the intersection of all maximal submodule of *M* [13], where a submodule G of *R*-module *M* is called maximal submodule of *M* if whenever *K* is a submodule of *M* with $G \subset K$, then K = M [13]. The Boolean ring play an important role in this paper, if every element *a* of *R* is an idempotent, then *R* is a Boolean ring [14]. Recall that a ring *R* is a regular ring if every element in *R* is a regular element, that is for every element *a* in *R* there exist element *b* in *R* such that aba = a[14]. Recall that an *R*-module *M* is called semisimple, if every submodule of *M* is a direct summand [13]". Final Recall that a submodule G of an *R*-module *M* is called small submodule of *M* if G + C = M, implies that C = M for any proper submodule *C* of *M* [14].

2. Basic Properties of Extend Nearly Pseudo Semi-2-Absorbing Submodules.

In this paper, we introduced and studied the definition of Extend Nearly Pseudo Semi-2-Absorbing submodule as a new generalization of Extend Nearly Pseudo-2-Absorbing submodules. Also, this is concept is a generalizations of (2-Absorbing, Semi-2-Absorbing, Pseudo-2-Absorbing, Pseudo Semi-2-Absorbing and Nearly-2-Absorbing) submodules. Many basic properties, characterizations of this concept are given in this section.

Definition 2.1 A proper submodule G of an *R*-module *M* is said to be Extend Nearly Pseudo Semi-2-Absorbing (for short EXNPS2AB) submodule of *M* if whenever $a^2h \in G$, where $a \in R, h \in M$ implies that either $ah \in G + soc(M) + J(M)$ or $a^2M \subseteq G + soc(M) + J(M)$.

And an ideal *I* of a ring R is called EXNPS2AB ideal of R, if *I* is an EXNPS2AB *R*-submodule of an *R*-module *R*.

Proposition 2.2 Every 2-Absorbing submodule of an *R*-module *M* is EXNPS2AB submodule of *M*.

Proof Let G be a 2-Absorbing submodule of an *R*-module *M* and $a^2h \in G$, for $a \in R$, $h \in M$, that is $a^2h = aah \in G$ Since G is 2-Absorbing submodule of *M*, then either $ah \in G \subseteq G + soc(M) + J(M)$ or $aaM \subseteq G \subseteq G + soc(M) + J(M)$. That is either $ah \in G + soc(M) + J(M)$ or $a^2M \subseteq G + soc(M) + J(M)$. Hence G is EXNPS2AB submodule of *M*.

Remark 2.3 Show the following example to see why the opposite of Proposition 2.2 is not always true.

Example 2.4 Let $M = Z_{12}$, R = Z and the submodule $G = \langle \overline{0} \rangle$ is EXNPS2AB submodule of M, since $soc(Z_{12}) = \langle \overline{2} \rangle$ and $J(Z_{12}) = \langle \overline{6} \rangle$. That is for all $a \in Z$ and $m \in Z_{12}$ such that $a^2m \in \langle \overline{0} \rangle$, implies that either $am \in \langle \overline{0} \rangle + soc(Z_{12}) + J(Z_{12}) = \langle \overline{0} \rangle + \langle \overline{2} \rangle + \langle \overline{6} \rangle = \langle \overline{2} \rangle$ or $a^2 \in [\langle \overline{0} \rangle + soc(Z_{12}) + J(Z_{12}):_Z Z_{12}] = 2$. That is $2^2 \cdot \overline{3} \in \langle \overline{0} \rangle$, implies that $2 \cdot \overline{3} = \overline{6} \in \langle \overline{2} \rangle$ and $2^2 = 4 \in [\langle \overline{0} \rangle + soc(Z_{12}) + J(Z_{12})_R: Z_{12}] = 2Z$. But G is not 2-Absorbing submodule of Z_{12} since $2.3 \cdot \overline{2} \in G$, for $2,3 \in R$, $\overline{2} \in W$, but $2 \cdot \overline{2} = \overline{4} \notin G$ and $3 \cdot \overline{2} = \overline{6} \notin G$ and $2.3 = 6 \notin [G:_R M] = 12Z$.

Proposition 2.5 Every Semi-2-Absorbing submodule of an *R*-module *M* is EXNPS2AB submodule of *M*.

Proof Direct.

Remark 2.6 Show the following example to see why the opposite of Proposition 2.5 is not always true.

Example 2.7 Let $M = Z_{48}$, R = Z and the submodule $G = \langle \overline{24} \rangle$ is EXNPS2AB submodule of M, since $soc(Z_{48}) = \langle \overline{8} \rangle$ and $J(Z_{48}) = \langle \overline{6} \rangle$. That is for all $a \in Z$ and $m \in Z_{48}$ such that $a^2m \in \langle \overline{24} \rangle$, implies that either $am \in \langle \overline{24} \rangle + soc(Z_{48}) + J(Z_{48}) = \langle \overline{24} \rangle + \langle \overline{8} \rangle + \langle \overline{6} \rangle = \langle \overline{2} \rangle$ or $a^2 \in [\langle \overline{24} \rangle + soc(Z_{48}) + J(Z_{48}):_Z Z_{48}] = 2Z$. That is $2^2 \cdot \overline{6} \in \langle \overline{24} \rangle$, implies that $2 \cdot \overline{6} = \overline{12} \in \langle \overline{2} \rangle$ and $2^2 = 4 \in [\langle \overline{24} \rangle + soc(Z_{48}) + J(Z_{48}):_Z Z_{48}] = 2Z$. But $G = \langle \overline{24} \rangle$ is not Semi-2-Absorbing since $2^2 \cdot \overline{6} \in \langle \overline{24} \rangle$ for $2 \in Z$ and $\overline{6} \in Z_{48}$, implies that $2 \cdot \overline{6} = \overline{12} \notin \langle \overline{24} \rangle$ and $2^2 = 4 \notin [\langle \overline{24} \rangle:_Z Z_{48}] = 24Z$.

Proposition 2.8 Every Pseudo-2-Absorbing submodule of an *R*-module *M* is EXNPS2AB submodule of *M*.

Proof Let G be a Pseudo-2-Absorbing submodule of an *R*-module *M* and $a^2h \in G$, for $a \in R, h \in M$, that is $a^2h = aah \in G$. Since G is Pseudo-2-Absorbing submodule of *M*, then either $ah \in G + soc(M) \subseteq G + soc(M) + J(M)$ or $aaM \subseteq G + soc(M) \subseteq G + soc(M) + J(M)$. That is either $ah \in G + soc(M) + J(M)$ or $a^2M \subseteq G + soc(M) + J(M)$. Hence G is EXNPS2AB submodule of *M*.

Remark 2.9 Show the following example to see why the opposite of Proposition 2.8 is not always true.

