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A B S T R A C T 

Throughout this work through the using of a neuro-fuzzy system, we have developed a new 
technique. This updated approach is known neuro – fuzzy system method (MNFS). to develop 
a numerical method for resolving (FSPPs) for ordinary differential equations with BC. The 
activation function for hyperbolic tangents used to determine the hidden units' sigmoid 
function and the parameters of a fuzzy neural network and its formula is:                           

𝑇(x)  =  
ex − e−x

ex + e−x
.Standard training algorithms and analytical techniques were contrasted with 

the suggested strategy. Our research revealed the provided approach stands out for its 
excellent accuracy of the results, low error rate, and much faster speed than that of 
conventional methods. A number of examples are used to demonstrate the suggested 
strategy. 
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1. Introduction 

Nowadays the use of fuzzy singularly perturbed differential equations to describe problems in science and 
engineering has made this a topic that many scholars are interested in studying. In order to tackle the majority of 
practical issues since the solution of an FSPEs satisfies the fuzzy boundary requirements It is necessary to solve a 
fuzzy boundary issue . several issues fuzzy boundary value problems were difficult to answer precisely, and in 
certain cases, it was even impossible to come up with an analytical solution. So, it becomes more crucial to take into 
account their approximations, has been published a relatively recent study on the numerical solution of FSPEs using 
MNFS. The purpose of this study is to introduce a novel method for solving numerically fuzzy singularly perturbed 
differential equations with boundary conditions based on fuzzy neural networks. Artificial neural networks (ANNs), 
sometimes known as neural networks (NNs), more commonly, artificial neural networks (ANNs), refer to a group of 



2  Tabark Aqeel Al-Janabi, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 15(1) 2023 , pp  Math.   29–45

 

nonlinear computational techniques that,  The original artificial neural networks (ANNs) were actually just 
integrated circuits designed to mimic and comprehend how nerve inputs and signals are transmitted in the central 
nervous system of humans. Therefore, throughout the past few years, there have been two main pathways taken by 
ANN research. On the other hand, computational NN has been steadily becoming popular as tools that can 
accomplish functions or solve issues that were thought to be challenging, it may be difficult or even impossible, For 
conventional mathematical and statistical methods. One may be said to concentrates on creating as accurate in silico 
human brain models as possible to understand more about all of its systems of behavior. It is more neuro 
physiologically oriented. The other views NNs solely as a computational tool for handling challenging issues, which 
are typically very nonlinear. neuro-fuzzy systems have piqued the interest of academics in a variety of scientific and 
technical fields because of its powerful learning and reasoning skills [1]. Artificial neural networks' learning 
capabilities are combined with fuzzy inference systems' explicit knowledge representation in neuro-fuzzy systems. 
according to the categorization of research articles from 2000 to 2017, this report suggests an overview of various 
neuro-fuzzy systems. This survey's major goal is to give readers a comprehensive understanding of the state of the 
art in neuro-fuzzy systems so simply techniques based on their research interests. Different neuro-fuzzy models are 
compared with their applications [2]. Artificial neural networks (ANNs) have recently been used for the estimate of 
the ordinary differential equation (ODE) and partial differential equation (PDE). We Several publications in the 
literature about differential equations are briefly reviewed in [3] two-point boundary value issues can be solved 
quickly using FFNN. Hussein in [4] developed  FFNN to address singular boundary value issues. Tawfiq and  Al-
Abrahemee  in [5] created an ANN to address issues with singular perturbation, and other researchers. In fact, NNs 
are being used in every circumstance where there are issues with prediction, categorization, or control. A few 
important reasons are responsible for this enormous accomplishment. First and foremost, ANNs are highly 
developed nonlinear computational tools that can simulate incredibly complex functions. An appropriately selected 
ANN architecture can reflect any specific functional connection between a set of inputs and matching outputs. The 
dimensionality problem7, which plagues attempts to represent nonlinear functions with a lot of variables, is 
likewise controlled inside this framework by NNs. Additionally, NNs learn by doing: Through the use of judiciously 
crafted training algorithms. When compared to, say, some more conventional nonlinear statistical methods, the level 
of user knowledge necessary to implement NNs successfully is substantially lower[6,7]. However, in order to pick 
and prepare data, choose the proper NN, and interpret the findings, the user does require some heuristic knowledge. 

 

2. Basic definitions     

We start first with the original definition of fuzzy sets which was first initiated by Zadeh in 1965. 
Definition (2.1) [8]: Assume that Χ is a classical collection of items known as the universal set, where 𝑥 stands for 
the generic elements. In many cases, the membership in a classical subset 𝔸 of Χ is seen as a characteristic function 
𝑈𝔸 from into {0, 1}, such that:  

𝑈𝔸(𝑥) = {
1    𝑖𝑓 𝑥 ∈ 𝔸
 0    𝑖𝑓 𝑥 ∈ 𝔸

 

A valuation set is {0, 1}. A is known as a fuzzy set (which is denoted by 𝔸 ) if it is allowed for the valuation set to be 
the real interval [0, 1], and 𝑈�̃�(𝑥) is the grade of membership of 𝑥 in �̃�. 

Additionally, it is remarkable that the closer the value of 𝑈�̃�(𝑥)  to 1, the more 𝑥 belong to �̃�  and vise versa. It is 

obvious that �̃� is a subset of Χ that lacks a sharp boundary. Moreover, the fuzzy set �̃� is described as: �̃� =

{(𝑥, 𝑈�̃�(𝑥)) ∶ 𝑥 ∈ Χ, 0 ≤ 𝑈�̃�(𝑥) ≤ 1} 
  

Remark (2.1) [9]: 
Let Χ be the universal set and  �̃� be a fuzzy subset of Χ: 

1. The elements of Χ, such that 𝑈�̃�(𝑥) =
1

2
  are called the crossover points of �̃� . 

