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A B S T R A C T 

In this paper, We present a modified approach that makes use of the neuro-fuzzy system to 
solve fuzzy singular perturbation problems for ODEs with IC. The name of this modified 
approach is the modified neuro-fuzzy system method (MNFS). The foundation of this novel 
approach is to swap off each x in the input vector training. set x⃗  =(x1 , x2 , … , xn) , xj ∈ [a, b]       

a first-order polynomial which will be as  ξ(x) =  
𝜆

2
(x⃗  +  1) , 𝜆 ∈ (a , b). By using MNFS, it is 

possible to train the neural network outside of the initial and last point range by choosing 
training points based on the open interval (a, b). By resolving a few numerical cases and 
comparing the results to those calculated using different numerical techniques, we 
demonstrate this improved a technique and how neural networks demonstrate yield answers 
with accurate and strong generalization. The suggested approach is illustrated with a number 
of instances. 
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1. Introduction 

In the numerical analysis of fuzzy singularly perturbed differential equations, numerous fresh concepts emerged. 
We attempt to highlight the most significant recent changes in our survey, but the selection is unavoidably 
subjective and reflects our own primary interests. In the previous year, there was a lot of interest in ODEs's 
numerical solution. The solution of FSPPs has piqued people's interest  This kind of issue has appeared in a number 
involves convection diffusion processes, optimal control, chemical reactor theory, applied mathematics in the areas 
of physics, chemistry, mechanics, and fluid dynamics [1]. FSPPs are based on a small , positive parameter that gives 
the solution a multi - scale character , i.e. in some parts of the region the tris solution changes quickly, whereas in 
others, it changes more slowly [2]. Recently, parallel processors and artificial neural networks have studied this 
specific differential equation. Over the past ten years, applications of artificial intelligence (AI) have been more and 
more widespread, and as a result, a lot of pertinent research has been done. Fuzzy logic, neural networks, genetic 
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programming, and hybrid techniques like neuro fuzzy systems, genetic fuzzy systems, and neural networks based on 
genetic programming are the main components of AI methodologies. In the realm of artificial intelligence, Fuzzy 
logic and artificial neural networks are combined in neuro-fuzzy systems, as proposed by Jang [3] in 1993. The 
fundamental idea behind this (NFS) is that it blends the learning and connectionist structure of neural networks 
with the human-like reasoning style of fuzzy systems. (NFS) offers strong and adaptable universal approximations 
with the capacity to investigate IF-THEN rules that are comprehensible. NFS usage is expanding into a variety of 
fields in our social and technological life. we introduce a modified method for solving fuzzy singular perturbation 
problems for ODEs. For the purpose of resolving fuzzy singular perturbation issues, this updated approach is known 
as the modified neuro-fuzzy system (MNFS). This research focuses on developing a novel method to estimate a 
solution using fuzzy neural networks. To arrive at an approximation of a solution Equations using fuzzy singular 
differentials. In order to handle the matched uncertainties, When hybrid neuro-fuzzy network systems are applied, 
the assumption made in some earlier results regarding the uncertainty function regarding border and structural 
information is removed, which also lowers the conservatism of the acquired results[4]. This structure of neuro – 
fuzzy system (NFS) can figure out the equivalent output input vectors. In the selection points, the error function is 
minimal[5,6]. Thus , The suggested MNFS is based on substituting a first-degree polynomial for each element in the 
training set. We solve numerical instances to illustrate this enhanced approach, we show how this improved method 
works and compare our findings from other numerical methodologies. 

 

2. Basic definitions     

This section presents Some fundamental ideas of fuzzy set theory that are essential to comprehending this topic. 

Definition (2.1) [7]: If �̃�is a group of items denoted by the general symbol 𝔲, then a fuzzy set 𝔸 in 𝑈 is a group of 
ordered pairs:𝔸 = {(𝔲, 𝜋𝔸(𝔲)): 𝔲 ∈ �̃� ,0 ≤ 𝜋𝔸(𝔲)  ≤ 1} 

Where 𝜋𝔸(𝔲) is called the membership function or grade of membership (also degree of compatibility or degree of 
truth) of 𝔲 in 𝔸 that maps 𝑈 to the membership space 𝕀 (When  𝕀 contains only the two points 0 and 1, 𝔸 is nonfuzzy 
and 𝜋𝔸(𝔲) is identical to the characteristic function of a nonfuzzy set).The nonnegative real numbers with finite 
supremums are included in the range of the membership function. Typically, zero-degree members of elements are 
not listed.  

Definition (2.2) [7]: 𝒮(𝔸), is the crisp set of all 𝔲 ∈ 𝑈,the support of a fuzzy set 𝔸  such that 𝜋𝔸(𝔲) > 0. 

Definition (2.3) [7] : The elements that belong the fuzzy set's (crisp) 𝔸 The 𝑟-level set is defined as  at least to the 
degree 𝑟. 𝔸𝑟 = {𝔲 ∈ 𝑈 ∶ 𝜋𝔸(𝔲)  ≥ 𝑟} 

𝔸𝑟
ˋ = {𝔲 ∈ 𝑈 ∶ 𝜋𝔸(𝔲)  > 𝑟}  is called a "strong 𝑟-level set" or a "strong 𝑟-cut".  

Definition (2.4) [8]: A fuzzy set 𝔸 is convex if  

𝔸(𝛼𝔲1 + (1 − 𝛼)𝔲2) ≥ 𝑚𝑖𝑛{𝜋𝔸(𝔲1), 𝜋𝔸(𝔲2)}, 𝔲1, 𝔲2 ∈ 𝑈, 𝛼 ∈ [0,1] 

 Alternatively, if all 𝑟 -level sets are convex, then a fuzzy set is convex. 

Definition (2.5) [9]: Fuzzy Number 

An ordered pair of functions 𝑝(𝑟) ,𝑝(𝑟), 0 ≤ 𝑟 ≤ 1 completely determines a fuzzy number  𝑝 , which satisfy the 
following requirements: 

1) 𝑝(𝑟) is a bounded left continuous and non-decreasing function on [0,1]."  

2) 𝑝(𝑟) is a bounded right continuous and non-increasing function on [0,1]."  

3) 𝑝(𝑟) ≤  𝑝(𝑟) 0 ≤ 𝑟 ≤ 1. The crisp number (𝔞) is simply represented by: 

 𝑝(𝑟) = 𝑝(𝑟) = 𝔞, 0 ≤ 𝑟 ≤ 1. The set of all the fuzzy numbers is denoted by 𝔼1.  
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 Remark (2.𝟏) [9]: For arbitrary 𝑝 = (𝑝, 𝑝), 𝑞 = (𝑞, 𝑞) and ℂ ∈ R, the addition and multiplication by ℂ can be defined 
as :  

1) (𝑝 + 𝑞)(𝑟) = 𝑝(𝑟) + 𝑞( 𝑟) 

2) (𝑝 + 𝑞) (𝑟) = 𝑝(𝑟) + 𝑞( 𝑟) 

3) (ℂ𝑝)(𝑟)  = ℂ𝑝(𝑟), (ℂ𝑝)(𝑟) = ℂ𝑝( 𝑟), if ℂ ≥ 0  

4) (ℂ𝑝)(𝑟)  = ℂ𝑝( 𝑟) (ℂ𝑝)(𝑟) = ℂ𝑝( 𝑟) , if ℂ < 0. For all 𝑟 ∈ [0,1] . 