Example 2.10 Let $M = Z_{48}$, $\mathbb{R} = Z$ and the submodule $G = \langle \overline{8} \rangle$. It's clear that G is EXNPS2AB submodule of M, but G is not Pseudo-2-Absorbing submodule of Z_{48} , since 2.2. $\overline{2} \in \langle \overline{8} \rangle$, for $2 \in Z$ and $\overline{2} \in Z_{48}$, implies that $2. \overline{2} = \overline{4} \notin G + soc(Z_{48}) = \langle \overline{8} \rangle + \langle \overline{8} \rangle = \langle \overline{8} \rangle$ and $2.2 = 4 \notin [\langle \overline{8} \rangle + \langle \overline{8} \rangle_{:_{\mathbb{R}}} Z_{48}] = 8Z$.

Proposition 2.11 Every Pseudo Semi-2-Absorbing submodule of an *R*-module *M* is EXNPS2AB submodule of *M*.

Proof Clear.

Remark 2.12 Show the following example to see why the opposite of Proposition 2.10 is not always true.

Example 2.13 Same example 2.10.

Proposition 2.14 Every Nearly-2-Absorbing submodule of an *R*-module *M* is EXNPS2AB submodule of *M*.

Proof Let G be a Nearly-2-Absorbing submodule of an *R*-module *M* and $a^2h \in G$, for $a \in R$, $h \in M$, that is $a^2h = aah \in G$ Since G is Nearly-2-Absorbing submodule of *M*, then either $ah \in G + J(M) \subseteq G + soc(M) + J(M)$ or $aaM \subseteq G + J(M) \subseteq G + soc(M) + J(M)$. That is either $ah \in G + soc(M) + J(M)$ or $a^2M \subseteq G + soc(M) + J(M)$. Hence G is EXNPS2AB submodule of *M*.

Remark 2.15 Show the following example to see why the opposite of Proposition 2.14 is not always true.

Example 2.16 The submodule $G = \langle \overline{30} \rangle$ in Z_{60} and R = Z is EXNPS2AB submodule of M, but G is not Nearly-2-Absorbing submodule of Z_{60} , since 2.3. $\overline{5} \in \langle \overline{30} \rangle$, for 2,3 $\in Z$ and $\overline{5} \in Z_{60}$, implies that 2. $\overline{5} = \overline{10} \notin G + J(Z_{60}) = \langle \overline{30} \rangle + \langle \overline{30} \rangle = \langle \overline{30} \rangle$ and 3. $\overline{5} = \overline{15} \notin \langle \overline{30} \rangle$ and 2.3 = 6 $\notin [\langle \overline{30} \rangle + \langle \overline{30} \rangle :_R Z_{48}] = 30Z$.

Remark 2.17 It is not necessary for the intersection of two EXNPS2AB submodules of a module to be so.

Example 2.18 The submodules 3*Z* and 4*Z* of the *Z*-module *Z* are EXNPS2AB, but $3Z \cap 4Z = 12Z$ is not EXNPS2AB submodule of *Z*, because $2^2 \cdot 3 \in 12Z$ for $2,3 \in Z$, hence $2.3 = 6 \notin 12Z + soc(Z) + J(Z) = 12Z$ and $2^2 = 4 \notin [12Z + soc(Z) + J(Z):_Z Z] = 12Z$.

Now, we will give the most important results related to the concept of EXNPS2AB submodules.

Proposition 2.19 A proper submodule G of an *R*-module M is EXNPS2AB submodule of M if and only if for any $a \in R$ such that $a^2 \notin [G + soc(M) + J(M):_R M]$, then $[G:_M a^2] \subseteq [G + soc(M) + J(M):_M a]$.

Proof (\Rightarrow) Suppose that G is EXNPS2AB submodule of *M* and let $e \in [G_{:M} \alpha^2]$, then $\alpha^2 e \in G$. Since G is EXNPS2AB submodule of *M* and $\alpha^2 \notin [G + soc(M) + J(M)_R M]$, it follows that $\alpha e \in G + soc(M) + J(M)$. Thus $e \in [G + soc(M) + J(M)_M \alpha]$. Therefore $[G_{:M} \alpha^2] \subseteq [G + soc(M) + J(M)_M \alpha]$.

(⇐) Let $a^2 e \in G$ for $a \in R$, $e \in M$ and let $a^2 \notin [G + soc(M) + J(M):_R M]$. But $e \in [G:_M a^2] \subseteq [G + soc(M) + J(M):_M a]$. It follows that $e \in [G + soc(M) + J(M):_M a]$, that is $ae \in G + soc(M) + J(M)$. Hence G EXNPS2AB submodule of M.

Proposition 2.20 Let G be *a proper* submodule of an *R*-module *M*. Then G is EXNPS2AB submodule of *M* if and only if $I^2L \subseteq G$ for *I* is an ideal of *R* and *L* is a submodule of *M*, implies that either $IL \subseteq G + soc(M) + J(M)$ or $I^2 \subseteq [G + soc(M) + J(M):_R M]$.

Proof (\Rightarrow) Let $I^2L \subseteq G$ for I is an ideal of R and L is a submodule of M, with $I^2 \not\subseteq [G + soc(M) + J(M):_R M]$ and G is EXNPS2AB submodule of M. To prove that $IL \subseteq G + soc(M) + J(M)$. Let $x \in IL$, implies that $x = r_1x_1 + r_2x_2 + \cdots + r_kx_k$ for $r_i \in I$ and $x_i \in L$, i = 1, 2, ..., k, it follows that $r_i^2x_i \in I^2L \subseteq G$. That is $r_i^2x_i \in G$. But G is EXNPS2AB submodule of an R-module M, then $r_ix_i \in G + soc(M) + J(M)$ and $r_i^2 \notin [G + soc(M) + J(M):_R M]$ for each i = 1, 2, 3, ..., k, thus $r_1x_1 + r_2x_2 + \cdots + r_kx_k \in G + soc(M) + J(M)$, that is $x \in G + soc(M) + J(M)$. Hence $IL \subseteq G + soc(M) + J(M)$.

(\Leftarrow) Suppose that $r^2 y \in G$ for $r \in R$ and $y \in M$, implies that $\langle r^2 \rangle \langle x \rangle \subseteq G$. Thus by our assumption we have either $\langle r \rangle \langle x \rangle \subseteq G + soc(M) + J(M)$ or $\langle r^2 \rangle \subseteq [G + soc(M) + J(M):_R M]$. That is $rx \in \langle r \rangle \langle x \rangle \subseteq G + soc(M) + J(M)$ or $r^2 \in \langle r^2 \rangle \subseteq [G + soc(M) + J(M):_R M]$, that is either $rx \in G + soc(M) + J(M)$ or $r^2 \in [G + soc(M) + J(M):_R M]$. Hence G is EXNPS2AB submodule of M.