2. The height of �̃� is the greatest membership value, i.e., hgt(�̃�) = Supx∈XU�̃�(x) 

3. �̃� is said to be normal if and only if there exists 𝑥 ∈ 𝑋 such that 𝑈�̃�(𝑥) = 1 , otherwise �̃�  is subnormal. 
4. The empty fuzzy set ∅  with membership function𝑈∅̃(𝑥) = 0 , ∀𝑥𝜖𝑋. 

5. A non-empty fuzzy set �̃� can always normalized by dividing 𝑈�̃�(𝑥) , ∀𝑥 ∈ 𝑋 bySupx∈XU�̃�(x). We will 
typically assume that fuzzy sets are normalized. 

6. The support of a fuzzy set �̃�  (denoted by supp (�̃�)) is the crisp set of all 𝑥 ∈ 𝑋, such that 𝑈�̃�(𝑥)  > 0. 

7. A fuzzy set �̃� is convex on 𝔘  if and only if: 𝑈�̃�(𝛿𝑥1 + (1 − 𝛿)𝑥2 ) ≥ 𝑀𝑖𝑛{𝑈�̃�(𝑥1), 𝑈�̃�(𝑥2 )} for all 𝑥1 , 𝑥2 ∈ 𝔘 , 
and all 𝛿 ∈  [0, 1]. 
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 The r-Level sets  
    This section's focus is on the fundamental and crucial characteristics of so-called r-level sets, which are very 
significant in fuzzy sets. As a collection that connects fuzzy sets and regular sets, r-level sets are used, This can be 
used to demonstrate that certain results that are satisfied in regular sets are likewise satisfied in fuzzy sets, i.e., The 
regular sets and fuzzy sets can also be connected to one another in a different way. 
Definition (2.2) [10]: 
The crisp set of all 𝑥 in 𝑋 is known as the r-level or (r-cut) set of a fuzzy set �̃�, abbreviated as 𝔸𝑟  such that 𝑈�̃�(𝑥) ≥ 𝑟 
i.e.,  

𝔸𝑟 = {𝑥 ∈ 𝑋|𝑈�̃�(𝑥) ≥ 𝑟, 𝑟 ∈ (0,1]} 
 
Remark (2.2) [11]: 
The strong r-level sets can be defined as follows:   

𝔸𝑟
+ = {𝑥 ∈ 𝑋|𝑈�̃�(𝑥) > 𝑟, 𝑟 ∈ (0,1]} 

 
The fulfillment of the ensuing characteristics for 𝑟, 𝑡 ∈ (0,1]:can be simply verified: 

1. (𝑝 ∪ 𝑞)𝑟 = 𝑝𝑟 ∪ 𝑞𝑟 
2. (𝑝 ∩ 𝑞)𝑟 = 𝑝𝑟 ∩ 𝑞𝑟 
3. 𝑝 ⊆ �̃� 𝑔𝑖𝑣𝑒𝑠 𝑝𝑟 ⊆ 𝑞𝑟  
4. If 𝑟 ≤ 𝑡, then 𝑝𝑟 ⊇ 𝑝𝑡  
5. 𝑝 = �̃� if and only if 𝑝𝑟 = 𝑞𝑟 , ∀𝑟 ∈ (0,1] 
6. 𝑝𝑟 ∩ 𝑝𝑡 = 𝑝𝑡  and 𝑝𝑟 ∩ 𝑝𝑡 = 𝑝𝑟 , if 𝑟 ≤ 𝑡. 
7. If �̃� is a fuzzy set, {𝔸𝑟}, ∀𝑟 ∈ (0,1] is a family of subsets of the universal set 𝑋, then: 

 �̃� = ⋃ 𝑟𝔸𝑟

𝑟∈[0,1]

 

Accordingly, as illustrated graphically in (Fig. 1)Each fuzzy set's r-levels collectively make up a family of nested crisp 

sets. 

 

Fig. 1 - Nesting r-level sets. 

 

3. Architecture Neuro – Fuzzy System 

In order to demonstrate the construction of the Neuro-Fuzzy System (NFS), real inputs ( x1 , x2, … , xi , … , xn)are 
transformed into fuzzy outputs ([𝜓1]𝑟 , [𝜓2]𝑟 , … , [𝜓𝑘]𝑟 , … , [𝜓𝑠]𝑟)by the m hidden fuzzy neurons 

([Hid1]r , [Hid2]r , … [Hidj]r , … [Hidm]r) such that 𝑟 ∈ [0 , 1]. For the fuzzy neurons [Hidj]r, [𝜓𝑘]𝑟 there are fuzzy 

biases [bj]r and [𝓋k]r respectively, let  [wji]r the fuzzy weight linking xi to fuzzy neuron[Hidj]r, and [skj]𝑟 the fuzzy 

weight connecting between [Hidj]r fuzzy neuron to[𝜓𝑘]𝑟  fuzzy neuron. 

