

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Principally g-radical Supplemented Modules

Rasha Najah Mirza* and Thaar Younis Ghawi#

*Department of Math, faculty of Computer sciences and math, University of Kufa, Al-Najaf, Iraq. Email:rasha.mirzah@uokufa.edu.iq

[#]Department of Mathematics, College of Education, University of Al-Qadisiyah, Al-Qadisiyah, Iraq. e-mail: thar.younis@qu.edu.iq

ARTICLEINFO

Article history: Received: 25 /12/2022 Revised form: 29 /01/2023 Accepted: 01 /02/2023 Available online: 17 /02/2023

Keywords: g-small submodules, gsupplemented module, g-radical supplemented modules, P-g-radical supplemented.

ABSTRACT

In this article we present a proper generalization of the class of g-radical supplemented modules. This class termed by P-g-radical supplemented. We determined it is structure. Several of these modules' characterizations, properties, and instances are described.

MSC..

https://doi.org/ 10.29304/jqcm.2023.15.1.1145

1. Introduction

In this article, all rings **R** are associative with unity, and all modules are left unitary. We will go through some of the key definitions that we will require in our work. Let μ be a module and β a submodule of μ , denoted by $\beta \leq \mu$. Also, we refer to the direct summand β of μ by $\beta \leq^{\oplus} \mu$. Principally semisimple module is a module which all its cyclic submodules are direct summand [1]. An essential module β in μ symbolized by $\beta \leq \mu$, is a submodule which satisfying $\beta \cap Y = 0$ implies Y = 0 for any Y in μ [2]. As dual, a submodule β of μ called to be small in μ , denoted by $\beta \ll \mu$ if, whenever $\mu = \beta + Y$ for $Y \leq \mu$ implies $Y = \mu$ [1]. Zhou and Zhang [3] recall that, a submodule Y of μ is called generalized small, which gives the symbol $Y \ll_g \mu$, if for $\beta \leq \mu$ with $\mu = Y + \beta$ implies $\beta = \mu$. Again Zhou and Zhang gave the definition of Jacobson generalized radical of an R-module μ as; $Rad_g(\mu) = \bigcap\{Y \leq \mu \mid Y \text{ is maximal in } \mu\} = \sum\{Y \mid Y \ll_g \mu\}$. If $\mu = Y + \beta$ and $Y \cap \beta \ll_g \beta$, then β is called a generalized radical supplement of Y in μ [4]. Let μ be a module, $Y, \beta \leq \mu$ and $\mu = Y + \beta$ such that $Y \cap \beta \leq Rad_g(\beta)$, then β is called a generalized radical supplement, briefly g-radical supplement of Y in μ [5]. In this paper, we are going to present the concept of a Principally g-radical supplemented modules and give eight equivalent definitions. next some of the numerous this class's properties of modules and their relationships to other types of modules.

ENCLATURE

Email addresses:

Communicated by 'sub etitor'

^{*}Corresponding author

2. Principally g-radical Supplemented Modules

First, we will start in presenting our main definition.

Definition 2.1. A module μ is said to be principally g-radical supplemented (briefly, P-g-radical supplemented) if for every cyclic submodule β of μ , there exists a submodule γ of μ such that $\mu = \beta + \gamma$ and $\beta \cap \gamma \subseteq Rad_{q}(\gamma)$.

Examples 2.2.

(1) Let $R = \mathbb{Z}$ and $\mu = \mathbb{Z}_{24}$. All g-small submodules of μ are 0, $2\mathbb{Z}_{24}$, $4\mathbb{Z}_{24}$, $6\mathbb{Z}_{24}$, $8\mathbb{Z}_{24}$ and $12\mathbb{Z}_{24}$, hence $Rad_g(\mu) = 2\mathbb{Z}_{24}$. Let Υ be any cyclic submodule of μ . So we have three cases:

- if $\Upsilon = \mu$, then trivially **0** is a g-radical supplement of Υ in μ .

- if $3\mathbb{Z}_{24} \neq \Upsilon \subset \mu$, then $\Upsilon + \mu = \mu$ and $\Upsilon \cap \mu = \Upsilon \subseteq 2\mathbb{Z}_{24} = Rad_q(\mu)$.