As a direct consequence of Proposition 2.20 we get the following corollaries.

Corollary 2.21 Let G be a proper submodule of an *R*-module *M*. Then G is EXNPS2AB submodule of *M* if and only if $I^2M \subseteq G$ for *I* is an ideal of *R*, implies that either $IM \subseteq G + soc(M) + J(M)$ or $I^2 \subseteq [G + soc(M) + J(M)]_R M$.

Corollary 2.22 Let G be a proper submodule of an *R*-module *M*. Then G is EXNPS2AB submodule of *M* if and only if $I^2 y \subseteq G$ for *I* is an ideal of *R* and $y \in M$, implies that either $Iy \subseteq G + soc(M) + J(M)$ or $I^2 \subseteq [G + soc(M) + J(M):_R M]$.

Proposition 2.23 A proper submodule G of an *R*-module *M* is EXNPS2AB submodule of *M* if and only if $[G_{:_M} r^2] \subseteq [G+soc(M) + J(M)_{:_M} r]$ for $r \in R$ such that $r^2 \notin [G+soc(M) + J(M)_{:_R} M]$.

Proof (\Rightarrow) Let $y \in [G_{:_M} r^2]$, then $yr^2 \in G$ for $r \in R$ and $y \in M$. Since G is EXNPS2AB submodule of M and $r^2 \notin [G+soc(M) + J(M)_{:_R} M]$, then $ry \in G + soc(M) + J(M)$. Hence $y \in [G+soc(M) + J(M)_{:_M} r]$. That is $[G_{:_M} r^2] \subseteq [G+soc(M) + J(M)_{:_M} r]$.

(⇐) Let $r^2 y \in G$ for $r \in R$, $y \in M$, implies that $y \in [G_{M} r^2] \subseteq [G + soc(M) + J(M)_{M} r]$, hence $y \in [G + soc(M) + J(M)_{M} r]$, that is $ry \in G + soc(M) + J(M)$. Therefore G is EXNPS2AB submodule of M.

As a direct consequence of Proposition 2.23 we get the following corollaries.

Corollary 2.24 Let G be a proper submodule of an *R*-module *M*. Then G is EXNPS2AB submodule of *M* if and only if $r^2L \subseteq G$ for $r \in R$, *L* is a submodule of *M*, implies that either $rL \subseteq G + soc(M) + J(M)$ or $r^2 \in [G + soc(M) + J(M):_R M]$.

Corollary 2.25 Let G be a proper submodule of an *R*-module *M*. Then G is EXNPS2AB submodule of *M* if and only if $r^2M \subseteq G$ for $r \in R$ and *L* is a submodule of *M*, implies that either $rM \subseteq G + soc(M) + J(M)$ or $r^2 \in [G + soc(M) + J(M):_R M]$.

Proposition 2.26 Let *M* be an *R*-module and G be a proper submodule of *M*. Then G + soc(M) + J(M) is EXNPS2AB submodule of *M* if and only if $[G + soc(M) + J(M):_R r^2 y] = [G + soc(M) + J(M):_R ry]$ for each $y \in M$ or $r^2 \in [E + soc(M) + J(M):_R M]$.

Proof (\Rightarrow) Assume that $r^2 \notin [E + soc(M) + J(M):_R M]$ and let $a \in [E + soc(M) + J(M):_R r^2 y]$, then $r^2 ay \in E + soc(M) + J(M)$. But E + soc(M) + J(M) is EXNPS2AB submodule of M and $r^2 \notin [E + soc(M) + J(M):_R M]$, then $ray \in (E + soc(M) + J(M)) + soc(M) + J(M) = E + soc(M) + J(M)$. That is $a \in [E + soc(M) + J(M):_R ry]$. Thus $[E + soc(M) + J(M):_R r^2 y] \subseteq [E + soc(M) + J(M):_R ry]$. It is clear that $[E + soc(M) + J(M):_R ry] \subseteq [E + soc(M) + J(M):_R r^2 y]$, hence $[E + soc(M) + J(M):_R r^2 y] = [E + soc(M) + J(M):_R ry]$.

(⇐) Let $r^2y \in E + soc(M) + J(M)$, for $r \in R$, $y \in M$, then by hypothesis $[E + soc(M) + J(M):_R r^2y] = [E + soc(M) + J(M):_R ry]$ or $r^2 \in [E + soc(M) + J(M):_R M]$. If $[E + soc(M) + J(M):_R r^2y] = [E + soc(M) + J(M):_R ry]$ and $r^2y \in E + soc(M) + J(M)$ then $[E + soc(M) + J(M):_R r^2y] = R$, it follows that $[E + soc(M) + J(M):_R ry] = R$, hence $ry \in E + soc(M) + J(M) \subseteq E + soc(M) + J(M) + soc(M) + J(M)$, so $ry \in E + soc(M) + J(M) + soc(M) + J(M)$ or $r^2M \subseteq E + soc(M) + J(M) + soc(M) + J(M)$. That is E + soc(M) + J(M) is EXNPS2AB submodule of M.

Now, we need to recall the following lemma.

Lemma 2.27 [16, EX.(12)P.239]

1) Let G is submodule of an *R*-module *M* with G is a direct summand of *M*, then $J(\frac{M}{G}) = \frac{J(M)+G}{G}$.

2) An *R*-module *M* is a semi-simple if and only if for each submodule G of $M \operatorname{soc}(\frac{M}{C}) = \frac{\operatorname{soc}(M)+G}{C}$.

Proposition 2.28 Let G be EXNPS2AB submodule of an *R*-module *M* and L is a submodule of *M* with $L \subseteq G$, then $\frac{G}{L}$ is EXNPS2AB submodule of an *R*-module $\frac{M}{L}$.

Proof Let G be EXNPS2AB submodule of M and $a^2(e + L) = a^2e + L \in G/L$ for $a \in R$ and $e + L \in M/L$, $e \in M$, implies that $a^2e \in G$. Since G is EXNPS2AB submodule of M, then either $ae \in G + soc(M) + J(M)$ or $a^2M \subseteq G + soc(M) + J(M)$. Hence either $a(e + L) \in G + soc(M) + J(M)/L$ or $a^2M/L \subseteq G + soc(M) + J(M)/L$, then either $a(e + L) \in G/L + G + soc(M)/L + G + J(M)/L \subseteq G/L + soc(M/L) + J(M/L)$ or $a^2M/L \subseteq G/L + G + soc(M)/L + G + J(M)/L \subseteq G/L + soc(M/L) + J(M/L)$. Hence G/L is EXNPS2AB submodule of M/L.

