Principally g-radical Supplemented Modules

Rasha Najah Mirza* and Thaar Younis Ghawi#

*Department of Math, faculty of Computer sciences and math, University of Kufa, Al-Najaf, Iraq. Email:rasha.mirzah@uokufa.edu.iq

#Department of Mathematics, College of Education, University of Al-Qadisiyah, Al-Qadisiyah, Iraq. e-mail: thar.younis@qu.edu.iq

 ARTICLE INFO

Article history:
Received: 25 /12/2022
Revised form: 29 /01/2023
Accepted: 01 /02/2023
Available online: 17 /02/2023

Keywords: g-small submodules, g-supplemented module, g-radical supplemented modules, P-g-radical supplemented.

 ABSTRACT

In this article we present a proper generalization of the class of g-radical supplemented modules. This class termed by P-g-radical supplemented. We determined it is structure. Several of these modules’ characterizations, properties, and instances are described.

MSC.

1. Introduction

In this article, all rings R are associative with unity, and all modules are left unitary. We will go through some of the key definitions that we will require in our work. Let μ be a module and β a submodule of μ, denoted by $\beta \leq \mu$. Also, we refer to the direct summand β of μ by $\beta \leq \oplus \mu$. Principally semisimple module is a module which all its cyclic submodules are direct summand [1]. An essential module β in μ symbolized by $\beta \leq \mu$, is a submodule which satisfying $\beta \cap Y = 0$ implies $Y = 0$ for any Y in μ [2]. As dual, a submodule β of μ called to be small in μ, denoted by $\beta \ll \mu$ if, whenever $\mu = \beta + Y$ for $Y \leq \mu$ implies $Y = \mu$ [1]. Zhou and Zhang [3] recall that, a submodule Y of μ is called generalized small, which gives the symbol $Y \ll_g \mu$, if for $\beta \leq \mu$ with $\mu = Y + \beta$ implies $\beta = \mu$. Again Zhou and Zhang gave the definition of Jacobson generalized radical of an R-module μ as; $Rad_g(\mu) = \cap(Y \leq \mu | Y$ is maximal in $\mu) = \sum(Y \ll_g \mu)$. If $\mu = Y + \beta$ and $Y \cap \beta \ll_g \beta$, then β is called a g-supplement of Y in μ [4]. Let μ be a module, $Y, \beta \leq \mu$ and $\mu = Y + \beta$ such that $Y \cap \beta \leq Rad_g(\beta)$, then β is called a generalized radical supplement, briefly g-radical supplement of Y in μ [5]. In this paper, we are going to present the concept of a Principally g-radical supplemented modules and give eight equivalent definitions. next some of the numerous this class's properties of modules and their relationships to other types of modules.

ENCLA TURE

*Corresponding author

Email addresses:

Communicated by 'sub etitor'
2. Principally g-radical Supplemented Modules

First, we will start in presenting our main definition.

Definition 2.1. A module μ is said to be principally g-radical supplemented (briefly, P-g-radical supplemented) if for every cyclic submodule β of μ, there exists a submodule Y of μ such that $\mu = \beta + Y$ and $\beta \cap Y \subseteq \text{Rad}_g(Y)$.

Examples 2.2.

(1) Let $R = \mathbb{Z}$ and $\mu = \mathbb{Z}_{24}$. All g-small submodules of μ are $0, 2\mathbb{Z}_{24}, 4\mathbb{Z}_{24}, 6\mathbb{Z}_{24}, 8\mathbb{Z}_{24}$ and $12\mathbb{Z}_{24}$, hence $\text{Rad}_g(\mu) = 2\mathbb{Z}_{24}$. Let Y be any cyclic submodule of μ. So we have three cases:

- if $Y = \mu$, then trivially 0 is a g-radical supplement of Y in μ.
- if $3\mathbb{Z}_{24} \neq Y \subseteq \mu$, then $Y + \mu = \mu$ and $Y \cap \mu = Y \subseteq 2\mathbb{Z}_{24} = \text{Rad}_g(\mu)$.
- if $Y = 3\mathbb{Z}_{24}$, then $Y + \beta = \mu$. It is clear to see that every submodule of β is g-small, then $\text{Rad}_g(\beta) = \beta$. Hence $Y \cap \beta = 12\mathbb{Z}_{24} \subseteq 4\mathbb{Z}_{24} = \text{Rad}_g(\beta)$.