Definition (2.6) [9] : Fuzzy Function 

A fuzzy function is the function 𝜗: R ⟶ 𝔼1. We defined to each function  𝔸1 ⊆ 𝔼1 to 𝔸2 ⊆ 𝔼1 a fuzzy function.  

Definition (2.7) [10]: "The fuzzy function 𝜗: R ⟶ 𝔼1 is considered to be continuous if:                                                     
|𝔲  - 𝔲1| < 𝛿 ⇒ 𝕕 (ϑ (𝔲), ϑ(𝔲1))< ε, for an arbitrary 𝔲, 𝔲1 ∈ R and 𝜀> 0 there exists  𝛿 > 0  where 𝕕 is the distance 
between two fuzzy numbers. 

 

3. Architecture Neuro – Fuzzy System 

To show the structure of the Neuro – Fuzzy System  (NFS) by converting real inputs ( x1 , x2, … , xi , … , xn) into fuzzy 
outputs ([𝜓1]𝑟 , [𝜓2]𝑟 , … , [𝜓𝑘]𝑟 , … , [𝜓𝑠]𝑟)  throughout the m hidden fuzzy neurons 
([Hid1]r , [Hid2]r , … [Hidj]r , … [Hidm]r) such that 𝑟 ∈ [0 , 1]. Let [bj]r and [𝓋k]r are the fuzzy biases for the fuzzy 
neurons [Hidj]r , [𝜓𝑘]𝑟  resbictively , [wji]r is the fuzzy weight connecting xi crisp neuron to [Hidj]r fuzzy neuron , 
and [skj]𝑟 is the fuzzy weight connecting fuzzy neuron [Hidj]r to fuzzy neuron [𝜓𝑘]r.  

Input units: x=xi, i=1,2,3,…,n                                                                                      (1) 

Hidden units:      [Hidj]r
=T ([Netwj]r

),  j =1,2,3,…,m                                          (2) 

Where                     [Netwj]r
= ∑ xi

n
i=1 [wji]r

+ [bj]r
                                                (3)                                           

Output units :        [𝜓𝑘]r =T([𝑁𝑒𝑡𝑤k]r) ,  k=1,2,3,…,l                                           (4) 

Where                    [𝑁𝑒𝑡𝑤𝑘]𝑟= ∑ [𝑠𝑘𝑗]𝑟
𝑚
𝑗=1 [𝐻𝑖𝑑𝑖]𝑟 + [𝓋𝑘]𝑟                                   (5) 

      

To use NFS to solve any fuzzy Singular Perturbation Problem  (FSPP) for ODE. We use a multi-layer network with 
one unit entry (x), one hidden layer (m hidden neurons), and one linear output unit (i.e. the dimension of NFS). a 
multi-layer network having one unit entry x  , one hidden layer with m hidden units (neurons) and one linear output 
unit, i.e. the dimension of NFS is (1 × m × 1) as shown in (Fig. 1). 

Input units: x = x                                                                                                          (6)                                                                               

Hidden units :       [𝐻𝑖𝑑j]r
=[𝐻𝑖𝑑j, 𝐻𝑖𝑑j]=[𝑇([𝑁𝑒𝑡𝑤̅̅ ̅̅ ̅̅

�̅�]), 𝑇([𝑁𝑒𝑡𝑤𝑗])]                 (7) 

Where 

[𝑁𝑒𝑡𝑤̅̅ ̅̅ ̅̅
�̅�]=x[𝑤𝑗] + [�̅�𝑗]                                                                                                    (8) 

[𝑁𝑒𝑡𝑤𝑗]=x[𝑤𝑗] +  [𝑏𝑗]                                                                                                  (9) 

 

Output units: [𝜓]𝑟 = [𝜓, 𝜓]                                                                                       (10) 

Where [𝜓] =∑ [𝑠𝑗]𝑗∈a [𝐻𝑖𝑑j] + ∑ [�̅�𝑗] [𝐻𝑖𝑑j]𝑗∈𝑏                                                       (11) 
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[𝜓]=∑ [𝑠𝑗] [𝐻𝑖𝑑j]𝑗∈𝑐 + ∑ [𝑠𝑗][𝐻𝑖𝑑j]𝑗∈𝑑                                                                       (12) 

For [𝐻𝑖𝑑j] ≥ [𝐻𝑖𝑑j] ≥ 0 , where  

a={𝑗;[𝑠𝑗] ≥ 0}, b={𝑗;[𝑠𝑗] < 0} c={𝑗;[𝑠𝑗] ≥ 0}, d={𝑗;[𝑠𝑗] < 0}  

a ∪ 𝑏= {1,2,3, … ,𝑚} ,c ∪ 𝑑 ={1,2,3, … ,𝑚}. 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 1 - (1×m×1) dimension of NFS. 

 

4.  The Suggested Method 

Numerous researchers have sought to create heuristic methods based on research the characteristics of 
conventional learning algorithms. These studies investigate concepts such as carefully choosing an activation 
function and using momentum to calculate the learning rate, various acceleration techniques had been developed. 
This method was utilized by Ezadi and Parandin to first-order ordinary differential equations are resolved in [10].In 
This method has been expanded in this chapter to solve FSPPs of the first and higher orders for ordinary differential 
equations. 
This new approach relies on changing each x in the input vector (training set) 
x⃗  =(x1 , x2 , … , xn),xj ∈ [a, b] a polynomial of first degree which will be as follows. 

ξ(x) =  
𝜆

2
(x⃗  +  1) , 𝜆 ∈ (a , b)                                                                                      (13) 

Then the input vector will be: 
(ξ(x1) , ξ(x2) , …  , ξ(xn)), ξ(xj) ∈ (a , b) and j=1,2,…,n                                     (14) 

The neural network cannot be trained in the first- and end-point range by selecting training points over the open 
interval(𝑎, 𝑏)using MNFS. As a result, there is a reduction in the amount of computation that involves mistake. In 
reality, the training points for the neural network are transformed into similar points in the open interval(𝑎, 𝑏) 
based on the distance [𝑎, 𝑏] chosen for training. The network is trained in these related domains by utilizing the new 
methodology. As seen above, we have:  
For a given input vector(x1 , x2 , … , xn) , xj ∈ [a, b] and j =1,2,…,n                 (15) 

The output of the MNFS is:  
[𝜓]𝑟 = ∑ [si]𝑟

m
i=1  T([𝑁𝑒𝑡𝑤i]r)                                                                                     (16) 