Proposition 2.29 Let *M* is a semi simple *R*-module, G and *K* are submodules for *M* such that $K \subseteq G$ and G is a proper submodule of *M*. If *K* and G/K are EXNPS2AB submodules of *M* and M/K respectively, then G is EXNPS2AB submodule of *M*.

Proof Suppose *K* and *G*/*K* are EXNPS2AB submodules for *M* and *M*/*K* respectively, and let $I^2 u \subseteq G$, for *I* is an ideals of *R* and $u \in M$. So $I^2(u + K) = I^2 u + K \subseteq G/K$. If $I^2 u \subseteq K$ and *K* is EXNPS2AB submodules of *M*, implies that by Corollary 2.22 either $Iu \subseteq K + (soc(M) + J(M)) \subseteq G + (soc(M) + J(M))$ or $I^2M \subseteq K + (soc(M) + J(M)) \subseteq G + (soc(M) + J(M))$, hence *G* is EXNPS2AB submodules for *M*. Now, we may assume that $I^2 u \notin K$. It follows that $I^2(u + K) \subseteq G/K$, but *G*/*K* is EXNPS2AB submodules of *M*/*K*, again by Corollary 2.24 either $I(u + K) \subseteq G/K + (soc(M/K)) + (J(M/K))$ or $I^2M/K \subseteq G/K + (soc(M) + K/K) + (J(M) + K/K)$ or $I^2M/K \subseteq G/K + (soc(M) + K/K) + (J(M) + K/K)$. But $K \subseteq G$, it follows that $K + soc(M) \subseteq G + soc(M)$ and $K + J(M) \subseteq G + J(M)$, hence *G*/*K* + (soc(M) + K/K) + (J(M) + K/K) = G + soc(M) + J(M)/K, thus we have either $I(u + K) \subseteq G + soc(M) + J(M)/K$ or $I^2M/K \subseteq G + soc(M) + J(M)/K$ if follows that either $Iu \subseteq G + (soc(M) + J(M)) = G + (soc(M) + J(M)/K)$. Hence by Corollary 2.22 *G* is EXNPS2AB submodules of *M*.

Under the certain condition the intersection of two EXNPS2AB submodules is EXNPS2AB submodule.

Lemma 2.30 [13, lemma (2.3.15)] Let *A*, *B* and *C* are submodules of an *R*-module *M* with $B \subseteq C$, then $(A + B) \cap C = (A \cap C) + B = (A \cap C) + (B \cap C)$.

Lemma 2.31 [17, EX (12.5). p. 242] A submodule G of an *R*-module *M* is maximal and essential if and only if $soc(M) \subseteq G$.

Proposition 2.32 Let *M* be an *R*-module either *E* or G is maximal essential submodule of *M* and *E* not contained in G. If *E* and G are EXNPS2AB submodules of *M*, then $G \cap E$ is EXNPS2AB submodule of *M*.

Proof Clear that $G \cap E$ is a proper submodule of M. Now, let $I^2L \subseteq E \cap G$, for some ideal I of R and L is a submodule of M it follows' that $I^2L \subseteq E$ and $I^2L \subseteq G$. But both E and G are EXNPS2AB submodules of M, then by Proposition 2.20 we have either $IL \subseteq E + soc(M) + J(M)$ or $I^2M \subseteq E + soc(M) + J(M)$ and $IL \subseteq G + soc(M) + J(M)$ or $I^2M \subseteq G + soc(M) + J(M)$. Thus either $IL \subseteq (E + soc(M) + J(M)) \cap (G + soc(M) + J(M))$ or $I^2M \subseteq (E + soc(M) + J(M)) \cap (G + soc(M) + J(M))$. Since either E or G is maximal essential submodule of M, then either $soc(M) \subseteq E$ or $soc(M) \subseteq G$. Suppose that G is maximal essential submodule of M, so that by Lemma 2.31 $soc(M) \subseteq G$ and since G is maximal submodule of M, then $J(M) \subseteq G$. It follows that G + soc(M) + J(M) = G. Hence either $IL \subseteq (E + soc(M) + J(M)) \cap G$ or $I^2M \subseteq (E + soc(M) + J(M)) \cap G$. Therefore by modular law we get either $IL \subseteq (E \cap G) + (soc(M) + J(M))$: $_R M$. Hence by Proposition 2.20 $G \cap E$ is EXNPS2AB submodule of M.

Lemma 2.33 [13, Theo. (9.1.4) (a)] Let $\emptyset: M \to G$ be an *R*-homomorphism, then $\emptyset(soc(M))$ is a submodule of soc(G) (That is $\emptyset(soc(M)) \subseteq soc(G)$). And $\emptyset(J(M)) \subseteq J(G)$).

Lemma 2.34 [13, Coro. (9.1.5) (a)] If $\varphi: M \to \overline{M}$ be an *R*-epimorphism and $Ker\varphi$ is small submodule of *M*, then $\varphi(J(M)) = J(\overline{M})$ and $\varphi^{-1}(J(\overline{M})) = J(M)$.

Proposition 2.35 Let $\varphi: M \to \overline{M}$ be an *R*-epimorphism with ker (φ) is a small submodule of *M* and G be EXNPS2AB submodule of \overline{M} , then $\varphi^{-1}(G)$ is EXNPS2AB submodule of *M*.

Proof Since φ onto, then $\varphi^{-1}(G)$ is a proper submodule of M, if not, we have $\varphi^{-1}(G) = M$, implies that $G = \varphi(M) = \overline{M}$ contradiction. Let $a^2 \chi \in \varphi^{-1}(G)$, for $a \in R, \chi \in M$, implies that $a^2 \varphi(\chi) \in G$, but G is EXNPS2AB submodule of \overline{M} , implies that either $a\varphi(\chi) \in G + soc(\overline{M}) + J(\overline{M})$ or $a^2\overline{M} \subseteq G + soc(\overline{M}) + J(\overline{M})$, it follows that $a\chi \in \varphi^{-1}(G) + \varphi^{-1}(soc(\overline{M})) + \varphi^{-1}(J(\overline{M})) \subseteq \varphi^{-1}(G) + soc(M) + J(M)$ or $a^2M \subseteq \varphi^{-1}(G) + \varphi^{-1}(soc(\overline{M})) + \varphi^{-1}(J(\overline{M})) \subseteq \varphi^{-1}(G) + soc(M) + J(M)$ or $a^2M \subseteq \varphi^{-1}(G) + soc(M) + J(M)$. Therefore $\varphi^{-1}(G)$ is EXNPS2AB submodule of M.