 



4  Tabark Aqeel Al-Janabi, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 15(1) 2023 , pp  Math.   29–45

 

 
 
Input units: x=xi, i=1,2,3,…,n                                                                                        (1) 

Hidden units:      [Hidj]r
=T ([Netwj]r

),  j =1,2,3,…,m                                            (2) 

Where                     [Netwj]r
= ∑ xi

n
i=1 [wji]r

+ [bj]r
                                                  (3)                                           

Output units :        [𝜓𝑘]r =T([𝑁𝑒𝑡𝑤k]r) ,  k=1,2,3,…,l                                             (4) 

Where                    [𝑁𝑒𝑡𝑤𝑘]𝑟= ∑ [𝑠𝑘𝑗]𝑟
𝑚
𝑗=1 [𝐻𝑖𝑑𝑖]𝑟 + [𝓋𝑘]𝑟                                     (5) 

to solve any FSPP (fuzzy singular perturbation problem) for an ODE. By use NFS As demonstrated in (Fig. 2), we 
employ a multi-layer network with one unit entry x, one hidden layer with m hidden units (neurons), and one linear 
output unit 
Input units: x = x                                                                                                            (6)                                                                               

Hidden units :       [𝐻𝑖𝑑j]r
=[𝐻𝑖𝑑j, 𝐻𝑖𝑑j]=[𝑇([𝑁𝑒𝑡𝑤̅̅ ̅̅ ̅̅

�̅�]), 𝑇([𝑁𝑒𝑡𝑤𝑗])]                  (7) 

Where 

[𝑁𝑒𝑡𝑤̅̅ ̅̅ ̅̅
�̅�]=x[𝑤𝑗] + [�̅�𝑗]                                                                                                      (8) 

[𝑁𝑒𝑡𝑤𝑗]=x[𝑤𝑗] +  [𝑏𝑗]                                                                                                    (9) 

Output units: [𝜓]𝑟 = [𝜓, 𝜓]                                                                                          (10) 

Where [𝜓] =∑ [𝑠𝑗]𝑗∈a [𝐻𝑖𝑑j] + ∑ [�̅�𝑗] [𝐻𝑖𝑑j]𝑗∈𝑏                                                          (11) 

             [𝜓]=∑ [𝑠𝑗] [𝐻𝑖𝑑j]𝑗∈𝑐 + ∑ [𝑠𝑗][𝐻𝑖𝑑j]𝑗∈𝑑                                                             (12)                          

 For [𝐻𝑖𝑑j] ≥ [𝐻𝑖𝑑j] ≥ 0 , where  

a={𝑗;[𝑠𝑗] ≥ 0}, b={𝑗;[𝑠𝑗] < 0} 

c={𝑗;[𝑠𝑗] ≥ 0}, d={𝑗;[𝑠𝑗] < 0} , a ∪ 𝑏= {1,2,3,… ,𝑚}, c ∪ 𝑑 ={1,2,3, … ,𝑚} 

 
 

 

 

 

 

 

 

 

 

 

Fig. 2 - (1×m×1) dimension of NFS. 

4. The Suggested Method 

On the basis of study into the properties of traditional learning algorithms, many academics have attempted to 
develop heuristic techniques. These studies investigate concepts like carefully selecting an activation function and 
computing the learning rate using momentum. The heuristic technique made use of various acceleration 
mechanisms that had been developed. This method was utilized by Ezadi and Parandin in [12] to solve first order 
ODEs. The method for solving FSPPs of the first and higher orders for ordinary differential equations is developed in 
this chapter. 
The primary component of this novel method is the replacement of each x in the input vector with a first-degree 
polynomial. (training set) x⃗  =(x1 , x2 , … , xn),xj ∈ [a, b] 
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ξ(x) =  
𝜆

2
(x⃗  +  1) , 𝜆 ∈ (a , b)                                                                                                                                        (13) 

Then the input vector will be: 
(ξ(x1) , ξ(x2) , …  , ξ(xn)), ξ(xj) ∈ (a , b) and j=1,2,…,n                                                                                       (14) 

 
When employing MNFS, selecting training points throughout the open interval (𝑎, 𝑏) avoids training the neural 
network in the first and end point range. As a result, the amount of calculation that involves inaccuracy in 
computation is decreased. In reality, utilizing the novel method, the training points for the neural network that are 
dependent on the distance [a, b] are transformed into comparable points in the open interval (a , b), after which the 
network is trained in these similar locations. 
Looking down, we have: (x1 , x2 , … , xn) , xj ∈ [a, b] and j =1,2,…,n                                                                  (15) 

The output of the MNFS is:  
[𝜓]𝑟 = ∑ [si]𝑟

m
i=1  T([𝑁𝑒𝑡𝑤i]r)                                                                                                                                       (16) 

For i=1,…, m is the total number of hidden units  
where  
[𝑁𝑒𝑡𝑤i]𝑟 = ∑ [𝑤ij]𝑟

  ξ(xj)  +  [bi]𝑟
n
j=1                                                                                                                           (17)                                        

  And  ξ(xj) =  
𝜆

 2 
(xj + 1) , 𝜆 ∈ (0,1)                                                                                                                            (18) 

where  xj ∈ [a , b] and  ξ(xj) ∈ (a , b), j=1,2,…,n     

Note:  For MNFS: 
d[𝜓]𝑟

d[si]𝑟
 =∑ 𝑇 (∑ [𝑤ij]𝑟

  ξ(xj)  + [bi]𝑟
n
j=1 )𝑚

𝑖=1  = ∑ 𝑇 (∑
𝜆

2
 (xj + 1)[𝑤ij]𝑟

 +  [bi]𝑟
𝑛
𝑗=1 )ℎ

𝑖=1                                      (19) 

d[𝜓]𝑟

d[bi]𝑟
 =∑ [si]𝑟𝑇´ (∑ [𝑤ij]𝑟

  ξ(xj)  + [bi]𝑟
n
j=1 )𝑚

𝑖=1  =  ∑ 𝑇′ (∑
𝜆

2
 (xj + 1)[𝑤ij]𝑟

+ [bi]𝑟
𝑛
𝑗=1 )ℎ

𝑖=1                            (20) 

 
d[𝜓]𝑟

d[𝑤ij]𝑟

= ∑ [s]𝑟𝑇´ (∑ [𝑤ij]𝑟
  ξ(xj)  + [bi]𝑟

n
j=1 )𝑚

𝑖=1  =∑
𝜆

2
 (xj + 1)𝑇′ (∑

𝜆

2
 (xj + 1)[𝑤ij]𝑟

 [bi]𝑟
𝑛
𝑗=1 )ℎ

𝑖=1               (21)            

 𝑇´ the first derivative of the activation function.  
 