For i=1,…, m is the total number of hidden units  
where  
[𝑁𝑒𝑡𝑤i]𝑟 = ∑ [𝑤ij]𝑟

  ξ(xj)  +  [bi]𝑟
n
j=1                                                                         (17)                                        
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And  ξ(xj) =  
𝜆

 2 
(xj + 1) , 𝜆 ∈ (0,1)                                                                                                                                   (18) 

where  xj ∈ [a , b] and  ξ(xj) ∈ (a , b), j=1,2,…,n   

Note:  For MNFS: 
  
d[𝜓]𝑟

d[si]𝑟
 =∑ 𝑇 (∑ [𝑤ij]𝑟

  ξ(xj)  + [bi]𝑟
n
j=1 )𝑚

𝑖=1  = ∑ 𝑇 (∑
𝜆

2
 (xj + 1)[𝑤ij]𝑟

 +  [bi]𝑟
𝑛
𝑗=1 )ℎ

𝑖=1                                           (19) 

 
d[𝜓]𝑟

d[bi]𝑟
 =∑ [si]𝑟𝑇´ (∑ [𝑤ij]𝑟

  ξ(xj)  + [bi]𝑟
n
j=1 )𝑚

𝑖=1  =  ∑ 𝑇′ (∑
𝜆

2
 (xj + 1)[𝑤ij]𝑟

+ [bi]𝑟
𝑛
𝑗=1 )ℎ

𝑖=1                                (20) 

 

  
d[𝜓]𝑟

d[𝑤ij]𝑟

= ∑ [s]𝑟𝑇´ (∑ [𝑤ij]𝑟
  ξ(xj)  +  [bi]𝑟

n
j=1 )𝑚

𝑖=1  =∑
𝜆

2
 (xj + 1)𝑇′ (∑

𝜆

2
 (xj + 1)[𝑤ij]𝑟

 [bi]𝑟
𝑛
𝑗=1 )ℎ

𝑖=1                     (21)            

where 𝑇´ is the activation function's first derivative. 
After that, we showed how to select the right value for 𝜆. 
 
Theorem (2.1) : If x ∈ [a, b]  and a, b  positive real number then we can find  the suitable value of 𝜆 so as to ensure 

that  ξ(x) ∈ (a,b) such that: 
2a

a+1
< λ <

2b

b+1
. 

Proof: -Since x ∈ [a , b] , and since     ξ(xj) =
𝜆

 2 
(x + 1), 

 Then we get:ξ(x)= 
λ

2
 [a + 1, b + 1]= [

λ

2
 (a + 1),

λ

2
 (b + 1)] 

If we consider
λ

2
  (a + 1) = a, then we get: λ =

2a

a+1
 

And if we consider
λ

2
  (b + 1) = b , then we get: λ =

2b

b+1
 

Therefore, if we consider λ > 
2a

a+1
  and  𝜆 <

2b

b+1
 

We get: ξ(x)=[
λ

2
  (a + 1),

λ

2
  (b + 1)] ∈ (

a

a+1
(a + 1),

b

b+1
(b + 1)) = (a, b) 

Therefore, we must have  ξ(x)  ∈ (a,b)  if 
2a

a+1
< λ <

2b

b+1
 . 

When applicable, we narrow the interval from [a,b] to [0,b] 

Therefore, we have x ∈ [0, b] and we must have   ξ(x)  ∈ (0,b) if suitable, value of δ  is 0 < λ <
2b

b+1
   Proving it is 

simple.  

 

5. Illustration of MNFS for Solving FSPP With ICS. 

5.1 Solution first-order of FSPP : 

 For illustration this steps, we will consider the first order of  FSPPs for ODE with I.C                                        
 

   ε
dψ(x)

dx
 = F(x, ψ, ε)   ,  x ∈ [a, b], 0 < ε ≪ 1                                                                (22) 

 
using the fuzzy initial condition 𝜓(𝑎) = 𝐴, where 𝐹 (x , 𝜓 (x), 𝜀) is a fuzzy function of the crisp variable x and the 
fuzzy variable 𝜓, where 𝜓 is a fuzzy function of x. while  𝜓ˊ is the fuzzy derivative of 𝜓 and A is a fuzzy number in 

𝐸1 under the 𝑟 −cut sets , i.e. [𝐴]𝑟 = [𝐴, 𝐴], r ∈ [0,1]. 

It is clear that the fuzzy function f(x , 𝜓) is the mapping f: R × E1 ⟶ E1 
Now it is possible to replace (22) by the following equivalent system: 
It is obvious that the fuzzy function f(x , 𝜓)is the mapping f: R × E1 ⟶ E1 
 
This equivalent system can now be used in place of (22): 

{
𝜀

𝑑𝜓(x)

𝑑x
= F(x , 𝜓, 𝜀)   =   𝐺1 (x , 𝜓, 𝜓, 𝜀)  , 𝜓(a)  = 𝐴

𝜀
𝑑 𝜓(x)

𝑑x
= F (x , 𝜓, 𝜀)   =   𝐺2 (x , 𝜓, 𝜓, 𝜀)  , 𝜓(a)  =   𝐴  

                                        (23) 

Where 
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{
𝐺1 (x , 𝜓, 𝜓, 𝜀)   =  Min {F (x , u) ∶ u ∈  [𝜓, 𝜓]}

𝐺2 (x , 𝜓, 𝜓, 𝜀)  =  Max {F (x , u) ∶ u ∈  [, 𝜓, 𝜓]}  
                                                  (24) 

System (23), which has the following parametric form: 

 {
𝜀

𝑑𝜓(x,r)

𝑑x
 =  𝐺1 [x , 𝜓(x , r), 𝜓(x , r), 𝜀]  , 𝜓(a , r)  =   𝐴(r)

𝜀
𝑑𝜓(x,r)

𝑑x
 =  𝐺2 [x , 𝜓(x , r), 𝜓(x , r), 𝜀]  , 𝜓(a , r)  =   𝐴(r) 

                                   (25) 

 
When x ∈ [a , b] and r ∈ [0 ,1]. A collection of points xi,where i = 1,2,3, … g, and so forth, are now created by 
discretizing the interval [a,b]. The system (25) can therefore be expressed as follows for any xi ∈ [a , b]: 

{
𝜀

𝑑𝜓(x𝑖,r)

𝑑x𝑖
− 𝐺1 [x𝑖  , 𝜓(x𝑖 , r), 𝜓(x𝑖  , r), 𝜀] = 0

𝜀
𝑑 𝜓(x𝑖,r)

𝑑x𝑖
− 𝐺2 [x𝑖  , 𝜓( x𝑖 , r), 𝜓( x𝑖 , r), 𝜀] = 0 

                                                           (26) 

 

With the initial conditions: 𝜓(a , r) =  𝐴(r), 𝜓(a , r) = 𝐴(r), r ∈ [0 ,1].                                                                                                                   

                                                 
We written as The sum of two terms in the system's trial solutions (25), which are this subsection (and later in this 
chapter) to make use of the function approximation capabilities of feed-forward neural networks (see eq. 38 and 
39). The first term has no movable parameters and meets the beginning conditions and boundary requirements. The 
second term's differential equations must be solved using a feed-forward neural network that has been trained. 
Given that any function can be approximated with arbitrary precision using a multilayer perceptron with a single 
hidden layer, for the second equation in system (25) where p and p are adjustable parameters.  