Proposition 2.36 Let $\varphi: M \to \overline{M}$ be an *R*-epimorphism, *G* is a *proper* submodule of *M* and ker(φ) is a small submodule of *M* with ker(φ) \subseteq *G*. Then *G* is EXNPS2AB submodule of *M* if and only if $\varphi(G)$ is EXNPS2AB submodule of \overline{M} .

Proof (\Rightarrow) Let $a^2 \bar{x} \in \varphi(G)$, for $a \in R$ and $x \in \overline{M}$. Since φ is onto, then $\bar{x} = \varphi(\mathfrak{m})$, for some $x \in M$, that is $a^2 \varphi(x) \in \varphi(G)$, implies that $a^2 \varphi(x) = \varphi(y)$ for some $y \in G$, then $\varphi(a^2 x - y) = 0$, it follows that $a^2 x - y \in \ker(\varphi) \subseteq G$, then

 $a^2x \in G$. Since G is EXNPS2AB submodule of M, then either $ax \in G + soc(M) + J(M)$ or $a^2M \subseteq G + soc(M) + J(M)$. Thus we have either $\varphi(ax) \in \varphi(G) + \varphi(soc(M)) + \varphi(J(M)) \subseteq \varphi(G) + soc(\overline{M}) + J(\overline{M} \text{ or } \varphi(a^2M) = a^2\varphi(M) = a^2\overline{M} \subseteq \varphi(G) + \varphi(soc(M)) + \varphi(J(M)) \subseteq \varphi(G) + soc(\overline{M}) + J(\overline{M})$. Hence $\varphi(G)$ is EXNPS2AB submodule of \overline{M} .

(\Leftarrow) Suppose that $a^2h \in G$, for $a \in R, h \in M$ so $\varphi(a^2h) \in \varphi(G)$, that is $a^2\varphi(h) \in \varphi(G)$. But $\varphi(G)$ is EXNPS2AB submodule of \overline{M} , implies that either $a\varphi(h) \in \varphi(G) + soc(\overline{M}) + J(\overline{M})$ or $a^2\overline{M} \subseteq \varphi(G) + soc(\overline{M}) + J(\overline{M})$. If $a\varphi(h) \in \varphi(G) + soc(\overline{M}) + J(\overline{M})$, since ker(φ) is a small submodule of M, then by Lemma 2.33 and Lemma 2.34 $ah \in \varphi^{-1}(\varphi(G)) + \varphi^{-1}(soc(\overline{M})) + \varphi^{-1}(J(\overline{M})) \subseteq G + soc(M) + J(M)$, that is $ah \in G + soc(M) + J(M)$. If $a^2\overline{M} \subseteq \varphi(G) + soc(\overline{M}) + J(\overline{M})$, then $\varphi(a^2M) \subseteq \varphi(G) + soc(\overline{M}) + J(\overline{M})$, It follows that $a^2M \subseteq \varphi^{-1}(\varphi(G)) + \varphi^{-1}(soc(\overline{M})) + \varphi^{-1}(J(\overline{M})) \subseteq G + soc(M) + J(M)$. Hence G is EXNPS2AB submodule of M.

Proposition 2.37 Let *M* be an *R*-module with soc(M) is Semi-2-Absorbing submodule of *M*. If $G \subset M$ such that $G \subseteq soc(M)$, then G is EXNPS2AB submodule of *M*.

Proof Let $r^2M \subseteq G$ for $r \in R$. Since $G \subseteq soc(M)$, it follows that $r^2M \subseteq soc(M)$. But soc(M) is Semi-2-Absorbing subomdule of M, then either $rM \subseteq soc(M) \subseteq G + soc(M) + J(M)$ or $r^2M \subseteq soc(M) \subseteq G + soc(M) + J(M)$. That is either $rM \subseteq G + soc(M) + J(M)$ or $r^2 \in [G + soc(M) + J(M):_R M]$. Therefore by Corollary 2.25 G is EXNPS2AB submodule of M.

Proposition 2.38 Let *M* be an *R*-module with J(M) is Semi-2-Absorbing submodule of *M*. If $G \subset M$ such that $G \subseteq J(M)$, then G is EXNPS2AB submodule of *M*.

Proof Let $r^2L \subseteq G$ for $r \in R$ and L is a submodule of M. Since $G \subseteq J(M)$, it follows that $r^2L \subseteq J(M)$. But J(M) is Semi-2-Absorbing subomdule of M, then either $rL \subseteq J(M) \subseteq G + soc(M) + J(M)$ or $r^2M \subseteq J(M) \subseteq G + soc(M) + J(M)$. That is either $rL \subseteq G + soc(M) + J(M)$ or $r^2 \in [G + soc(M) + J(M):_R M]$. Hence by Corollary 2.24 G is EXNPS2AB submodule of M.

3. The Relationship between the Extend Nearly Pseudo Semi-2-Absorbing Submodules and Other Concepts.

In this part of this search we introduced the relationships between the concept of Extend Nearly Pseudo Semi-2-Absorbing submodules and (2-Absorbing, Semi-2-Absorbing, Nearly-2-Absorbing, Nearly Semi-2-Absorbing, Pseudo-2-Absorbing and Pseudo Semi-2-Absorbing) submodules with all these concepts being equal.

Lemma 3.1 [15, Theo. (2.2)] If *R* is a Boolean ring, then *R* is a regular ring.

It is well known if *G* is regular then J(G) = 0 [13].

Proposition 3.2 Let *M* be a an *R*-module over a Boolean ring *R* and $G \subset M$ with $soc(M) \subseteq G$. Then G is 2-Absorbing submodule of *M* if and only if G is EXNPS2AB submodule of *M*.

Proof (\Rightarrow) By Proposition 2.2.

(\Leftarrow) Let $abx \in G$ for $a, b \in R, x \in M$, since R is a Boolean ring, then $abx = (ab)^2 x \in G$ with $(ab)^2 \notin [G + soc(M) + J(M):_R M]$ and $bx \notin G + soc(M) + J(M)$. But G is EXNPS2AB submodule of M and $(ab)^2 \notin [G + soc(M) + J(M):_R M]$, then $abx \in G + soc(M) + J(M)$. Now, since R is a Boolean ring, then by Lemma 3.1 R is a regular ring, that is $a^2b = a$, hence $abx = a^2bx = ax \in G + soc(M) + J(M)$. Since R is a regular ring, then J(G) = 0. Also $soc(M) \subseteq G$, that is soc(M) + G = G, then $ax \in G$. Since $ab = (ab)^2 \notin [G + soc(M) + J(M):_R M]$, then $ab \notin [G:_R M]$ and $bx \notin G + soc(M) + J(M)$, then $bx \notin G$. Hence G is 2-Absorbing of M.

Proposition 3.3 Let *M* be a an *R*-module over a Boolean ring *R* and G is an essential submodule of *M*. Then G is 2-Absorbing submodule of *M* if and only if G is EXNPS2AB submodule of *M*.