5. Illustration of MNFS for Solving FSPP With BC. 

Consider the second order of FSPP for ODEs 

𝜀
𝑑2𝜓

𝑑x2 = 𝐹 (x, 𝜓(x),
𝑑𝜓

𝑑x
, 𝜀) ,                 x ∈ [0,1]                                                           (22) 

𝑤ℎ𝑒𝑟𝑒  𝜀  𝑖𝑠 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑒𝑚𝑡𝑒𝑟                      (0 < 𝜀 << 1 ) 

With the fuzzy (BC):  𝜓(𝑎) = [𝐴]𝑟 ,   𝜓(𝑏) = [𝐵]𝑟 
𝑤ℎ𝑒𝑟𝑒[𝐴]𝑟 𝑎𝑛𝑑 [𝐵]𝑟 𝑎𝑟𝑒 𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝐸1 𝑤𝑖𝑡ℎ 𝑟 − 𝑙𝑒𝑣𝑒𝑙 𝑠𝑒𝑡𝑠  

[𝐴]r = [𝐴, 𝐴] 𝑎𝑛𝑑 [𝐵]r = [𝐵, 𝐵] 

Can be written a fuzzy trial solution: 

[𝜓𝑡(x, 𝑝, 𝜀)]𝑟 =
𝑏[𝐴]𝑟−𝑎[𝐵]𝑟

𝑏−𝑎
+

[𝐵]𝑟−[𝐴]𝑟

𝑏−𝑎
x + (x − 𝑎)(x − 𝑏)[Out( ξ(x), ξ(r), p, 𝜀)]𝑟                                (23) 

where  Out ( ξ(x), ξ(r), p, 𝜀)  is output of the feed forword NFS with one input      
for x and parametr 𝑝.   
The quantity of mistake that needs to be minimized is as follows:   

𝔼(𝑝) = ∑ (𝔼𝑖𝑟(𝑝) + 𝔼𝑖𝑟(𝑝))
𝑔
𝑖=1                                                                                                                          (24) 

Where        

𝔼𝑖𝑟(𝑝, 𝜀) = [
𝑑2𝜓𝑡(x𝑖,𝑝,𝜀) 

𝑑𝜘2 −
1

𝜀
[𝐹 [x𝑖 , 𝜓𝑡

(x𝑖 , p,𝜀),
𝑑𝜓𝑡(x𝑖,𝑝,𝜀)

𝑑x
, 𝜀)]]

2

                                                                 (25) 

𝔼𝑖𝑟(𝑝, 𝜀) = [
𝑑2𝜓t(𝑥𝑖,𝑝)

𝑑𝜘2 −
1

𝜀
[𝐹 [x𝑖, 𝜓t (x𝑖 , 𝑝) ,

𝑑𝜓t(x𝑖,𝑝)

𝑑𝑥
𝜀)]]

2

                                                                        (26) 

 𝔼𝑖𝑟  and 𝔼𝑖𝑟   are squared errors for the lower and upper limits of the 𝑟 - level sets, respectively.Where {x𝑖}𝑖=1
𝑔

 the 

points discrete[𝑎, 𝑏]. 
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Then (25) and (26) can be rewritten as:    

𝔼𝑖𝑟(𝑝, 𝜀) = [(x𝑖 − a)(x𝑖 − b)
𝑑2(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝑑x2 + 2(2x𝑖 − (𝑎 + 𝑏))
𝑑(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝑑x
+ 2(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) −

1

𝜀
𝐹 (x𝑖,

𝑏𝐴−𝑎𝐵

𝑏−𝑎
+

𝐵−𝐴

𝑏−𝑎
x𝑖 + (x𝑖 − 𝑎)(x𝑖 − 𝑏)(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)𝑟  ,

𝐵−𝐴

𝑏−𝑎
+ (x𝑖 − 𝑎)(x𝑖 − 𝑏)

𝑑(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝑑x
+ (2x𝑖 −

(𝑎 + 𝑏))(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε))]
2

                                                                                                                                           (27)                               

𝔼𝑖𝑟(𝑝, 𝜀) = [(x𝑖 − a)(x𝑖 − b)
𝑑2(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝑑x2 + 2(2x𝑖 − (𝑎 + 𝑏))
𝑑(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝑑x
+ 2(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) −

1

𝜀
𝐹(x𝑖 ,

𝑏𝐴−𝑎𝐵

𝑏−𝑎
+

𝐵−𝐴

𝑏−𝑎
x𝑖 + (x𝑖 − 𝑎)(x𝑖 − 𝑏)(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) ,

𝐵−𝐴

𝑏−𝑎
+ (x𝑖 − 𝑎)(x𝑖 − 𝑏)

𝑑(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝑑x
(2x𝑖(𝑎 +

𝑏)))(𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)]
2

                                                                                                                                                     (28)                                              

 

 

 

6.  Numerical results 

In this section, we give examples of MATLAB 7.12 programs that exhibit In order to demonstrate the technique the 
characteristics and behavior of the proposed design will be discussed. In order to solve FSPPs for ODEs, a multi-
layer fuzzy feed forward FFNN with one input unit, one hidden layer with seven  hidden units (neurons), and one 
linear output unit was utilized. Tansig is for each buried unit activating sigmoidly. We demonstrate some numerical 
experiments using the NFS, and we found that the suggested technique significantly increases accuracy and speeds 
up convergence while reducing the quantity of iterations necessary to achieve the goal. 