As a form of network architecture, the multilayer perceptron is employed. If the first equation in system (25) has a 

trial solution of 𝜓𝑡(x , r, p,𝜀) and the second equation has a trial solution of 𝜓
𝑡
(x , r, p,𝜀)" where p and p are movable 

parameters.  

Indeed, 𝜓𝑡(x , r, p,𝜀) and 𝜓
𝑡
(x , r, p, 𝜀)  are approximation of 𝜓(x , r)  and 𝜓(x , r) respectively, then a discretize 

version of the system (25) can be converted to the following optimization problem: 

min
p⃗⃗ 

∑ (
(𝜓ˊt(xi , r, p,𝜀) −

1

𝜀
𝐺1 [xi , 𝜓𝑡(xi ,r, p,𝜀) , 𝜓

𝑡
(xi , r , p, 𝜀)])

2

 

+ (𝜓ˊ𝑡(xi , r, p,𝜀) -
1

𝜀
𝐺2 [xi , ψ

t
 (xi ,r, p,𝜀) ,𝜓

𝑡
(xi , r , p,𝜀)])

2)
g
i=1            (27) 

(Here p⃗ = (p , p) contains all  adjustable parameters) subject to the initial conditions: 

𝜓t(a ,r, p,𝜀) = 𝜓0(r)  ,  𝜓
𝑡
(a ,r, p,𝜀) = 𝜓

0
(r). 

One feed-forward neural network is used in each trial solution of 𝜓t(a ,r, p,𝜀) and  𝜓
𝑡
(a , r, p,𝜀) with the 

corresponding networks indicated by  𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) and 𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) and adjustable parameters p and p 

respectively.  
A fuzzy trial solution 𝜓t can be written as: 
[𝜓𝑡(x, p, 𝜀)]r= [𝐴]r +(x − 𝑎)[Out(ξ(x),ξ(r), p,ε)]r                                                     (28) 
Where  Out(ξ(x),ξ(r), p,ε)  is the output of the feed forward NFS with one input unit for x and paramter  𝑝. 
The quantity of mistake that needs to be minimized is expressed as: 

                      E(p)=∑ ([𝐸(𝑝)]
𝑖𝑟

+ [𝐸(𝑝)]
𝑖𝑟
)

g
i=1                                                             (29) 

Where  {xi}i=1
g

 are discrete points ∈ [𝑎, 𝑏], [𝐸(𝑝)]
𝑖𝑟
 𝑎𝑛𝑑 [𝐸(𝑝)]

𝑖𝑟
 can be thought as the squared errors for the lower 

and upper boundaries of the r-level sets, respectively. 

[𝐸(𝑝)]
𝑖𝑟

=[
𝑑𝜓𝑡(x𝑖,𝑝,r,𝜀)

𝑑x
−

1

𝜀
𝐹[x𝑖 , 𝜓𝑡

(x𝑖 , p,𝜀), 𝜀)]]

2

                                                         (30) 

[𝐸(𝑝)]
𝑖𝑟

=[
𝑑𝜓t(x𝑖,𝑝,r,𝜀)

𝑑x
−

1

𝜀
𝐹 [x𝑖 , 𝜓t (x𝑖, 𝑝, 𝜀) , 𝜀)]]

2

                                                    (31) 
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The first derivative of  [𝜓]𝑟 can be expressed simply 
𝜕𝜓𝑡

𝜕x
=∑ �̅�𝑗a 

𝜕𝐻𝑖𝑑j

𝜕𝑁𝑒𝑡𝑤𝑗

𝜕𝑁𝑒𝑡𝑤𝑗

𝜕x
+∑ �̅�𝑗𝑏

𝜕𝐻𝑖𝑑j

𝜕𝑁𝑒𝑡𝑤𝑗

𝜕𝑁𝑒𝑡𝑤𝑗

𝜕x
                                                              (32)                                       

 
𝜕𝜓t

𝜕x
=∑ 𝑠𝑗𝑐

𝜕𝐻𝑖𝑑j

𝜕𝑁𝑒𝑡𝑤𝑗

𝜕𝑁𝑒𝑡𝑤𝑗

𝜕x
+∑ 𝑠𝑗𝑑

𝜕𝐻𝑖𝑑j

𝜕𝑁𝑒𝑡𝑤𝑗

𝜕𝑁𝑒𝑡𝑤𝑗

𝜕x
                                                              (33) 

Where    a={j ∶  �̅�𝑗  ≥  0},  b= {j: �̅�𝑗  <  0}, c = {j ∶   𝑠𝑗 ≥  0},d = {j ∶  𝑠𝑗  <  0}, 

 a ∪ b= {1,2,3, …m} and c ∪ d= {1,2,3, …m}. Such that 

  
𝜕𝑁𝑒𝑡𝑤𝑗

𝜕x
=𝑤𝑗                                                                                                                          (34)  

 
𝜕𝐻𝑖𝑑j

𝜕𝑁𝑒𝑡𝑤𝑗
=1−(𝐻𝑖𝑑j)

2
                                                                                                          (35)   

 
𝜕𝑁𝑒𝑡𝑤𝑗

𝜕x
 =𝑤𝑗                                                                                                                         (36)   

 
𝜕𝐻𝑖𝑑j

𝜕𝑁𝑒𝑡𝑤𝑗
=1−(𝐻𝑖𝑑j)

2

                                                                                                         (37) 

     
To drive the minimized error function for (22): 
We find From (28):  

𝜓
𝑡
(x, 𝑝, r, ε)= 𝐴 +(x − 𝑎)(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))                                                        (38) 

𝜓t (x, 𝑝, r, ε) =𝐴 +(x − 𝑎)(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))                                                       (39) 

Then we derive the fuzzy trail solution in equations (38)  and (39)   to substitute it in the two equations (30),(31) 
𝜕𝜓𝑡(x,𝑝,r,ε)

𝜕x
=𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) +(x − 𝑎)

𝜕𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝜕x
                                        (40) 

𝜕𝜓t(x,𝑝,r,ε)

𝜕x
=𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) +(x − 𝑎)

𝜕𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝜕x
                                       (41) 

[𝐸(𝑝)]
𝑖𝑟

=[𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) + ( x𝑖 − 𝑎)
𝜕𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝜕x
−

1

𝜀
𝐹( x𝑖 , 𝐴  + ( x𝑖 − 𝑎)𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε), 𝜀)]

2

       (42)                       

[𝐸(𝑝)]
𝑖𝑟

=[𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) + ( x𝑖 − 𝑎)
𝜕𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝜕x
−