- if $\Upsilon = 3\mathbb{Z}_{24}$. Let $\beta = 4\mathbb{Z}_{24}$, then $\Upsilon + \beta = \mu$. It is clear to see that every submodule of β is g-small, then $Rad_g(\beta) = \beta$. Hence $\Upsilon \cap \beta = 12\mathbb{Z}_{24} \subseteq 4\mathbb{Z}_{24} = Rad_g(\beta)$.

This means that every submodule of μ has a g-radical supplement in μ . Hence $\mu = \mathbb{Z}_{24}$ is a P-g-radical supplemented as \mathbb{Z} -module.

(2) Consider $\mu = R = \mathbb{Z}$. Let $n, m \in \mathbb{Z}_+$ with gcd(n, m) = 1, then $n\mathbb{Z} + m\mathbb{Z} = \mathbb{Z}$. But $Rad_g(n\mathbb{Z}) \subseteq Rad_g(\mathbb{Z}) = 0$ for any $n \in \mathbb{Z}_+$, we deduce $n\mathbb{Z} \cap m\mathbb{Z} = (nm)\mathbb{Z} \neq 0$, that is $n\mathbb{Z} \cap m\mathbb{Z} \notin Rad_g(n\mathbb{Z})$ and $n\mathbb{Z} \cap m\mathbb{Z} \notin Rad_g(m\mathbb{Z})$. Hence, \mathbb{Z} -module \mathbb{Z} is not P-g-radical supplemented.

Theorem 2.3. Let μ be a P-g-radical supplemented duo *R*-module. Then every direct summand of μ is P-g-radical supplemented.

Proof. Let $\mu = \mu_1 \oplus \mu_2$ be a P-g-radical supplemented duo *R*-module and let $a \in \mu_1$. There is $Y \leq \mu$ with $\mu = aR + Y$ and $aR \cap Y \subseteq Rad_g(Y)$. By the modular law, $\mu_1 = aR + (\mu_1 \cap Y)$. By [6, Lemma 2.1], $Y = (\mu_1 \cap Y) \oplus (\mu_2 \cap Y)$. We prove that $aR \cap (\mu_1 \cap Y) \subseteq Rad_g(\mu_1 \cap Y)$. If $x \in aR \cap (\mu_1 \cap Y)$ and as $aR \cap (\mu_1 \cap Y) \subseteq aR \cap Y$, then $x \in aR \cap Y$, so that $x \in Rad_g(Y)$. Thus $xR \ll_g Y$, by [4, Lemma 5]. As $xR \leq \mu_1 \cap Y \leq^{\oplus} Y$, it follows that $xR \ll_g \mu_1 \cap Y$, by [7, Proposition 3.2], thus $xR \subseteq Rad_g(\mu_1 \cap Y)$, and hence x = x. $1 \in xR \subseteq Rad_g(\mu_1 \cap Y)$ that is what we have to prove.

Now, we must to prove the next lemma.

Lemma 2.4. Suppose $\mu = \mu_1 \oplus \mu_2 = \Upsilon + \beta$ is an *R*-module and $\Upsilon \leq \mu_1$. If μ is weakly distributive and $\Upsilon \cap \beta \subseteq Rad_q(\beta)$, then $\Upsilon \cap \beta \subseteq Rad_q(\mu_1 \cap \beta)$.

Proof. Let $a \in Y \cap \beta$, then $a \in Rad_g(\beta)$ and so $aR \ll_g \beta$, by [4, Lemma 5]. As μ is weakly distributive, $\beta = (\mu_1 \cap \beta) \oplus (\mu_2 \cap \beta)$. As $aR \leq Y \leq \mu_1$ and $aR \leq \beta$ then $aR \leq \mu_1 \cap \beta \leq^{\oplus} \beta$, [7, Proposition 3.2] implies that $aR \ll_g \mu_1 \cap \beta$, therefore $aR \subseteq Rad_g(\mu_1 \cap \beta)$, hence $a = a. 1 \in aR \subseteq Rad_g(\mu_1 \cap \beta)$.

Theorem 2.5. Let μ be a weakly distributive *R*-module and $\mu_1 \leq^{\oplus} \mu$. If μ is a P-g-radical supplemented *R*-module, then μ_1 is so P-g-radical supplemented.