6.1. Example : Consider the second-order linear FDE: 

𝜀𝜓′′ − 0.5(𝜓′ + 𝜓) = 0    x ∈ [0,1], 𝜀 𝑖𝑠 𝑝𝑒𝑟𝑡𝑢𝑒𝑟𝑏𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑡𝑜𝑟 
 
The fuzzy boundary  conditions 

[𝜓(0)]𝑟 = [−√−0.02 log𝑒 𝑟 , √−0.02 log𝑒 𝑟] 

[𝜓(1)]𝑟 = [14.60√−2 log𝑒 𝑟 , 14.83√−2 log𝑒 𝑟] 

Where the fuzzy exact solution for this problem is: 

[𝜓𝑎(x)]𝑟 = [2𝑒2𝑡𝑡 − 𝑒−2𝑡 (
1

10
)√−2 log𝑒 𝑟 − 𝑒−2𝑡𝑡 (

3

10
)√−2 log𝑒 𝑟 cos(4𝑡), 2𝑒2𝑡 + 𝑒−2𝑡 (

1

10
)√−2 log𝑒 𝑟

+ 𝑒−2𝑡𝑡 (
3

10
)√−2 log𝑒 𝑟 cos(4𝑡)] 

 
Then a fuzzy trial solutions is : 

[𝜓𝑡(x, 𝑝)]𝑟 = [−√−0.02 log𝑒 𝑟 , √−0.02 log𝑒 𝑟]
𝑟
+ [14.60√−2 log𝑒 𝑟 , 14.83√−2 log𝑒 𝑟]

𝑟
−

[−√−0.02 log𝑒 𝑟 , √−0.02 log𝑒 𝑟]
𝑟
+ x(x − 1)[Out( ξ(x), ξ(r), p, 𝜀)]𝑟  

Then we have:  

𝜓𝑡(x, p) = −√−0.02 log𝑒 𝑟 + 14.60√−2 log𝑒 𝑟 − [−√−0.02 log𝑒 𝑟] + x(x − 1)𝑂𝑢𝑡(ξ(x), ξ(r), p,ε)  

𝜓𝑡 (x, p) = √−0.02 log𝑒 𝑟 + 14.83√−2 log𝑒 𝑟 − [√−0.02 log𝑒 𝑟] + x(x − 1)𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)  

 
The MNFS a grid of ten evenly spaced spots was used to train in the interval [0,1], (i.e.) the  input vector x⃗ ( training 
set ) is: 
x⃗ = {0, 0.1, 0.2 ,0.3, 0.4, 0.5, 0.6 ,0.7, 0.8 ,0.9 ,1}. 
The next step is to discover It is necessary to decrease the error function E for this issue: 

𝑑𝜓𝑡(x, p)

𝑑x
= (x2 − x)

𝑑𝑂𝑢𝑡(ξ(x), ξ(r), p, ε) 

𝑑x
+ 𝑂𝑢𝑡(ξ(x), ξ(r), p, ε) (2x − 1) 

𝑑𝜓𝑡 (x, p)

𝑑x
= (x2 − x)

𝑑𝑂𝑢𝑡(ξ(x) , ξ(r), p, ε) 

𝑑x
+ 𝑂𝑢𝑡(ξ(x) , ξ(r), p, ε) (2x − 1) 
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𝑑2𝜓𝑡(x, p)

𝑑x2
= (x2 − x)

𝑑2𝑂𝑢𝑡(ξ(x), ξ(r), p, ε) 

𝑑x2
+ 2 [(2x − 1)

𝑑𝑂𝑢𝑡(ξ(x), ξ(r), p, ε) 

𝑑x
] + 2[𝑂𝑢𝑡(ξ(x), ξ(r), p,ε)] 

𝑑2 𝜓𝑡(x,p)

𝑑x2 = (x2 − x)
𝑑2𝑂𝑢𝑡(ξ(x) ,ξ(r),p,ε)   

𝑑x2 + 2 [(2x − 1)
𝑑𝑂𝑢𝑡(ξ(x) ,ξ(r),p,ε) 

𝑑x
] + 2 [𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)]  

𝔼𝑖𝑟(𝑝, 𝜀) = [
𝑑2𝜓𝑡(x𝑖, p)

𝑑x2
−

1

𝜀
[0.5(𝜓𝑡

′(x𝑖) + 𝜓𝑡 (x𝑖))]

2

 

𝔼𝑖𝑟(𝑝, 𝜀) = [
𝑑2 𝜓𝑡 (x𝑖 , p)

𝑑x2
−

1

𝜀
[0.5(𝜓𝑡

′(x𝑖) + 𝜓𝑡(x𝑖))]

2

 

𝔼𝑖𝑟(𝑝, 𝜀) =  [(x𝑖
2 − x𝑖)

𝑑2𝑂𝑢𝑡(ξ(x𝑖),ξ(r),p,ε) 

𝑑x2 + 2 [(2x𝑖 − 1)
𝑑𝑂𝑢𝑡(ξ(x𝑖),ξ(r),p,ε) 

𝑑x
] + 2[𝑂𝑢𝑡(ξ(x𝑖), ξ(r), p,ε)] −

1

𝜀
[0.5 ((x𝑖

2 −

x𝑖)
𝑑𝑂𝑢𝑡(ξ(x𝑖),ξ(r),p,ε) 

𝑑x
+ 𝑂𝑢𝑡(ξ(x𝑖), ξ(r), p, ε)(2x𝑖 − 1) + (−√−0.02 log𝑒 𝑟 + 14.60√−2 log𝑒 𝑟 − [−√−0.02 log𝑒 𝑟] +

x𝑖(x𝑖 − 1)𝑂𝑢𝑡(ξ(x𝑖), ξ(r), p,ε))  ]]

2

  

𝔼𝑖𝑟(𝑝, 𝜀) = [(x𝑖
2 − x𝑖)

𝑑2𝑂𝑢𝑡(ξ(x𝑖) ,ξ(r),p,ε)   

𝑑x2 + 2 [(2x𝑖 − 1)
𝑑𝑂𝑢𝑡(ξ(x𝑖) ,ξ(r),p,ε) 