1

𝜀
𝐹( x𝑖 , 𝐴 + ( x𝑖 − 𝑎)(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε), 𝜀]

2

        (43)                                                                                  

[𝐸(𝑝)]
𝑖𝑟

=[∑ [�̅�𝑗][𝐻𝑖𝑑j]a + ∑ [�̅�𝑗] [𝐻𝑖𝑑j]𝑏 + (x𝑖 − 𝑎)[�̅�𝑗][𝑤𝑗] (1 − ([𝐻𝑖𝑑j])
2
) + [�̅�𝑗][𝑤𝑗] (1 − ([𝐻𝑖𝑑j])

2

) − 
1

𝜀
𝐹 (x𝑖, 𝐴 +

(x𝑖 − 𝑎) (∑ [�̅�𝑗] [𝐻𝑖𝑑j]a  + ∑ [�̅�𝑗] [𝐻𝑖𝑑j]𝑏 )) , 𝜀]

2

                                                                                                                     (44) 

[𝐸(𝑝)]
𝑖𝑟

=[∑ [𝑠𝑗] [𝐻𝑖𝑑j] 𝑐 + ∑  [𝑠𝑗][𝐻𝑖𝑑j]𝑑 + (x𝑖 − 𝑎)[𝑠𝑗][𝑤𝑗] (1 − ([𝐻𝑖𝑑j])
2

) + [𝑠𝑗][𝑤𝑗] (1 − ([𝐻𝑖𝑑j])
2
) −

1

𝜀
 𝐹 (x𝑖 , 𝐴 + (x𝑖 − 𝑎) (∑ [𝑠𝑗]𝑐 [𝐻𝑖𝑑j] + ∑ [𝑠𝑗]𝑑  [𝐻𝑖𝑑j])) , 𝜀]

2

                                                                                             (45) 

where: 

a = {j: [�̅�𝑗]  ≥  0} ,  b= {j: [�̅�𝑗]   <  0} ,    c = {j:  [𝑠𝑗] ≥  0}, 

d={j: [𝑠𝑗]  <  0}, a ∪ b = {1,2,3, …m}  and  c ∪ d = {1,2,3, …m} 

  

5.2  Solution second-order of  FSPPs: 
 Now we will consider the second order of FSPPs  

𝜀
d2𝜓(x)

𝑑x2  = 𝐹(x, 𝜓, 𝜓′, 𝜀)   x ∈ [𝑎, 𝑏]  , 0 < 𝜀 << 1                                                                                                       (46) 

With initial conditions (IC):   𝜓(𝑎)=𝐴 , 𝜓(𝑎)=𝐴′ where 𝐴 and 𝐴′  are a fuzzy numbers in 𝐸1 under the 𝑟 −cut sets , 𝜀 is 
perturbation parameter i.e.0 < 𝜀 ≪ 1. 

[A]r = [A, A], r ∈ [0,1] 

[A′]r = [A′, A′], r ∈ [0,1] 
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A fuzzy trial solution 𝜓𝑡  can written as: 
[𝜓𝑡(x, p, 𝜀)]r=[𝐴]r + [𝐴′]r(x − 𝑎) + (x − 𝑎)2 [Out( ξ(x), ξ(r), p, 𝜀)]r                                                                                (47) 
From (47) we can find: 

𝜓
𝑡
(x, 𝑝, 𝜀)=𝐴 + �́�(x − 𝑎) + (x − 𝑎)2(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))                                                                                                  (48) 

𝜓t (x, 𝑝, 𝜀)=𝐴 + �́� (x − 𝑎) + (x − 𝑎)2 (𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))                                                                                               (49) 

Where  Out( ξ(x), ξ(r), p, 𝜀)  is the output of the feed forword NFS with one input unit for x and weight p. 
The required minimum amount of error is expressed as: 

E(p)=∑ ([𝐸(𝑝)]
𝑖𝑟

+ [𝐸(𝑝)]
𝑖𝑟
)

g
i=1                                                                                                                                                  (50) 

Where   

[𝐸(𝑝)]
𝑖𝑟

=[
𝜕2𝜓𝑡(xi,𝑝,𝜀) 

𝜕𝜘2 −
1

𝜀
[𝐹 [x𝑖 , 𝜓𝑡

(x𝑖, p,𝜀),
𝜕𝜓𝑡(xi,𝑝,𝜀)

𝜕x
, 𝜀)]]

2

,x𝑖 ∈ [𝑎, 𝑏]                                                                              (51) 

[𝐸(𝑝)]
𝑖𝑟
 =[

𝜕2𝜓t(xi,p,𝜀)

𝜕𝜘2 −
1

𝜀
[𝐹 [x𝑖, 𝜓t (x𝑖 , 𝑝, 𝜀) ,

𝜕𝜓t(xi,𝑝,𝜀)

𝜕x
, 𝜀)]]

2

, x𝑖 ∈ [𝑎, 𝑏]                                                                        (52) 

Since 
𝜕𝜓𝑡(x,𝑝,𝜀)

𝜕x
=�́� + (x − 𝑎)2 𝜕(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))

𝜕x
+2(x − 𝑎)(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))                                                                          (53) 

𝜕𝜓t(x,𝑝,𝜀)

𝜕x
=�́�+(x − 𝑎)2  

𝜕(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))

𝜕x
+2(x − 𝑎)(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))                                                                           (54) 

𝜕2𝜓𝑡(x,𝑝,𝜀) 

𝜕𝜘2 =(x − 𝑎)2  
𝜕2(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))

𝜕𝜘2 +2(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))  + 4(x − 𝑎)
𝜕(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))

𝜕𝜘
                                     (55) 

𝜕2𝜓t(x,𝑝,𝜀)

𝜕𝜘2 =(x − 𝑎)2  
𝑑2(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))

𝜕𝜘2 +2 (𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)) + 4(x − 𝑎)
𝜕(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))

𝜕𝜘
                                     (56) 

It is simple to assess the performance gradient in relation to the NFS coefficient.  [𝐸(𝑝)]
𝑖𝑟

=[(x −

𝑎)2  
𝑑2(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)  

𝜕x2 + 2 (𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) + 4(x − 𝑎)
𝜕(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝜕x
− 

1

𝜀
 [𝐹(x𝑖 , 𝐴 + �́�(x − 𝑎) + (x −

𝑎)2(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε), �́� + (x − 𝑎)2 𝜕(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝜕x
+ 2(x − 𝑎)(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)ε)]

2

,x𝑖 ∈ [𝑎, 𝑏]            (57)                                                                        

[E(p)]
ir
 =[(x − a)2  

d2 (Out(ξ(x) , ξ(r), p,ε)

∂x2 + 2 (Out(ξ(x) , ξ(r), p,ε) + 4(x − a)
∂(Out(ξ(x) , ξ(r), p,ε)

∂x
−

1

ε
[F(xi, A + Á (x − a) +

(x − a)2 (Out(ξ(x) , ξ(r), p,ε), Á + (x − a)2  
∂(Out(ξ(x) , ξ(r), p,ε)

∂x
+ 2(x − a)(Out(ξ(x) , ξ(r), p,ε), ε]

2

, xi ∈ [a, b]           (58) 

6. Numerical illustrations 

We provide numerous we include various examples to demonstrate the behavior and efficacy of the suggested NFS. 
We use MATLAB version 7.12 to develop the programs, We propose a three-layer feed forward NN with a single 
input unit, a single hidden layer with seven ODE-specific hidden units, and a single linear output unit. The activation 
function of the hidden units is the hyperbolic tangent function, and its formula is: 𝑇(x)  =  

ex − e−x

ex + e−x
.   