This means that every submodule of μ has a g-radical supplement in μ. Hence $\mu = \mathbb{Z}_{24}$ is a P-g-radical supplemented as \mathbb{Z}-module.

(2) Consider $\mu = R = \mathbb{Z}$. Let $n, m \in \mathbb{Z}$ with $\gcd(n, m) = 1$, then $n\mathbb{Z} + m\mathbb{Z} = \mathbb{Z}$. But $\text{Rad}_g(n\mathbb{Z}) \subseteq \text{Rad}_g(\mathbb{Z}) = 0$ for any $n \in \mathbb{Z}$, we deduce $n\mathbb{Z} \cap m\mathbb{Z} = (nm)\mathbb{Z} \neq 0$, that is $n\mathbb{Z} \cap m\mathbb{Z} \subseteq \text{Rad}_g(n\mathbb{Z})$ and $n\mathbb{Z} \cap m\mathbb{Z} \subseteq \text{Rad}_g(m\mathbb{Z})$. Hence, \mathbb{Z}-module \mathbb{Z} is not P-g-radical supplemented.

Theorem 2.3. Let μ be a P-g-radical supplemented duo R-module. Then every direct summand of μ is P-g-radical supplemented.

Proof. Let $\mu = \mu_1 \oplus \mu_2$ be a P-g-radical supplemented duo R-module and let $a \in \mu_1$. There is $Y \leq \mu$ with $\mu = aR + Y$ and $aR \cap Y \subseteq \text{Rad}_g(Y)$. By the modular law, $\mu_1 = aR + (\mu_1 \cap Y)$. By [6, Lemma 2.1], $Y = (\mu_1 \cap Y) \oplus (\mu_2 \cap Y)$. We prove that $aR \cap (\mu_1 \cap Y) \subseteq \text{Rad}_g(\mu_1 \cap Y)$. If $x \in aR \cap (\mu_1 \cap Y)$ and as $aR \cap (\mu_1 \cap Y) \subseteq aR \cap Y$, then $x \in aR \cap Y$, so that $x \in \text{Rad}_g(Y)$. Thus $xR \ll_g Y$, by [4, Lemma 5]. As $xR \leq \mu_1 \cap Y \leq \text{Rad}_g(\mu_1 \cap Y)$, it follows that $xR \ll_g \mu_1 \cap Y$, by [7, Proposition 3.2], thus $xR \subseteq \text{Rad}_g(\mu_1 \cap Y)$, and hence $x = x.1 \in xR \subseteq \text{Rad}_g(\mu_1 \cap Y)$ that is what we have to prove.

Now, we must prove the next lemma.

Lemma 2.4. Suppose $\mu = \mu_1 \oplus \mu_2 = Y + \beta$ is an R-module and $Y \leq \mu_1$. If μ is weakly distributive and $Y \cap \beta \subseteq \text{Rad}_g(\beta)$, then $Y \cap \beta \subseteq \text{Rad}_g(\mu_1 \cap \beta)$.

Proof. Let $a \in Y \cap \beta$, then $a \in \text{Rad}_g(\beta)$ and so $aR \ll_g \beta$, by [4, Lemma 5]. As μ is weakly distributive, $\beta = (\mu_1 \cap \beta) \oplus (\mu_2 \cap \beta)$. As $aR \leq \mu_1$ and $aR \leq \beta$ then $aR \leq \mu_1 \cap \beta \leq \text{Rad}_g(\mu_1 \cap \beta)$, hence $a = a.1 \in aR \subseteq \text{Rad}_g(\mu_1 \cap \beta)$.

Theorem 2.5. Let μ be a weakly distributive R-module and $\mu_1 \leq \text{Rad}_g\mu$. If μ is a P-g-radical supplemented R-module, then μ_1 is so P-g-radical supplemented.

Proof. Let $\mu = \mu_1 \oplus \mu_2$ be a distributive P-g-radical supplemented and $a \in \mu_1$, for some $\mu_2 \leq \mu$. There is a submodule β of μ such that $\mu = aR + \beta$ and $aR \cap \beta \subseteq \text{Rad}_g(\beta)$, as μ is P-g-radical supplemented. By the modular law, we have $\mu_1 = \mu_1 \cap \mu = \mu_1 \cap (aR + \beta) = aR + (\mu_1 \cap \beta)$. As $\mu = \mu_1 \oplus \mu_2 = aR + \beta$, $aR \leq \mu_1$ and $aR \cap \beta \subseteq \text{Rad}_g(\beta)$.
We deduce $aR \cap \beta = aR \cap (\mu_1 \cap \beta) \subseteq \text{Rad}_g(\mu_1 \cap \beta)$, by Lemma 2.4. This means that $\mu_1 \cap \beta$ is a g-radical supplement of aR in μ_1, hence μ_1 is a P-g-radical supplemented module.