Proof (⇒) Clear.

(\Leftarrow) Let $abx \in G$ for $a, b \in R, x \in M$, since R is a Boolean ring, then $abx = (ab)^2 x \in G$ with $(ab)^2 \notin [G + soc(M) + J(M):_R M]$ and $bx \notin G + soc(M) + J(M)$. But G is EXNPS2AB submodule of M and $(ab)^2 \notin [G + soc(M) + J(M):_R M]$, then $abx \in G + soc(M) + J(M)$. Now, since R is a Boolean ring, then by Lemma 3.1 R is a regular ring, that is $a^2b = a$, hence $abx = a^2bx = ax \in G + soc(M) + J(M)$. Since R is a regular ring, then J(G) = 0. Also G is an

essential submodule of M, then $soc(M) \subseteq G$, that is soc(M) + G = G, hence $ax \in G$. Since $ab = (ab)^2 \notin [G + soc(M) + J(M):_R M]$, then $ab \notin [G:_R M]$ and $bx \notin G + soc(M) + J(M)$, then $bx \notin G$. Hence G is 2-Absorbing of M.

The following Corollaries are direct consequence of Proposition 3.2 and Proposition 3.3.

Corollary 3.4 Let *M* be an *R*-module over a Boolean ring *R* and $G \subset M$ with $soc(M) + J(M) \subseteq G$. Then G is 2-Absorbing submodule of *M* if and only if G is EXNPS2AB submodule of *M*.

Corollary 3.5 Let *M* be a an *R*-module over a Boolean ring *R* and $G \subset M$ with soc(M) + J(M) = 0. Then G is 2-Absorbing submodule of *M* if and only if G is EXNPS2AB submodule of *M*.

Corollary 3.6 Let *M* be a an *R*-module over a Boolean ring *R* and soc(M) = G. Then G is 2-Absorbing if and only if G is EXNPS2AB submodule of *M*.

Corollary 3.7 Let *M* be a an *R*-module over a Boolean ring *R* and soc(M) = 0. Then G is 2-Absorbing if and only if G is EXNPS2AB submodule of *M*.

Proposition 3.8 Let *M* be *R*-module and $G \subset M$ with J(M/G) = (0) and $soc(M) \subseteq G$. Then G is Semi-2-Absorbing submodule of *M* if and only if G is EXNPS2AB submodule of *M*.

Proof (\Rightarrow) By Proposition 2.5.

(⇐) Since J(M/G) = (0), then by [5, Theo. (9.1.4)(b)] we get $J(M) \subseteq G$. Let $r^2m \in G$ for $r \in R, m \in M$. Since G is EXNPS2AB, then either $rm \in G + soc(M) + J(M)$ or $r^2 \in [G + soc(M) + J(M):_R M]$. But $soc(M) \subseteq G$ and $J(M) \subseteq G$, hence G + soc(M) = G and G + soc(M) + J(M) = G + J(M) = G. Thus either $rm \in G$ or $r^2 \in [G:_R M]$. Therefore G is Semi-2-Absorbing submodule of M.

Proposition 3.9 Let *M* be *R*-module and G is an essential submodule of *M* with $J(M) \subseteq G$. Then G is Semi-2-Absorbing submodule of *M* if and only if G is EXNPS2AB submodule of *M*.

Proof (⇒) Clear.

(⇐) Let $s^2m \in G$ for $s \in R$, $m \in M$. Since G is EXNPS2AB, then either $sm \in G + soc(M) + J(M)$ or $s^2 \in [G + soc(M) + J(M):_R M]$. Since G is essential submodule of M, then $soc(M) \subseteq G$ and by hypotheses $J(M) \subseteq G$, we get G + soc(M) = G and G + J(M) = G, thus G + soc(M) + J(M) = G. Hence either $sm \in G$ or $s^2 \in [G:_R M]$. Therefore G is Semi-2-Absorbing submodule of M.

The following Corollaries are direct consequence of Proposition 3.8 and Proposition 3.9.

Corollary 3.10 Let *M* be *R*-module and $G \subset M$ with $soc(M) + J(M) \subseteq G$. Then G is Semi-2-Absorbing if and only if G is EXNPS2AB submodule of *M*.

Corollary 3.11 Let *M* be *R*-module and G is maximal submodule of *M* with $soc(M) \subseteq G$. Then G is Semi-2-Absorbing if and only if G is EXNPS2AB submodule of *M*.

Corollary 3.12 Let *M* be a semi-simple *R*-module and $G \subset M$ with $soc(M) \subseteq G$. Then G is Semi-2-Absorbing submodule of *M* if and only if G is EXNPS2AB submodule of *M*.

Corollary 3.13 Let *M* be a regular *R*-module and $G \subset M$ with $soc(M) \subseteq G$. Then G is Semi-2-Absorbing submodule of *M* if and only if G is EXNPS2AB submodule of *M*.

Proposition 3.14 Let G be a proper submodule of an *R*-module *M* with soc(M) = (0) and J(M) = (0). Then G is Semi-2-Absorbing if and only if G is EXNPS2AB submodule of *M*.

Proof Direct.

Proposition 3.15 Let *M* be an *R*-module over a Boolean ring *R* with G is a proper submodule of *M* and $soc(M) \subseteq J(M)$. Then G is Nearly-2-Absorbing submodule of *M* if and only if G is EXNPS2AB submodule of *M*.

Proof (\Rightarrow) By Proposition 2.14.

(\Leftarrow) Let $abx \in G$ for $a, b \in R, x \in M$, since R is a Boolean ring, then $abx = (ab)^2 x \in G$ with $(ab)^2 \notin [G + soc(M) + J(M):_R M]$ and $bx \notin G + soc(M) + J(M)$. But G is EXNPS2AB submodule of M and $(ab)^2 \notin [G + soc(M) + J(M):_R M]$, then $abx \in G + soc(M) + J(M)$. Now, since R is a Boolean ring, then by Lemma 3.1 R is a regular ring, that is $a^2b = a$, hence $abx = a^2bx = ax \in G + soc(M) + J(M)$. Since $soc(M) \subseteq J(M)$, then soc(M) + J(M) = J(M), then $ax \in G + J(M)$. Since $ab = (ab)^2 \notin [G + soc(M) + J(M):_R M]$, then $ab \notin [G + J(M):_R M]$ and $bx \notin G + soc(M) + J(M)$, then $bx \notin G + J(M)$. Thus is G is Nearly-2-Absorbing of M.

Proposition 3.16 Let *M* be an *R*-module over a Boolean ring *R* with $G \subset M$ and $soc(M) \subseteq G$. Then G is Nearly-2-Absorbing if and only if G is EXNPS2AB submodule of *M*.