6.1. Example : Consider the first order of nonlinear FSPPs: 

ε 𝜓´(x) = 
1

2
𝐴𝜓2,              x ∈ [0 , 0.1], and  𝑟 ∈ [0 , 1] 

with the fuzzy initial conditions : 

[𝜓(0)]𝑟 = [0.5√𝑟 , 0.2√1 − 𝑟 + 0.5] ,  𝐴 = [1 + 𝑟, 3 − 𝑟] 

The fuzzy analytical solutions is: 

[𝜓a(x)]𝑟 = [
0.5√𝑟

1−3(1+𝑟)(0.5√𝑟)x
,

0.2√1−𝑟+0.5

1−3(3+𝑟)(0.2√1−𝑟+0.5)x
] 

Then fuzzy trial solutions 

[𝜓𝑡(x, p)]r= [0.5√𝑟 , 0.2√1 − 𝑟 + 0.5]
r
 +x[Out( ξ(x), ξ(r), p, 𝜀)]r 

we have:  

𝜓𝑡(x, p)= 0.5√𝑟 +x(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)) 

𝜓𝑡 (x, p)=  0.2√1 − 𝑟 + 0.5+x(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)) 

The MNFS was trained using a grid of 10 evenly spaced points in the range [0,0.1], the input vector x (training set) is 
as follows:  x⃗ = {0, 0.01, 0.02 ,0.03, 0.04, 0.05, 0.06 ,0.07, 0.08 ,0.09 ,0.1} We now take the following actions in order  
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to identify E the error function  that needs to be minimized for this issue: 

𝑑𝜓𝑡(x, p)

𝑑x
= 𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) + x

𝑑(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))

𝑑x
 

𝑑𝜓𝑡 (x, p)

𝑑x
= 𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) + x

𝑑(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))

𝑑𝑥
 

Then we get: 

𝔼𝑖𝑟(𝑝, 𝜀) = [
𝑑𝜓𝑡(x𝑖 , p)

𝑑x
− (

1

2𝜀
(1 + 𝑟) [𝜓𝑡

2(x𝑖)]

2

 

𝔼𝑖𝑟(𝑝, 𝜀) = [
𝑑𝜓𝑡 (x𝑖, p)

𝑑x
− (

1

2𝜀
(3 − 𝑟) [𝜓𝑡

2(x𝑖)]

2

 

𝔼𝑖𝑟(𝑝, 𝜀) = [𝑂𝑢𝑡(ξ(x𝑖) , ξ(r), p,ε) + x
𝑑𝑂𝑢𝑡(ξ(x𝑖) , ξ(r), p,ε)

𝑑x
− (

1

2𝜀
(1 + 𝑟)[ 0.5√𝑟  + x𝑖(𝑂𝑢𝑡(ξ(x𝑖) , ξ(r), p,ε))]

2
]
2

  

𝔼ir(p, ε) = [Out(ξ(xi) , ξ(r), p,ε) + x
dOut(ξ(xi) , ξ(r), p,ε)

dx
− (

1

2ε
(3 − r) [0.2√1 − r + 0.5 + xi(Out(ξ(xi) ,(r), p,ε))]

2

]
2

  

Since 

𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) = ∑sj 𝑇

7

j=1

 (ξ(x)wj + bj) 

𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) = ∑𝑠𝑗  𝑇

7

j=1

 (ξ(x)𝑤𝑗 + 𝑏𝑗) 

𝑑𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝑑x
= ∑

𝜆

2
[sj][wj ]𝑇

′

7

j=1

(ξ(x)[wj] + bj) 

d𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

dx
= ∑

λ

2
[sj] [wj] T

′ (ξ(x) [wj] + 𝑏𝑗)

7

j=1

 

Since 𝑇´ (r) = 1 -  𝑇2 (r)  then we get: 
𝑑𝑂𝑢𝑡(ξ(x), ξ(r), p,ε)

𝑑x
=∑ (

λ

2
[sj][wj] – 

𝜆

2
[sj][wj] 𝑇

2(ξ(x)wj + bj))
7
j=1  

d𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

dx
= ∑

𝜆

2
[sj] [wj] −

𝜆

2
[sj] [wj] 𝑇

2 (ξ(x)wj + 𝑏𝑗)

7

j=1

 

Therefore we have: 
 

𝔼𝑖𝑟(𝑝, 𝜀) = [∑ sj 𝑇
7
j=1  (ξ(x𝑖)wj + bj) + x𝑖(∑

𝜆

2
[sj][wj ]𝑇

′7
j=1 (ξ(x𝑖)[wj] + bj) − (

1

2𝜀
(1 + 𝑟)[ 0.5√𝑟  +

x𝑖(∑ sj 𝑇
7
j=1  (ξ(x𝑖)wj + bj)]

2
]
2

  

𝔼iτ(p, ε) = [∑  sj𝑇
7
j=1  (ξ(x𝑖)wj + 𝑏𝑗) + x(∑

𝜆

2
[sj] [wj] −

𝜆

2
[sj] [wj] 𝑇

2 (ξ(x𝑖)wj + 𝑏𝑗)
7
j=1 − (

1

2ε
(3 − r) [0.2√1 − 𝑟 + 0.5 +

x𝑖(∑ sj 𝑇
7
j=1  (ξ(x𝑖)wj + 𝑏𝑗)]

2

]
2

        

 
The error function for this issue has to be minimized, and it is: 

𝔼(𝑝) = ∑ (𝔼𝑖𝑟(𝑝) + 𝔼𝑖𝑟(𝑝))
𝑔

𝑖=1
 

For this example since xϵ[0,0.1]  ,we choose 𝜀 =
1

3
 and according to theorem (2.1) we must choose 0 < 𝜆 <

0.2

1.1
  

For 𝜆 = 0.05 the training set will be   
x⃗ = {0, 0.01, 0.02 ,0.03, 0.04, 0.05, 0.06 ,0.07, 0.08 ,0.09 ,0.1}                                                                                                       
ξ(x): 0.025 0.0252 0.0255 0.0257 0.026 0.0262 0.0265 0.0267 0.027 0.0272 0.0275. 
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Evaluation of the performance gradient in relation to the coefficient is simple. A grid of evenly spaced points in 
[0,0.1] was used to train the feed-forward MNFS , (Fig. 2) displays the neural and analytical solution in the training 
set. Following that, an oral MNFS result, an exact solution, and train accuracy faults are provided in a table (1) and 
(2).      
Table 1 - Analytic and MNFS solution of example 6.1, ε=1/3, r=0.1.  