𝑑x
] + 2 [𝑂𝑢𝑡(ξ(x𝑖) , ξ(r), p,ε)] −

1

𝜀
[0.5 ((x𝑖

2 −

x𝑖)
𝑑𝑂𝑢𝑡(ξ(x𝑖) ,ξ(r),p,ε) 

𝑑x
+ 𝑂𝑢𝑡 (ξ(x𝑖), ξ(r), p, ε) (2x𝑖 − 1) + √−0.02 log𝑒 𝑟 + 14.83√−2 log𝑒 𝑟 − √−0.02 log𝑒 𝑟 + x𝑖(x𝑖 −

1)𝑂𝑢𝑡(ξ(x𝑖) , ξ(r), p, ε) )]

2

  

Since 

𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)= ∑ sj 𝑇
7
j=1  (ξ(x)wj + bj) 

𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) = ∑ 𝑠𝑗  𝑇
7
j=1  (ξ(x)𝑤𝑗 + 𝑏𝑗)  

𝑑𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝑑x
= ∑

𝜆

2
[sj][wj ]𝑇

′7
j=1 (ξ(x)[wj] + bj) 

d𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

dx
= ∑

λ

2
[sj] [wj] T

′ (ξ(x) [wj] + 𝑏𝑗)
7
j=1   

𝑑2𝑂𝑢𝑡(ξ(x), ξ(r), p,ε)  

𝑑x2   =∑ ((
𝜆

2
)
2

sj 𝑤j
2  𝑇´´ (ξ(x) 𝑤j  +  bj))

7
j=1  

𝑑2𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

dx2 = ∑ (
𝜆

2
) 2sj wj

2T′′ (ξ(x) [wj] + 𝑏𝑗)
7
j=1   

 𝑇´´ =2 𝑇3 − 2 𝑇 
𝑑2 𝑂𝑢𝑡(ξ(x), ξ(r), p,ε)

𝑑𝜘2   =∑ ((
𝜆

2
) 2sj̅ 𝑤j

2
 (2 𝑇3 − 2 𝑇) (ξ(x) 𝑤j  +  b𝑗))

7
j=1  

𝑑2𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

dx2 = ∑ ((
𝜆

2
) 2sj wj

2(2 𝑇3 − 2 𝑇) (ξ(x) [wj] + 𝑏𝑗))
7
j=1   

 
Therefore we have: 
 

𝔼𝑖𝑟(𝑝, 𝜀) =  [(x𝑖
2 − x𝑖)∑ ((

𝜆

2
) 2sj̅ 𝑤j

2
 (2 𝑇3 − 2 𝑇) (ξ(x𝑖) 𝑤j  +  b𝑗))

7
j=1 + 2 [(2x𝑖 − 1)∑

𝜆

2
[sj][wj ]𝑇

′7
j=1 (ξ(x𝑖)[wj] +

bj)] + 2[∑ sj 𝑇
7
j=1  (ξ(x𝑖)wj + bj)] −

1

𝜀
[0.5 ((x𝑖

2 − x𝑖)∑
𝜆

2
[sj][wj ]𝑇

′7
j=1 (ξ(x𝑖)[wj] + bj) + ∑ sj 𝑇

7
j=1  (ξ(x𝑖)wj +

bj)(2x𝑖 − 1) + (−√−0.02 log𝑒 𝑟 + 14.60√−2 log𝑒 𝑟 − [−√−0.02 log𝑒 𝑟] + x𝑖(x𝑖 − 1)∑ sj 𝑇
7
j=1  (ξ(x𝑖)wj + bj))  ]]

2

  

𝔼𝑖𝑟(𝑝, 𝜀) = [(x𝑖
2−x𝑖) ∑ ((

𝜆

2
) 2sj wj

2(2 𝑇3 − 2 𝑇) (ξ(x𝑖) [wj] + 𝑏𝑗))
7
j=1 2 [(2x𝑖 − 1)∑

λ

2
[sj] [wj] T

′ (ξ(x𝑖) [wj] +7
j=1

𝑏𝑗)] + 2 [∑ 𝑠𝑗  𝑇
7
j=1  (ξ(x𝑖)𝑤𝑗 + 𝑏𝑗)] −

1

𝜀
[0.5 ((x𝑖

2 − x𝑖)∑
λ

2
[sj] [wj] T

′ (ξ(x𝑖) [wj] + 𝑏𝑗)
7
j=1 + ∑ 𝑠𝑗  𝑇

7
j=1  (ξ(x𝑖)𝑤𝑗 +

𝑏𝑗) (2x𝑖 − 1) + √−0.02 log𝑒 𝑟 + 14.83√−2 log𝑒 𝑟 − [−√−0.02 log𝑒 𝑟] + x𝑖(x𝑖 − 1)∑ 𝑠𝑗  𝑇
7
j=1  (ξ(x𝑖)𝑤𝑗 + 𝑏𝑗) )]

2
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For this issue, the error function that needs to be minimized is:  𝔼(𝑝) = ∑ (𝔼𝑖𝑟(𝑝) + 𝔼𝑖𝑟(𝑝))
𝑔
𝑖=1  

For this example since x ϵ[0,1] , we choose 𝜀 = 0.12 and according to theorem (2.1) we must choose 0 < 𝜆 <
4

3
            

For 𝜆 = 0.2 the training set will be   
x⃗ : 0, 0.1 , 0.2 , 0.3, 0.4, 0.5 , 0.6 ,0.7, 0.8 ,0.9 ,1 
ξ(x):0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 
The performance gradient in relation to the coefficient is simple to assess. 
An equal equidistant grid of points in [0, 1], (Fig. 3) shows the analytic and neurally solution in the training set, 

which was utilized to train the feed forward NN. Then oral result of MNFS, Table (1) and (2) both provide the 

precise answer and train's accuracy errors. 