Proof. Let $\mu = \mu_1 \oplus \mu_2$ be a distributive P-g-radical supplemented and $a \in \mu_1$, for some $\mu_2 \leq \mu$. There is a submodule β of μ such that $\mu = aR + \beta$ and $aR \cap \beta \subseteq Rad_g(\beta)$, as μ is P-g-radical supplemented. By the modular law, we have $\mu_1 = \mu_1 \cap \mu = \mu_1 \cap (aR + \beta) = aR + (\mu_1 \cap \beta)$. As $\mu = \mu_1 \oplus \mu_2 = aR + \beta$, $aR \leq \mu_1$ and $aR \cap \beta \subseteq Rad_g(\beta)$.

 $Rad_g(\beta)$, we deduce $aR \cap \beta = aR \cap (\mu_1 \cap \beta) \subseteq Rad_g(\mu_1 \cap \beta)$, by Lemma 2.4. This mean that $\mu_1 \cap \beta$ is a P-g-radical supplement of aR in μ_1 , and so μ_1 is P-g-radical supplemented.

Proposition 2.6. Let $\mu = \mu_1 \oplus \mu_2 \oplus \dots$ such that μ_i are P-g-radical supplemented modules $\{\mu_i | i \in I\}$. If $aR \le \mu$, is fully invariant for some $a \in \mu$, then μ is P-g-radical supplemented.

Proof. We will prove when $I = \{1, 2\}$. Suppose that $\mu = \mu_1 \oplus \mu_2$ is an *R*-module and $a \in \mu$. By hypothesis, aR is fully invariant, then $aR = (aR \cap \mu_1) \oplus (aR \cap \mu_2)$, by [6, Lemma 2.1]. Since $aR \cap \mu_1$ and $aR \cap \mu_2$ are cyclic submodules of μ_1 and μ_2 respectively, then there exist a submodule Y of μ_1 such that $\mu_1 = (aR \cap \mu_1) + Y$ and $(aR \cap \mu_1) \cap Y = aR \cap Y \subseteq Rad_g(Y)$, and $\beta \leq \mu_2$ such that $\mu_2 = (aR \cap \mu_2) + \beta$ and $(aR \cap \mu_2) \cap \beta = aR \cap \beta \subseteq Rad_g(\beta)$. Hence $\mu = \mu_1 + \mu_2 = aR + (Y + \beta)$. Now we have $aR \cap (Y + \beta) = (aR \cap Y) + (aR \cap \beta)$. Therefore $aR \cap (Y + \beta) \subseteq Rad_g(Y) + Rad_g(\beta) \subseteq Rad_g(Y + \beta)$. Hence μ is P-g-radical supplemented.

Recall [6] If all submodules of a module μ are fully invariant, then \mathcal{M} is called a duo module. A submodule A of a module μ is called distributive if $A \cap (B + C) = (A \cap B) + (A \cap C)$ or $A + (B \cap C) = (A + B) \cap (A + C)$ for all submodules B, C of μ . Recall [8] A module μ is said to be distributive if all submodules of μ are distributive. A submodule A of a module μ is weak distributive if $A = (A \cap X) + (A \cap Y)$ for all submodules X, Y of μ with $X + Y = \mu$. A module μ is said to be weakly distributive if every submodule of μ is a weak distributive submodule of μ .

Proposition 2.7. Let $\mu = \mu_1 \oplus \mu_2$ be a direct sum of P-g-radical supplemented *R*-modules μ_1 and μ_2 . If every cyclic submodule of μ is weak distributive, then μ is P-g-radical supplemented.

Proof. Analogous proof of Proposition 2.6. ■

Corollary 2.8. Let μ be a module,

(1) If μ is duo and $\mu = \mu_1 \oplus \mu_2 \oplus \dots$ Then μ_i are P-g-radical supplemented modules $\{\mu_i | i \in I\}$ if and only if μ is P-g-radical supplemented.

(2) if μ is weakly distributive and $\mu = \mu_1 \oplus \mu_2$. Then μ_1 and μ_2 are P-g-radical supplemented modules if and only if μ is P-g-radical supplemented.

Proof. (1) Clear by Theorem 2.3 and Proposition 2.6.

(2) Clear by Theorem 2.5 and Proposition 2.7. ■

Lemma 2.9. If $f: \mu \to \beta$ is a homomorphism and β is a g-radical supplement in μ such that $Kerf \leq \beta$, then $f(\beta)$ is a g-radical supplement in $f(\mu)$.