Proposition 2.6. Let $\mu = \mu_1 \oplus \mu_2 \oplus \ldots$ such that μ_i are P-g-radical supplemented modules $\{\mu_i | i \in I\}$. If $aR \leq \mu$, then μ is P-g-radical supplemented.

Proof. We will prove when $I = \{1, 2\}$. Suppose that $\mu = \mu_1 \oplus \mu_2$ is an R-module and $a \in \mu$. By hypothesis, aR is fully invariant, then $aR = (aR \cap \mu_1) \oplus (aR \cap \mu_2)$, by [6, Lemma 2.1]. Since $aR \cap \mu_1$ and $aR \cap \mu_2$ are cyclic submodules of μ_1 and μ_2 respectively, there exist a submodule Y of μ_1 such that $\mu_1 = (aR \cap \mu_1) + Y$ and $(aR \cap \mu_1) \cap Y = aR \cap Y \subseteq \text{Rad}_g(Y)$, and $\beta \leq \mu_2$ such that $\mu_2 = (aR \cap \mu_2) + \beta$ and $(aR \cap \mu_2) \cap \beta = aR \cap \beta \subseteq \text{Rad}_g(\beta)$. Hence $\mu = \mu_1 + \mu_2 = aR + (Y + \beta)$. Now we have $aR \cap (Y + \beta) = (aR \cap Y) + (aR \cap \beta)$. Therefore $aR \cap (Y + \beta) \subseteq \text{Rad}_g(Y) + \text{Rad}_g(\beta) \subseteq \text{Rad}_g(Y + \beta)$. Hence μ is P-g-radical supplemented.

Recall [6] If all submodules of a module μ are fully invariant, then \mathcal{M} is called a duo module. A submodule A of a module μ is called distributive if $A \cap (B + C) = (A \cap B) + (A \cap C)$ for all submodules B, C of μ. Recall [8] A module μ is said to be distributive if all submodules of μ are distributive. A submodule A of a module μ is weakly distributive if $A = (A \cap X) + (A \cap Y)$ for all submodules X, Y of μ with $X + Y = \mu$. A module μ is said to be weakly distributive if every submodule of μ is a weak distributive submodule of μ.

Proposition 2.7. Let $\mu = \mu_1 \oplus \mu_2$ be a direct sum of P-g-radical supplemented R-modules μ_1 and μ_2. If every cyclic submodule of μ is weakly distributive, then μ is P-g-radical supplemented.

Proof. Analogous proof of Proposition 2.6.

Corollary 2.8. Let μ be a module,

1. If μ is duo and $\mu = \mu_1 \oplus \mu_2 \oplus \ldots$ Then μ_i are P-g-radical supplemented modules $\{\mu_i | i \in I\}$ if and only if μ is P-g-radical supplemented.

2. If μ is weakly distributive and $\mu = \mu_1 \oplus \mu_2$. Then μ_1 and μ_2 are P-g-radical supplemented modules if and only if μ is P-g-radical supplemented.

Proof. (1) Clear by Theorem 2.3 and Proposition 2.6.

(2) Clear by Theorem 2.5 and Proposition 2.7.

Lemma 2.9. If $f: \mu \rightarrow \beta$ is a homomorphism and β is a g-radical supplement in μ such that $\text{Ker}f \leq \beta$, then $f(\beta)$ is a g-radical supplement in $f(\mu)$.

Proof. If β is a g-radical supplement in μ, then there is $Y \subseteq \mu$ with $Y + \beta = \mu$ and $Y \cap \beta \subseteq \text{Rad}_g(\beta)$. Thus $f(Y) + f(\beta) = f(\mu)$. Since $f(\mu) \leq \beta$, then $f(Y) \cap f(\beta) = f(Y \cap \beta) \subseteq f(\text{Rad}_g(\beta)) \subseteq \text{Rad}_g(f(\beta))$. This means $f(\beta)$ is a g-radical supplement of $f(Y)$ in $f(\mu)$.

In following, we will investigate the factors of P-g-radical supplemented modules under some cases.