 

Table 2 - Accuracy of solutions of example 6.1, ε=1/3, r=0.1. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 - analytic and neurally solution of example 6.1, with ε=1/3. 

Solution of MNFS 𝝍𝐭(𝐱) Analytic solution input 

𝝍𝐭(𝐱) 𝝍𝐭(𝐱) 𝝍𝐚(𝐱) 𝝍𝐚(𝐱) X 

0.689736659617632 0.158113883008419 0.689736659610103 0.158113883008419 0 
0.737012715645543 0.158943210239985 0.737012715648167 0.158943210237318 0.01 
0.791246476057765 0.159781283190084 0.791246476056235 0.159781283190158 0.02 
0.854095911406654 0.160628240945542 0.854095911406907 0.160628240943156 0.03 
0.927791221474998 0.161484225599854 0.927791221474676 0.161484225537063 0.04 
1.015405020877640 0.162349382055432 1.015405020884110 0.162349382056581 0.05 
1.121291574755420 0.163223858710091 1.121291574703180 0.163223858712343 0.06 
1.251832850088750 0.164107806922198 1.251832850082450 0.164107806925553 0.07 
1.416774366550430 0.165001381415994 1.416774366550270 0.165001381415397 0.08 
1.631777380455540 0.165904740665438 1.631777380452670 0.165904740289324 0.09 
1.923710655432980 0.166818086654331 1.923710662138970 0.166818045136303 0.1 

The error [𝐄(𝐱)]𝐫 = |[𝝍𝐚(𝐱)]𝒓 − [𝝍𝐭(𝐱)]𝐫| 

[𝐄(𝐱)]𝐫 [𝐄(𝐱)]𝐫 

7.5292E-12 0 
2.62412E-12 2.66731E-12 
1.52967E-12 7.43849E-14 
2.53464E-13 2.38595E-12 
3.21632E-13 6.27911E-11 
6.47238E-12 1.14922E-12 
5.22424E-11 2.25192E-12 
6.29963E-12 3.35482E-12 
1.57652E-13 5.96828E-13 
2.8717E-12 3.76115E-10 

6.70599E-09 4.1518E-08 
MSE=4.08847E-18 MSE=1.56717E-16 
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6.2. Example: Consider the nonhomogeneous second order FDE: 
 

𝜀𝜓ˊˊ + 𝜓 =
1

2
cosx  ,                     x ∈ [0,1]. 

The fuzzy initial conditions 
[𝜓(0)]𝑟 = [2𝑟 , 4 − 2𝑟],    [𝜓ˊ(0)]𝑟 = [−2 + 2𝑟 , 2 − 2𝑟],   𝑟 𝜖 [0,1]. 
The fuzzy analytical solution is: 

[𝜓a(x)]𝑟 = [(2𝑟 −
2

3
) cos 2x + (𝑟 − 1) sin 2x +

2

3
cos x , (

10

3
− 2𝑟) cos 2x + (1 − 𝑟) sin 2x +

2

3
cos x] 

Then the fuzzy trial solution is  
[𝜓𝑡(x, p)]r= [2r , 4 − 2r]𝑟 + [−2 +  2r , 2 − 2r ]𝑟 x + x2[Out( ξ(x), ξ(r), p, 𝜀)]𝑟   . 
Then we have:  

𝜓𝑡(x, p)= 2r +[− 2 + 2r]x + x2(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)) 

𝜓𝑡 (x, p)=  4 − 2𝑟 + [2 − 2r]x + x2(𝑂𝑢𝑡(ξ(x), ξ(r), p,ε)) 

  The input vector x⃗  (training set) for the MNFS is a grid of ten evenly spaced points in the interval [0.1]: 
x⃗ = {0, 0.1, 0.2 ,0.3, 0.4, 0.5, 0.6 ,0.7, 0.8 ,0.9 ,1}. 
Following are the steps we now take to determine the error function E that needs to be minimized for this problem: 

𝑑𝜓𝑡(x, p)

𝑑x
= − 2 + 2r + x2

𝑑(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))

𝑑x
+ 2x(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) 

𝑑𝜓𝑡 (x, p)

𝑑x
= [2 − 2r] + x2

𝑑x(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)) 

𝑑x
+ 2x(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) 

                
𝑑2𝜓𝑡(x,p)

𝑑x2 = x2 𝑑2𝑂𝑢𝑡(ξ(x),ξ(r),p,ε) 

𝑑x2 + 2(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) + 4x
𝑑𝑂𝑢𝑡(ξ(x),ξ(r),p,ε)

𝑑x
)  

𝑑2 𝜓𝑡(x,p)

𝑑x2 = x2
𝑑2𝑂𝑢𝑡(ξ(x) ,ξ(r),p,ε)   

𝑑x2 + 2(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) + 4x
𝑑𝑂𝑢𝑡(ξ(x) ,ξ(r),p,ε) 

𝑑x
)        

𝔼𝑖𝑟(𝑝, 𝜀) = [
𝑑2𝜓𝑡(x𝑖, p)

𝑑x2
−

1

𝜀
[
1

2
cosx𝑖 − (𝜓𝑡(x𝑖)) ]]

2

 

𝔼𝑖𝑟(𝑝, 𝜀) = [
𝑑2 𝜓𝑡 (x𝑖 , p)

𝑑x2
−

1

𝜀
[
1

2
cosx𝑖 − (𝜓𝑡(x𝑖)) ]]

2

 

𝔼𝑖𝑟(𝑝, 𝜀) = [x𝑖
2
𝑑2𝑂𝑢𝑡(ξ(x𝑖), ξ(r), p, ε) 

𝑑x2
+ 2(𝑂𝑢𝑡(ξ(x𝑖) , ξ(r), p,ε) + 4x𝑖

𝑑𝑂𝑢𝑡(ξ(x𝑖), ξ(r), p, ε)

𝑑x

−
1

𝜀
[
1

2
cosx𝑖 − (2r + [− 2 + 2r]x𝑖 + x𝑖

2(𝑂𝑢𝑡(ξ(x𝑖) , ξ(r), p, ε)) ) ]]

2

 

𝔼𝑖𝑟(𝑝, 𝜀) = [x𝑖
2
𝑑2𝑂𝑢𝑡(ξ(x𝑖) , ξ(r), p, ε)   

𝑑x2
+ 2(𝑂𝑢𝑡(ξ(x𝑖) , ξ(r), p,ε) + 4x𝑖

𝑑𝑂𝑢𝑡(ξ(x𝑖) , ξ(r), p, ε) 