Proof. If β is a g-radical supplement in μ , then there is $\Upsilon \leq \mu$ with $\Upsilon + \beta = \mu$ and $\Upsilon \cap \beta \subseteq Rad_g(\beta)$. Thus $f(\Upsilon) + f(\beta) = f(\mu)$. Since $Kerf \leq \beta$, then $f(\Upsilon) \cap f(\beta) = f(\Upsilon \cap \beta) \subseteq f(Rad_g(\beta)) \subseteq Rad_g(f(\beta))$. This means $f(\beta)$ is a g-radical supplement of $f(\Upsilon)$ in $f(\mu)$.

In following, we will investigate the factors of P-g-radical supplemented modules under some cases.

Proposition 2.10. Let μ be a P-g-radical supplemented *R*-module and $\beta \leq \mu$. If any cyclic submodule of μ has a gradical supplement contains β , then μ/β is P-g-radical supplemented.

Proof. Suppose that $\bar{a}R$ is any cyclic submodule of μ/β , then $\bar{a}R = (aR + \beta)/\beta$ for some $a \in \mu$. By hypothesis, there exists $\Upsilon \leq \mu$ such that $\beta \leq \Upsilon$, $aR + \Upsilon = \mu$ and $aR \cap \Upsilon \subseteq Rad_g(\Upsilon)$. Consider a natural map $\pi: \mu \to \mu/\beta$. Since $Ker\pi = \beta \leq \Upsilon$, so by Lemma 2.9, $\pi(\Upsilon)$ is a g-radical supplement of $\pi(aR) = (aR + \beta)/\beta = \bar{a}R$ in μ/β , and this completes the proof.

The next instance declare the converse of Proposition 2.10 is not correct, in general.

Example 2.11. Let $R = \mathbb{Z}$ and $\mu = \mathbb{Z}/24\mathbb{Z} = \mathbb{Z}_{24}$. We illustrate by Example 2.2(1) that $\mathbb{Z}/24\mathbb{Z}$ is a P-g-radical supplemented as \mathbb{Z} -module, while the \mathbb{Z} -module \mathbb{Z} does not be P-g-radical supplemented, see Example 2.2(2).

Proposition 2.12. Let μ be a distributive P-g-radical supplemented *R*-module. Then $\mu/Rad_g(\mu)$ is principally semisimple.

Proof. Suppose μ is a P-g-radical supplemented *R*-module and let $\overline{a}R$ be a cyclic submodule of $\mu/Rad_g(\mu)$, then $\overline{m}R = (aR + Rad_g(\mu))/Rad_g(\mu)$ for some $a \in \mu$. Then there is a submodule β of μ such that $aR + \beta = \mu$ and $aR \cap \beta \subseteq Rad_g(\beta)$. Therefore we get that , $\mu/Rad_g(\mu) = (aR + Rad_g(\mu))/Rad_g(\mu) + (\beta + Rad_g(\mu))/Rad_g(\mu) = \overline{m}R + (\beta + Rad_g(\mu))/Rad_g(\mu)$. Also, since μ is distributive, we have $\overline{m}R \cap ((\beta + Rad_g(\mu))/Rad_g(\mu)) = [(aR + Rad_g(\mu)) \cap (\beta + Rad_g(\mu))]/Rad_g(\mu) = ((aR \cap \beta) + Rad_g(\mu))/Rad_g(\mu) \subseteq (Rad_g(\beta) + Rad_g(\mu))]/Rad_g(\mu) = Rad_g(\mu)$. Therefore, we have $\mu/Rad_g(\mu) = \overline{m}R \oplus (\beta + Rad_g(\mu))/Rad_g(\mu)$, and hence $\mu/Rad_g(\mu)$ is principally semisimple.

Corollary 2.13. Let μ be a distributive P-g-radical supplemented *R*-module. Then $\mu/Rad_g(\mu)$ is P-g-radical supplemented.

Proposition 2.14. Let $\alpha: \mu_1 \to \mu_2$ be an *R*-epimorphism, where μ_1 is a P-g-radical supplemented *R*-module such that any cyclic submodule of μ contains *Ker* α . Then μ_2 is P-g-radical supplemented.