Proposition 2.10. Let μ be a P-g-radical supplemented R-module and $\beta \leq \mu$. If any cyclic submodule of μ has a g-radical supplement contains β, then μ/β is P-g-radical supplemented.

Proof. Suppose that aR is any cyclic submodule of μ/β, then $aR = (aR + \beta)/\beta$ for some $a \in \mu$. By hypothesis, there exists $Y \subseteq \mu$ such that $\beta \leq Y$, $aR + Y = \mu$ and $aR \cap Y \subseteq \text{Rad}_g(Y)$. Consider a natural map $\pi: \mu \rightarrow \mu/\beta$. Since $\text{Ker} \pi = \beta \leq Y$, so by Lemma 2.9, $\pi(Y)$ is a g-radical supplement of $\pi(aR) = (aR + \beta)/\beta = aR$ in μ/β, and this completes the proof.

The next instance declare the converse of Proposition 2.10 is not correct, in general.
Example 2.11. Let \(R = \mathbb{Z} \) and \(\mu = \mathbb{Z}/24\mathbb{Z} = \mathbb{Z}_{24} \). We illustrate by Example 2.2(1) that \(\mathbb{Z}/24\mathbb{Z} \) is a \(p \)-\(g \)-radical supplemented as \(\mathbb{Z} \)-module, while the \(\mathbb{Z} \)-module \(\mathbb{Z} \) does not be \(p \)-\(g \)-radical supplemented, see Example 2.2(2).

Proposition 2.12. Let \(\mu \) be a distributive \(p \)-\(g \)-radical supplemented \(R \)-module. Then \(\mu / \text{Rad}_g(\mu) \) is principally semisimple.

Proof. Suppose \(\mu \) is a \(p \)-\(g \)-radical supplemented \(R \)-module and let \(\alpha R \) be a cyclic submodule of \(\mu / \text{Rad}_g(\mu) \), then \(\alpha R \cap \beta \subseteq \text{Rad}_g(\beta) \). Therefore we get that \(\mu / \text{Rad}_g(\mu) = (\alpha R + \text{Rad}_g(\mu)) / \text{Rad}_g(\mu) = (\alpha R + \text{Rad}_g(\mu)) / \text{Rad}_g(\mu) = \alpha R + \beta \). Also, since \(\mu \) is distributive, we have \(\alpha R \cap \beta \subseteq \text{Rad}_g(\beta) \). Therefore, we have \(\mu / \text{Rad}_g(\mu) = (\alpha R + \text{Rad}_g(\mu)) / \text{Rad}_g(\mu) \), and hence \(\mu / \text{Rad}_g(\mu) \) is principally semisimple.

Corollary 2.13. Let \(\mu \) be a distributive \(p \)-\(g \)-radical supplemented \(R \)-module. Then \(\mu / \text{Rad}_g(\mu) \) is \(p \)-\(g \)-radical supplemented.

Proposition 2.14. Let \(\alpha: \mu_1 \rightarrow \mu_2 \) be an \(R \)-epimorphism, where \(\mu_1 \) is a \(p \)-\(g \)-radical supplemented \(R \)-module such that any cyclic submodule of \(\mu \) contains \(K \). Then \(\mu_2 \) is \(p \)-\(g \)-radical supplemented.

Proof. Let \(\alpha \) be any cyclic submodule of \(\mu_2 \), then \(\alpha = \alpha(\alpha) \) for some \(\alpha \in \mu_1 \). Since \(\mu_1 \) is a \(p \)-\(g \)-radical supplemented \(R \)-module and \(\alpha \cap \beta \subseteq \mu_1 \), then there is \(\gamma \subseteq \mu_1 \) such that \(\alpha R + \gamma = \mu_2 \) and \(\alpha \cap \gamma \subseteq \text{Rad}_g(\gamma) \). It follows that \(\alpha R \cap \gamma \subseteq \text{Rad}_g(\gamma) \) and \(\gamma \cap \alpha \gamma = \alpha R \cap \gamma \subseteq \text{Rad}_g(\gamma) \).

Corollary 2.15. Let \(\mu \) be a \(p \)-\(g \)-radical supplemented \(R \)-module and \(Y \leq \mu \). If any cyclic submodule of \(\mu \) contains \(Y \), then \(\mu / Y \) is \(p \)-\(g \)-radical supplemented.