 

Table 1 - Accuracy of solutions of example 1, ε=0.125,r=0.8.  

 

Table 2 - Analytic and MNFS solution of example 6.1, ε=0.125, r=0.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution of MNFS 𝝍𝐭(𝐱) Analytic solution input 

𝝍𝐭(𝐱) 𝝍𝐭(𝐱) 𝝍𝐚(𝐱) 𝝍𝐚(𝐱) x 

0.066804723083644 -0.066804723083658 0.066804723083658 -0.066804723083658 0 
0.292137789276640 0.149930578743290 0.292137789226413 0.149930578003846 0.1 
0.560209956287580 0.416912288749650 0.560209975348605 0.416912231179531 0.2 
0.879575382358831 0.740255177510600 0.879575382356868 0.740255186734336 0.3 
1.259497811557640 1.127421705439860 1.259497811559920 1.127421704666120 0.4 
1.710161877548740 1.587281066509440 1.710161481189200 1.587281060211060 0.5 
2.242881909047720 2.130203266544460 2.242881909047960 2.130203211889260 0.6 
2.870322700317710 2.768760163876540 2.870322700315780 2.768184880601560 0.7 
3.606723464912870 3.515007576043750 3.606723464906990 3.515007506268910 0.8 
4.468143761976380 4.386427438861350 4.468143761961120 4.386427438203900 0.9 
5.472727801396120 5.400399512437630 5.472727801398370 5.400399512437810 1 

The error [𝐄(𝐱)]𝐫 = |[𝝍𝐚(𝐱)]𝒓 − [𝝍𝐭(𝐱)]𝐫| 

[𝐄(𝐱)]𝐫 [𝐄(𝐱)]𝐫 

1.34476E-14 0 
5.02265E-11 7.39444E-10 
1.9061E-08 5.75701E-08 

1.96299E-12 9.22374E-09 
2.27529E-12 7.73743E-10 
3.9636E-07 6.29838E-09 

2.37144E-13 5.46552E-08 
1.93445E-12 0.000575283 
5.88329E-12 6.97748E-08 
1.52554E-11 6.57455E-10 
2.25153E-12 1.78524E-13 

MSE=1.43149E-14 MSE=3.00864E-08 
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Fig. 3 -  An analytic and neurally solution of example 6.1, with ε=0.125. 

 
6.2. Example: Consider the second-order FDE : 
 

𝜀𝜓′′(x) = 2𝜓3 , xϵ[0,1] 

[𝜓′(0)]𝑟 = [1 − 𝑟, 𝑟 − 1], [𝜓′(1)]𝑟 = [
1

4
(1 − 𝑟),

1

4
(𝑟 − 1)] 

Where the fuzzy exact solution is : 

[𝜓𝑎(x)]𝑟 = [(𝑟 − 1)
1

1+x
, (1 − 𝑟)

1

1+x
]. 

Then a fuzzy trial solution is: 

[𝜓𝑡(x, 𝑝)]𝑟 = [1 − 𝑟, 𝑟 − 1]𝑟 + [
1

4
(1 − 𝑟),

1

4
(𝑟 − 1)]

𝑟
− [1 − 𝑟, 𝑟 − 1]𝑟 + x(x −

1)[Out( ξ(x), ξ(r), p, 𝜀)]𝑟                                                                                                        

 we have:  

𝜓𝑡(x, p) = 1 − 𝑟 + [
1

4
(1 − 𝑟)] − [1 − 𝑟] + x(x − 1)𝑂𝑢𝑡(ξ(x), ξ(r), p,ε) 

𝜓𝑡 (x, p) = 𝑟 − 1 + [
1

4
(𝑟 − 1)] − [𝑟 − 1] + x(x − 1)𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) 

The MNFS a grid of ten evenly spaced spots was used to train in the interval [0,1], (i.e.) the  input 

vector x⃗ ( training set ) is: 

x⃗ = {0, 0.1, 0.2 ,0.3, 0.4, 0.5, 0.6 ,0.7, 0.8 ,0.9 ,1}. 
 

 

The next step is to discover It is necessary to decrease the error function E for this issue: 

𝑑𝜓𝑡(x, p)

𝑑x
= (x2 − x)

𝑑𝑂𝑢𝑡(ξ(x), ξ(r), p, ε) 

𝑑x
+ 𝑂𝑢𝑡(ξ(x), ξ(r), p, ε) (2x − 1) 

𝑑𝜓𝑡 (x, p)

𝑑x
= (x2 − x)

𝑑𝑂𝑢𝑡(ξ(x) , ξ(r), p, ε) 

𝑑x
+ 𝑂𝑢𝑡(ξ(x) , ξ(r), p, ε) (2x − 1) 

𝑑2𝜓𝑡(x,p)

𝑑x2 = (x2 − x)
𝑑2𝑂𝑢𝑡(ξ(x),ξ(r),p,ε) 

𝑑x2 + 2 [(2x − 1)
𝑑𝑂𝑢𝑡(ξ(x),ξ(r),p,ε) 

𝑑x
] + 2[𝑂𝑢𝑡(ξ(x), ξ(r), p,ε)]  

𝑑2 𝜓𝑡(x,p)

𝑑x2 = (x2 − x)
𝑑2𝑂𝑢𝑡(ξ(x) ,ξ(r),p,ε)   

𝑑x2 + 2 [(2x − 1)
𝑑𝑂𝑢𝑡(ξ(x) ,ξ(r),p,ε) 

𝑑x
] + 2 [𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)]  
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𝔼𝑖𝑟(𝑝, 𝜀) = [
𝑑2𝜓𝑡(x𝑖, p)

𝑑x2
−

1

𝜀
[2 (𝜓𝑡(x𝑖))

3

]

2

 