𝑑x

−
1

𝜀
[
1

2
cosx𝑖 − ( 4 − 2𝑟) + [2 − 2r]x𝑖 + x𝑖

2(𝑂𝑢𝑡(ξ(x𝑖) , ξ(r), p, ε))) ]]

2

 

 
Since 

𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)= ∑ sj 𝑇
7
j=1  (ξ(x)wj + bj) 

𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) = ∑𝑠𝑗  𝑇

7

j=1

 (ξ(x)𝑤𝑗 + 𝑏𝑗) 

𝑑𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝑑x
= ∑

𝜆

2
[sj][wj ]𝑇

′7
j=1 (ξ(x)[wj] + bj) 

d𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

dx
= ∑

λ

2
[sj] [wj] T

′ (ξ(x) [wj] + 𝑏𝑗)

7

j=1

 

𝑑2𝑂𝑢𝑡(ξ(x), ξ(r), p,ε)  

𝑑x2   =∑ ((
𝜆

2
)
2

sj 𝑤j
2  𝑇´´ (ξ(x) 𝑤j  +  bj))

7
j=1  
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𝑑2𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

dx2
= ∑(

𝜆

2
) 2sj wj

2T′′ (ξ(x) [wj] + 𝑏𝑗)

7

j=1

 

   𝑇´´ =2 𝑇3 − 2 𝑇 
𝑑2 𝑂𝑢𝑡(ξ(x), ξ(r), p,ε)

𝑑𝜘2   =∑ ((
𝜆

2
) 2sj̅ 𝑤j

2
 (2 𝑇3 − 2 𝑇) (ξ(x) 𝑤j  +  b𝑗))

7
j=1  

𝑑2𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

dx2
= ∑((

𝜆

2
) 2sj wj

2(2 𝑇3 − 2 𝑇) (ξ(x) [wj] + 𝑏𝑗))

7

j=1

 

Therefore we have                     

𝔼𝑖𝑟(𝑝, 𝜀) = [x𝑖
2 ∑ ((

𝜆

2
) 2sj̅ 𝑤j

2
 (2 𝑇3 − 2 𝑇) (ξ(x𝑖) 𝑤j  +  b𝑗))

7
j=1 + 2∑ sj 𝑇

7
j=1  (ξ(x𝑖)wj + bj)    +

4x𝑖 ∑
𝜆

2
[sj][wj ]𝑇

′7
j=1 (ξ(x𝑖)[wj] + bj) −

1

𝜀
[
1

2
cosx𝑖 − (2r + [− 2 + 2r]x𝑖 + x𝑖

2(∑ sj 𝑇
7
j=1  (ξ(x𝑖)wj + bj)   ) ]]

2

  

𝔼𝑖𝑟(𝑝, 𝜀) = [x𝑖
2 ∑ ((

𝜆

2
) 2sj wj

2(2 𝑇3 − 2 𝑇) (ξ(x𝑖) [wj] + 𝑏𝑗))
7
j=1 + 2(∑ 𝑠𝑗  𝑇

7
j=1  (ξ(x𝑖)𝑤𝑗 + 𝑏𝑗)  +

4x𝑖 ∑
λ

2
[sj] [wj] T

′ (ξ(x𝑖) [wj] + 𝑏𝑗)
7
j=1 −

1

𝜀
[
1

2
cosx𝑖 − ( 4 − 2𝑟) + [2 − 2r]x𝑖 + x𝑖

2(∑ 𝑠𝑗  𝑇
7
j=1  (ξ(x𝑖)𝑤𝑗 + 𝑏𝑗) )) ]]

2

  

For this issue, the error function that needs to be minimized is: 

𝔼(𝑝) = ∑ (𝔼𝑖𝑟(𝑝) + 𝔼𝑖𝑟(𝑝))
𝑔

𝑖=1
 

For this example since xϵ[0,1]  ,we choose 𝜀 = 0.25 and according to theorem (2.1) we must choose 0 < 𝜆 < 1   .       
For 𝜆 = 0.5 the training set will be   
x⃗ = {0, 0.1, 0.2 ,0.3, 0.4, 0.5, 0.6 ,0.7, 0.8 ,0.9 ,1}  
ξ(x): 0.25 0.27 0.3 0.32 0.35 0.37 0.4 0.42 0.45 0.47 0.5   
Evaluation of the performance gradient in relation to the coefficient is simple. A grid of evenly spaced points in [0,1] 
was used to train the feed-forward MNFS , (Fig. 3)shows the training set's neural and analytical solution. Following 
that, an oral MNFS result, an exact solution, and train accuracy faults are provided in a table(3) and (4). 
 
 
Table 3 - Analytic and MNFS solution of example 2, ε=0.25, r=0.4. 
 
 
 
 

 
 
 
 
 
 
 
 

Solution of MNFS 𝝍𝐭(𝐱) Analytic solution Input 

𝝍𝐭(𝐱) 𝝍𝐭(𝐱) 𝝍𝐚(𝐱) 𝝍𝐚(𝐱) X 

3.200000000000000 0.800000000000000 3.200000000000000 0.800000000000000 0 
3.265373039188640 0.674810055420946 3.265373039193530 0.674810055420479 0.1 
3.220383242085890 0.542534845709333 3.220383242086660 0.542534845709356 0.2 
3.066526701229240 0.408150257368812 3.066526701225280 0.408150257368007 0.3 
2.809444647591130 0.276521236048342 2.809444647554460 0.276521236041832 0.4 
2.458703473699260 0.152212757824092 2.458703473677610 0.152212757824596 0.5 
2.027420172892560 0.039314658956332 2.027420172861030 039314658956340 0.6 
1.531748058196880 -0.058712760750059 1.531748058196680 -0.058712760750052 0.7 
0.990243178226934 -0.139166291900692 0.990243178226415 -0.139166291900298 0.8 
0.423136584151567 -0.200195545638176 0.423136584151539 -0.200195545638886 0.9 
-0.148458659245233 -0.240863163722371 -0.148458659245259 -0.240863163722935 1 
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Table 4 - Accuracy of example 6.2 solutions , ε=0.25, r=0.4. 
 
 
 
 
 
 
 
 
 
 
 
    
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 3 - Analytic and neurally solution of example 6.2, with ε=0.25. 

 

 

 

 

 

 

 

The error [𝐄(𝐱)]𝐫 = |[𝝍𝐚(𝐱)]𝒓 − [𝝍𝐭(𝐱)]𝐫| 

[𝐄(𝐱)]𝐫 [𝐄(𝐱)]𝐫 

0 0 
4.89209E-12 4.66516E-13 
7.70051E-13 2.25375E-14 
3.9635E-12 8.05411E-13 

3.66742E-11 6.51018E-12 
2.16529E-11 5.0393E-13 
3.15321E-11 7.47319E-15 
2.0095E-13 7.19563E-15 

5.18918E-13 3.93935E-13 
2.77001E-14 7.09766E-13 
2.55906E-14 5.63938E-13 

MSE=2.5897E-22 MSE=4.04367E-24 
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