Proof (⇒) Clear.

(⇐) Let $abx \in G$ for $a, b \in R, x \in M$, since R is a Boolean ring, then $abx = (ab)^2 x \in G$ with $(ab)^2 \notin [G + soc(M) + J(M):_R M]$ and $bx \notin G + soc(M) + J(M)$. But G is EXNPS2AB submodule of M and $(ab)^2 \notin [G + soc(M) + J(M):_R M]$, then $abx \in G + soc(M) + J(M)$. Now, since R is a Boolean ring, then by Lemma 3.1 R is a regular ring, that is $a^2b = a$, hence $abx = a^2bx = ax \in G + soc(M) + J(M)$. Since $soc(M) \subseteq G$, then soc(M) + G = G, hence $ax \in G + J(M)$. Since $ab = (ab)^2 \notin [G + soc(M) + J(M):_R M]$, then $ab \notin [G + J(M):_R M]$ and $bx \notin G + soc(M) + J(M)$, then $bx \notin G + J(M)$. Thus G is Nearly-2-Absorbing of M.

The Proof of the following results is direct.

Proposition 3.17 Let *M* be an *R*-module over a Boolian ring *R* with $G \subset M$ and soc(M) = (0). Then G is Nearly-2-Absorbing if and only if G is EXNPS2AB submodule of *M*.

Proposition 3.18 Let *M* be an *R*-module over a Boolian ring *R* and G is an essential submodule of *M*. Then G is Nearly-2-Absorbing if and only if G is EXNPS2AB submodule of *M*.

Proposition 3.19 Let G be a proper submodule of an *R*-module *M* and $soc(M) \subseteq J(M)$. Then G is Nearly Semi-2-Absorbing submodule of *M* if and only if G is EXNPS2AB submodule of *M*.

Proof (\Rightarrow) Let G be a Nearly Semi-2-Absorbing submodule of an *R*-module *M* and $a^2 x \in G$, for $a \in R, x \in M$. Since G is Nearly Semi-2-Absorbing submodule of *M*, then either $ax \in G + J(M) \subseteq G + soc(M) + J(M)$ or $a^2M \subseteq G + J(M) \subseteq G + soc(M) + J(M)$. That is either $ax \in G + soc(M) + J(M)$ or $a^2M \subseteq G + soc(M) + J(M)$. Hence G is EXNPS2AB submodule of *M*.

(⇐) Let $s^2m \in G$ for $s \in R$, $m \in M$. Since G is EXNPS2AB submodule of M, then either $sm \in G + soc(M) + J(M)$ or $s^2 \in [G + soc(M) + J(M):_R M]$. Since $soc(M) \subseteq J(M)$, then soc(M) + J(M) = J(M), thus either $sm \in G + J(M)$ or $s^2 \in [G + J(M):_R M]$. Hence G is Nearly Semi-2-Absorbing submodule of M.

Proposition 3.20 Let G be a proper submodule of an *R*-module *M* and $soc(M) \subseteq G$. Then G is Nearly Semi-2-Absorbing submodule of *M* if and only if G is EXNPS-2-Absorbing submodule of *M*.

Proof (⇒) Clear.

(←**)** Let $s^2m \in G$ for $s \in R$, $m \in M$. Since G is EXNPS2AB, then either $sm \in G + soc(M) + J(M)$ or $s^2 \in [G + soc(M) + J(M):_R M]$. Since $soc(M) \subseteq G$, then G + soc(M) = G, so G + soc(M) + J(M) = G + J(M), thus either $sm \in G + J(M)$ or $s^2 \in [G + J(M):_R M]$. Hence G is Nearly Semi-2-Absorbing of M.

The Proof of the following results is direct.

Proposition 3.21 Let *M* be *R*-module with G is proper of *M* and soc(M) = (0). Then G is Nearly Semi-2-Absorbing submodule of *M* if and only if G is EXNPS2AB submodule of *M*.

Proposition 3.22 Let *M* be *R*-module and G is an essential submodule of *M*. Then G is Nearly Semi-2-Absorbing submodule of *M* if and only if G is EXNPS2AB submodule of *M*.

Proposition 3.23 Let *M* be an *R*-module over a Boolean ring *R* with $G \subset M$. Then G is Pseudo-2-Absorbing submodule of *M* if and only if G is EXNPS2AB submodule of *M*.

Proof (\Rightarrow) By Proposition 2.8.

(⇐) Let $abx \in G$ for $a, b \in R, x \in M$, since R is a Boolean ring, then $abx = (ab)^2 x \in G$ with $(ab)^2 \notin [G + soc(M) + J(M):_R M]$ and $bx \notin G + soc(M) + J(M)$. But G is EXNPS2AB submodule of M and $(ab)^2 \notin [G + soc(M) + J(M):_R M]$, then $abx \in G + soc(M) + J(M)$. Now, since R is a Boolean ring, then by Lemma 3.1 R is a regular ring, that is $a^2b = a$, hence $abx = a^2bx = ax \in G + soc(M) + J(M)$. Since R is a regular ring, then J(M) = (0), then $ax \in G + soc(M)$. Since $ab = (ab)^2 \notin [G + soc(M) + J(M):_R M]$, then $ab \notin [G + soc(M):_R M]$ and $bx \notin G + soc(M) + J(M)$, hence $bx \notin G + soc(M)$. Hence G is Pseudo-2-Absorbing of M.

The Proof of the following results is direct.

Proposition 3.24 Let *M* be an *R*-module over a Boolean ring *R* and G is an maximal submodule of *M*. Then G is Pseudo-2-Absorbing if and only if G is EXNPS2AB submodule of *M*.

Proposition 3.25 Let *M* be *R*-module with $J(M) \subseteq soc(M)$ and $G \subset M$. Then G is Pseudo Semi-2-Absorbing submodule of *M* if and only if G is EXNPS2AB submodule of *M*.

Proof (\Rightarrow) By Proposition 2.11.

(⇐) Since $J(M) \subseteq soc(M)$, then J(M) + soc(M) = soc(M), so G + J(M) + soc(M) = G + soc(M). Let $r^2h \in G$ for $r \in R$, $h \in M$. Since G is EXNPS2AB, then either $rh \in G + soc(M) + J(M) = G + soc(M)$ or $r^2 \in [G + soc(M) + J(M):_R M] = [G + soc(M):_R M]$. Thus either $rh \in G + soc(M)$ or $r^2 \in [G + soc(M):_R M]$. Hence G is Pseudo Semi-2-Absorbing of M.

Proposition 3.26 Let *M* be *R*-module and G is a maximal submodule of *M*. Then G is Pseudo Semi-2-Absorbing if and only if G is EXNPS2AB submodule of *M*.