Proof. Consider the natural epimorphism map \(\pi: \mu \rightarrow \mu / Y \). As \(\text{Ker} \pi = Y \), then by assumption, every cyclic submodule of \(\mu \) contains \(K \), so that \(\mu / Y \) is \(p \)-\(g \)-radical supplemented, by Proposition 2.14.

Proposition 2.16. If an \(R \)-module \(\mu = \mu_1 \oplus \mu_2 \). Then \(\mu_2 \) is \(p \)-\(g \)-radical supplemented if and only if for any cyclic submodule \(Y / \mu_1 \) of \(\mu / \mu_1 \), there is a submodule \(\beta \) of \(\mu_2 \) such that \(\mu = \beta + Y \) and \(\beta \cap Y \subseteq \text{Rad}_g(\beta) \).

Proof. Suppose that \(\mu_2 \) is \(p \)-\(g \)-radical supplemented. Let \(\beta / \mu_1 \) be a cyclic submodule of \(\mu / \mu_1 \). Then \(\beta / \mu_1 = (xR + \mu_1) / \mu_1 \) and \(x = \alpha_1 + \alpha_2 \) where \(\alpha_1 \subseteq \mu_1, \alpha_2 \subseteq \mu_2 \). Thus \(\beta / \mu_1 = (\alpha_2 R + \mu_1) / \mu_1 \). Hence there is \(Y \leq \mu_2 \) with \(\beta \cap Y \subseteq \text{Rad}_g(\beta) \). It follows that \(\beta \cap Y \subseteq \text{Rad}_g(\beta) \) and \(\beta \cap Y \subseteq \text{Rad}_g(\beta) \).

Proposition 2.17. Let \(\mu \) be a \(p \)-\(g \)-radical supplemented \(R \)-module and \(Y \leq \mu \). If \(Y \cap \text{Rad}_g(\mu) = 0 \), then \(Y \) is principally semisimple. In particular, a \(p \)-\(g \)-radical supplemented \(R \)-module \(\mu \) with \(\text{Rad}_g(\mu) = 0 \) is principally semisimple.
Proof. Let $a \in Y$. Since μ is a P-radical supplemented R-module, then there is $\beta \leq \mu$ with $\mu = aR + \beta$ and $aR \cap \beta \subseteq \text{Rad}_g(\beta) \subseteq \text{Rad}_g(\mu)$. By the modular law, $Y = Y \cap \mu = Y \cap (aR + \beta) = aR + (Y \cap \beta)$. As $aR \cap (Y \cap \beta) \subseteq Y \cap \text{Rad}_g(\mu) = 0$, we get $Y = aR \oplus (Y \cap \beta)$. Hence $aR \leq \oplus Y$, and so Y is principally semisimple. □

Proposition 2.18. Let μ be a cyclic and P-radical supplemented module over a PID R (Principal ideal domain ring). Then $\mu = Y \oplus \beta$ for some principally semisimple module Y and some module β with essential generalized radical.

Proof. Since $\text{Rad}_g(\mu) \leq \mu$, there is a submodule Y of μ such that $Y \oplus \text{Rad}_g(\mu) \leq \mu$. Since $Y \cap \text{Rad}_g(\mu) = 0$ and μ a P-radical supplemented R-module, then by Proposition 2.17, Y is principally semisimple. Since μ is a cyclic module over a PID R, and $Y \leq \mu$, then Y is a cyclic submodule. As μ is P-radical supplemented, there is a submodule β of μ such that $\mu = Y + \beta$ and $Y \cap \beta \subseteq \text{Rad}_g(\beta) \subseteq \text{Rad}_g(\mu)$. As $Y \cap \text{Rad}_g(\mu) = 0$, then $Y \cap \beta = 0$. Thus $\mu = Y \oplus \beta$. It follows that $\text{Rad}_g(\mu) = \text{Rad}_g(Y \oplus \beta) = \text{Rad}_g(Y) \oplus \text{Rad}_g(\beta)$, by [9, Corollary 2.3]. Hence $Y \oplus \text{Rad}_g(\mu) = Y \oplus \text{Rad}_g(\beta)$. Therefore $Y \oplus \text{Rad}_g(\beta) \leq \mu = Y \oplus \beta$, then by [3, Proposition 5.20] $\text{Rad}_g(\beta) \leq \beta$. □

ACKNOWLEDGMENT

The researchers would like to acknowledge the referee(s) for their supportive and important recommendations that enhanced the article.

References