Proof. Let $\dot{a}R$ be any cyclic submodule of μ_2 , then $\dot{a} = \alpha(a)$ for some $a \in \mu_1$. Since μ_1 is a P-g-radical supplemented R-module and $aR \leq \mu_1$, then there is $Y \leq \mu_1$ such that $aR + Y = \mu_1$ and $aR \cap Y \subseteq Rad_g(Y)$. It follows that $\dot{m}R + \alpha(Y) = \mu_2$. By assumption $Ker\alpha \leq aR$, thus $\alpha(aR) \cap \alpha(Y) = \alpha(aR \cap Y) \subseteq \alpha(Rad_g(Y)) \subseteq Rad_g(\alpha(Y))$ that is $\dot{a}R \cap \alpha(Y) \subseteq Rad_g(\alpha(Y))$. So $\alpha(Y)$ is a g-radical supplement of $\dot{a}R$ in μ_2 , and then μ_2 is P-g-radical supplemented.

Corollary 2.15. Let μ be a P-g-radical supplemented *R*-module and $\Upsilon \leq \mu$. If any cyclic submodule of μ contains Υ , then μ/Υ is P-g-radical supplemented.

Proof. Consider the natural epimorphism map $\pi: \mu \to \mu/\Upsilon$. As $Ker\pi = \Upsilon$, then by assumption, every cyclic submodule of μ contains $Ker\pi$, so that μ/Υ is P-g-radical supplemented, by Proposition 2.14.

Proposition 2.16. If an *R*-module $\mu = \mu_1 \oplus \mu_2$. Then μ_2 is P-g-radical supplemented if and only if for any cyclic submodule γ/μ_1 of μ/μ_1 , there is a submodule β of μ_2 such that $\mu = \beta + \gamma$ and $\beta \cap \gamma \subseteq Rad_q(\beta)$.

Proof. Suppose that μ_2 is P-g-radical supplemented. Let β/μ_1 be a cyclic submodule of μ/μ_1 . Then $\beta/\mu_1 = (xR + \mu_1)/\mu_1$ and $x = \alpha_1 + \alpha_2$ where $\alpha_1 \in \mu_1, \alpha_2 \in \mu_2$. Thus $\beta/\mu_1 = (\alpha_2R + \mu_1)/\mu_1$. Hence there is $Y \leq \mu_2$ with $\mu_2 = \alpha_2R + Y$ with $\alpha_2R \cap Y \leq Rad_g(Y)$. It follows that $\beta = \alpha_2R + \mu_1$ and $\mu = \mu_1 + (\alpha_2R + Y) = \beta + Y$. Now, we have $\beta \cap Y = (\alpha_2R + \mu_1) \cap Y \leq [\alpha_2R \cap (\mu_1 + Y)] + [\mu_1 \cap (\alpha_2R + Y)]$. As $\mu_1 \cap (\alpha_2R + Y) \subseteq \mu_1 \cap \mu_2 = 0$, we deduce that $\beta \cap Y \leq \alpha_2R \cap (\mu_1 + Y) \leq \alpha_2R$, and so $\beta \cap Y \leq \alpha_2R \cap Y$. Since $\alpha_2R \cap Y \leq Rad_g(Y)$, we get $\beta \cap Y \leq Rad_g(Y)$. Conversely, assume $\alpha_2 \in \mu_2$. Consider the cyclic submodule $(\alpha_2R + \mu_1)/\mu_1$ of μ/μ_1 . By our assuming, there is $Y \leq \mu_2$ with $\mu = (\alpha_2R + \mu_1) + Y$ and $(\alpha_2R + \mu_1) \cap Y \leq Rad_g(Y)$. By the modular law, we deduce that $\mu_2 = \mu_2 \cap \mu = \mu_2 \cap ((\alpha_2R + \mu_1) + Y) = (\alpha_2R + Y) + (\mu_2 \cap \mu_1) = \alpha_2R + Y$. It is enough to show $Y \cap (\mu_1 + \alpha_2R) = \alpha_2R \cap (\mu_1 + Y) = \alpha_2R \cap (\mu_1 + Y) \leq [\mu_1 \cap (Y + \alpha_2R)] + [Y \cap (\alpha_2R + \mu_1)] = Y \cap (\alpha_2R + \mu_1) \leq [\alpha_2R \cap (\mu_1 + Y)] + [\mu_1 \cap (Y + \alpha_2R)] = \alpha_2R \cap (\mu_1 + Y)$, since $\mu_1 \cap (Y + \alpha_2R) \subseteq \mu_1 \cap \mu_2 = 0$. It follows that $Y \cap (\mu_1 + \alpha_2R) = \alpha_2R \cap (\mu_1 + Y) = \alpha_2R \cap Y$. Hence $\alpha_2R \cap Y \leq Rad_g(Y)$. Therefore μ_2 is principally g-radical supplemented.