Proof Direct.

Remark 3.27

1. Every 2-Absorbing submodule is a Semi-2-Absorbing submodule. [3, Rem and Exa. (1.2)(2)].

2. Every Pseudo-2-Absorbing submodule is a Pseudo Semi-2-Absorbing submodule. [18, Rem and Exa. (2. 2. 2)].

Finally, we will present a Proposition that all concepts are equivalent.

Proposition 3.28 Let *M* be a an *R*-module over a Boolean ring *R* and $G \subset M$ with $soc(M) \subseteq G$. Then the following are equivalent:

- **1.** G is 2-Absorbing submodule of *M*.
- **2.** G is Semi-2-Absorbing submodule of *M*.
- **3.** G is Nearly Semi-2-Absorbing submodule of *M*.
- **4.** G is Nearly-2-Absorbing submodule of *M*.
- **5.** G is EXNPS2AB submodule of *M*.
- **6.** G is Pseudo-2-Absorbing submodule of *M*.
- **7.** G is Pseudo Semi-2-Absorbing submodule of *M*.

Proof

(1⇒2) By Remark 3.23.

(2⇒3) Clear.

(3 \Rightarrow 4) Let $abx \in G$ for $a, b \in R$, $x \in M$, since R is a Boolean ring, then $abx = (ab)^2 x \in G$ with $(ab)^2 \notin [G + A)^2$ $J(M)_{:_R} M$ and $bx \notin G + J(M)$. But G is Nearly Semi-2-Absorbing submodule of M and $(ab)^2 \notin [G + J(M)_{:_R} M]$, then $(ab)x \in G + J(M)$. Now, since R is a Boolean ring, then by Lemma 3.1 R is a regular ring, that is $a^2b = a$, hence $abx = a^2bx = ax \in G + J(M)$. Also $ab = (ab)^2 \notin [G+J(M):_R M]$, then $ab \notin [G+J(M):_R M]$ and $bx \notin G + J(M)$. Hence G is Nearly-2-Absorbing submodule of M.

 $(4 \Leftrightarrow 5)$ By Proposition 3.16.

(5 \Leftrightarrow 6) By Proposition 3.23.

(6⇒7) By Remark 3.27.

(7=1) Let $abx \in G$ for $a, b \in R$, $x \in M$, since R is a Boolean ring, then $abx = (ab)^2 x \in G$ with $(ab)^2 \notin [G + A^2]$ $soc(M)_{\mathbb{P}}M$ and $bx \notin G + soc(M)$. But G is Pseudo Semi-2-Absorbing submodule of M and $(ab)^2 \notin [G + Soc(M)]$. soc(M): $_{R}M$], then $abx \in G + soc(M)$. Now, since R is a Boolean ring, then by Lemma 3.1 R is a regular ring, that is $a^2b = a$, hence $abx = a^2bx = ax \in G + soc(M)$. Since $soc(M) \subseteq G$, then soc(M) + G = G and J(M) = 0 hence $ax \in G$. G. Also, $ab = (ab)^2 \notin [G + soc(M)_{:_R} M] = [G_{:_R} M]$, then $ab \notin [G_{:_R} M]$ and $bx \notin G$. Hence G is 2-Absorbing of M.

References

- [1] Darani, A.Y and Soheilniai. F. 2-Absorbing and Weakly 2-Absorbing Submodules, Tahi Journal. Math, (9) (2011), 577-584.
- [2] Lu, C. P., "M-radical of Submodules in Modules", Math. Japan, vol.(34) 1989, pp. 211-219.
- [3] Innam, M. A and Abdulrahman, A. H. Semi-2-Absorbing Submodules and Semi-2-absorbing Modules, international Journal of Advanced Scientific and Technical Research, RS Publication, 5 (3) 2015, 521-530.
- [4] Wissam A. Hussain and Haibt K. Mohammdali "WN-2-Absorbing Submodules and WVS-2-Absorbing Submodules", Ibn Al-Haitham Journal, for Pure and Appl.Sci. 31(3) 2018, 118-125.
- [5] Haibt K. Mohammdali and Khalaf H. Alhabeeb "Weakly Semi-2-Absorbing Submodules", Journal of University of Anbar, for Pure.Sci, 21(2) 2018, 57-62.
- [6] Omar, A. Abdalla, Mohmed E. Dahash and Haibat, K. Mohammedali. Nearly Quasi Primary-2-Absorbing submodules, Journal of AL-Qadisiya for Computer Science and Mathematics. Under publication. 2022.
- [7] Wissam A. Hussain and Haibt K. Mohammdali "WES-2-Absorbing Submodules and WEQ-2-Absorbing Submodules", Tikrit Journal of Pure Sci, 24(2) 2019, 104-108
- [8] Haibat, K. M and Akram, S. M, "NEARLY SEMI-2-ABSORBING SUBMODULES AND RELATED CONCEOTS", Italian Journal of pure and applied mathematics, 54(40) 2019, pp. (620-627).
- [9] Haibat K. Mohammadali and Omar A. Abdalla "Pseudo-2-Absorbing and Pseudo Semi-2- Absorbing Submodules", AIP Conference Proceedings 020006(1-9) 2019, 1-9
- [10] E. W. Anderson and K. R. Fuller, "Rings and Categories of Modules", edited by J.H.Ewing, F.W.Gehring
- and P.R.Halmos (Springer-verlag, New York, Inc, p.376. 1992.
- [11] Goodearl, K. R., "Ring Theory", Marcel Dekker, Inc. New York and Basel., p.206. 1976.
- [12] Reem T. Abdulquder and Shwkea M. Rajab "Nearly 2-Absorbing Submodules and Related Concepts", Tikrit Journal, for Pure.Sci, 2(3) 2018, 215-221.
- [13] Kasch, F. "Modules and Rings", London Math. Soc. Monographs, New York, Academic press, 1982.
- [14 Dung, N.V., Huynh, D.V., Smith. P.I. and Wishbauer, R., "Extending Modules", Pitman Research Notes in Math. Series. Longman, Harlow. 1994.
- [15] A Wardayani, I Kharismawati, I Sihwaningrum. Regular rings and their properties . Journal of Physics. Conference Series, (1-5). 2020.
- [16] Mahmood S. Y.," Regular Modules ", M. Sc. Thesis, university of Baghdad. 1993.
 [17] Payman, M. H.," Hollow Modules and Semi Hollow Modules ". M. Sc. Thesis, University of Baghbad. 2005.
- [18] Omar A. Abdalla and Haibat K. Mohammadali "Pseudo-2-Absorbing Submodules and some of Their Generalizations", M. Sc. Thesis, university of Tikrit. 2019.