Proposition 2.17. Let μ be a P-g-radical supplemented R-module and $\Upsilon \leq \mu$. If $\Upsilon \cap Rad_g(\mu) = 0$, then Υ is principally semisimple. In particular, a P-g-radical supplemented R-module μ with $Rad_g(\mu) = 0$ is principally semisimple.

Proof. Let $a \in Y$. Since μ is a P-g-radical supplemented *R*-module, then there is $\beta \leq \mu$ with $\mu = aR + \beta$ and $aR \cap \beta \subseteq Rad_g(\beta) \subseteq Rad_g(\mu)$. By the modular law, $Y = Y \cap \mu = Y \cap (aR + \beta) = aR + (Y \cap \beta)$. As $aR \cap (Y \cap \beta) \subseteq Y \cap Rad_g(\mu) = 0$, we get $Y = aR \oplus (Y \cap \beta)$. Hence $aR \leq \oplus Y$, and so Y is principally semisimple.

Proposition 2.18. Let μ be a cyclic and P-g-radical supplemented module over a PID**R** (Principal ideal domain ring). Then $\mu = \Upsilon \oplus \beta$ for some principally semisimple module Υ and some module β with essential generalized radical.

Proof. Since $Rad_g(\mu) \leq \mu$, there is a submodule Y of μ such that $Y \oplus Rad_g(\mu) \leq \mu$. Since $Y \cap Rad_g(\mu) = 0$ and μ a P-g-radical supplemented R-module, then by Proposition 2.17, Y is principally semisimple. Since μ is a cyclic module over a PID R, and $Y \leq \mu$, then Y is a cyclic submodule. As μ is P-g-radical supplemented, there is a submodule β of μ such that $\mu = Y + \beta$ and $Y \cap \beta \subseteq Rad_g(\beta) \subseteq Rad_g(\mu)$. As $Y \cap Rad_g(\mu) = 0$, then $Y \cap \beta = 0$. Thus $\mu = Y \oplus \beta$. It follows that $Rad_g(\mu) = Rad_g(Y \oplus \beta) = Rad_g(Y) \oplus Rad_g(\beta)$, by [9, Corollary 2.3]. Hence $Y \oplus Rad_g(\mu) = Y \oplus Rad_g(\beta)$. Therefore $Y \oplus Rad_g(\beta) \leq \mu = Y \oplus \beta$, then by [3, Proposition 5.20] $Rad_g(\beta) \leq \beta$.

ACKNOWLEDGMENT

The researchers would like to acknowledge the referee(s) for their supportive and important recommendations that enhanced the article.

References

- [1] A. Tuganbaev, Semidistributive modules and rings, Kluwer Academics Publishers, Dordrecht, (1998).
- [2] F. Kasch, Modules and rings module, 1982.
- [3] D.X. Zhou, and X.R. Zhang, small-essential submodule and morita duality, south-east Asian Bull. Math. 35(2011) pp. 1051-1062.
- [4] B. Kosar, C. Nebiyev, and N. Sokmez, G-supplemented modules, Ukrainian mathematical journal 67(6)(2015)pp. 861-864.
- [5] Kosar, B., Nebiyev, C., and Pekin, A., A generalization of g-supplemented modules, Miskolc Mathematical Notes, 20(1)(2019) pp. 345-352.
- [6] A. C. Ozcan, A. Harmanci and P. F. Smith, Duo modules, Glasgow Math. J., 48(3) (2006), 533-545.
- [7] Hadi I. M-A. and Aidi S. H., On e-small submodules, Ibn Al-Haitham Jour. for Pure & Appl. Sci., 28(3) (2015), 214-222.
- [8] E. Büyükaşik and Y. Demirci, Weakly distributive modules. Applications to supplement submodules, Proc. Indian Acad. Sci.(Math. Sci.), Vol. 120, 525-534, 2010.
- [9] L. V. Thuyet and P. H. Tin, Some characterizations of modules via essentially small submodules, Kyungpook Math. J. 56, (2016) pp. 1069-1083.