𝔼𝑖𝑟(𝑝, 𝜀) = [
𝑑2 𝜓𝑡 (x𝑖 , p)

𝑑x2
−

1

𝜀
[2 (𝜓𝑡(x𝑖))

3

]

2

 

𝔼𝑖𝑟(𝑝, 𝜀) = [(x𝑖
2 − x𝑖)

𝑑2𝑂𝑢𝑡(ξ(x𝑖),ξ(r),p,ε) 

𝑑x2 + 2 [(2x𝑖 − 1)
𝑑𝑂𝑢𝑡(ξ(x𝑖),ξ(r),p,ε) 

𝑑x
] + 2[𝑂𝑢𝑡(ξ(x𝑖), ξ(r), 

p,ε)]  −
1

𝜀
[2 (1 − 𝑟 + [

1

4
(1 − 𝑟)] − [1 − 𝑟] + x𝑖(x𝑖 − 1)𝑂𝑢𝑡(ξ(x𝑖), ξ(r), p,ε))

3

]
2

   

𝔼𝑖𝑟(𝑝, 𝜀) = [(x𝑖
2 − x𝑖)

𝑑2𝑂𝑢𝑡(ξ(x𝑖) ,ξ(r),p,ε)   

𝑑x2
+ 2 [(2x𝑖 − 1)

𝑑𝑂𝑢𝑡(ξ(x𝑖) ,ξ(r),p,ε) 

𝑑x
] + 2 [𝑂𝑢𝑡(ξ(x𝑖) , ξ(r), 

p,ε)] −
1

𝜀
[2 (𝑟 − 1 + [

1

4
(𝑟 − 1)] − [𝑟 − 1] + x𝑖(x𝑖 − 1)𝑂𝑢𝑡(ξ(x𝑖) , ξ(r), p, ε) )

3

]
2

  

 Since 

𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)= ∑ sj 𝑇
7
j=1  (ξ(x)wj + bj) 

𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε) = ∑ 𝑠𝑗 𝑇
7
j=1  (ξ(x)𝑤𝑗 + 𝑏𝑗)  

𝑑𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

𝑑x
= ∑

𝜆

2
[sj][wj ]𝑇

′7
j=1 (ξ(x)[wj] + bj) 

d𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

dx
= ∑

λ

2
[sj] [wj] T

′ (ξ(x) [wj] + 𝑏𝑗)
7
j=1   

𝑑2𝑂𝑢𝑡(ξ(x), ξ(r), p,ε)  

𝑑x2   =∑ ((
𝜆

2
)
2

sj 𝑤j
2  𝑇´´ (ξ(x) 𝑤j  +  bj))

7
j=1  

𝑑2𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

dx2 = ∑ (
𝜆

2
) 2sj wj

2T′′ (ξ(x) [wj] + 𝑏𝑗)
7
j=1   

 𝑇´´ =2 𝑇3 − 2 𝑇 
𝑑2 𝑂𝑢𝑡(ξ(x), ξ(r), p,ε)

𝑑𝜘2   =∑ ((
𝜆

2
) 2sj̅ 𝑤j

2
 (2 𝑇3 − 2 𝑇) (ξ(x) 𝑤j  +  b𝑗))

7
j=1  

𝑑2𝑂𝑢𝑡(ξ(x) , ξ(r), p,ε)

dx2 = ∑ ((
𝜆

2
) 2sj wj

2(2 𝑇3 − 2 𝑇) (ξ(x) [wj] + 𝑏𝑗))
7
j=1   

Therefore we have: 

𝔼𝑖𝑟(𝑝, 𝜀) = [(x𝑖
2 − x𝑖)∑ ((

𝜆

2
) 2sj̅ 𝑤j

2
 (2 𝑇3 − 2 𝑇) (ξ(x𝑖) 𝑤j  +  b𝑗))

7
j=1 + 2 [(2x𝑖 −

1)∑
𝜆

2
[sj][wj ]𝑇

′7
j=1 (ξ(x𝑖)[wj] + bj)] + 2[∑ sj 𝑇

7
j=1  (ξ(x𝑖)wj + bj)   ] −

1

𝜀
[2 (1 − 𝑟 + [

1

4
(1 − 𝑟)] −

[1 − 𝑟] + x𝑖(x𝑖 − 1)∑ sj 𝑇
7
j=1  (ξ(x𝑖)wj + bj)   )

3

]
2

                     

𝔼𝑖𝑟(𝑝, 𝜀) = [(x𝑖
2 − x𝑖)∑ (

𝜆

2
) 2sj wj

2T′′ (ξ(x𝑖) [wj] + 𝑏𝑗)
7
j=1 + 2 [(2x𝑖 −

1)∑
λ

2
[sj] [wj] T

′ (ξ(x𝑖) [wj] + 𝑏𝑗)
7
j=1 ] + 2 [∑ 𝑠𝑗  𝑇

7
j=1  (ξ(x𝑖)𝑤𝑗 + 𝑏𝑗) )] −

1

𝜀
[2 (𝑟 − 1 + [

1

4
(𝑟 − 1)] −

[𝑟 − 1] + x𝑖(x𝑖 − 1)∑ 𝑠𝑗  𝑇
7
j=1  (ξ(x𝑖)𝑤𝑗 + 𝑏𝑗) )

3

]
2

    

 

For this issue, the error function that needs to be minimized is: 𝔼(𝑝) = ∑ (𝔼𝑖𝑟(𝑝) + 𝔼𝑖𝑟(𝑝))
𝑔
𝑖=1       

For this example since xϵ[0,1], we choose 𝜀 = 0.5 and according to theorem (2.1) we must choose 

0 < 𝜆 <
4

3
            

For 𝜆 = 0.6 the training set will be  
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 x⃗ : 0, 0.1 , 0.2 , 0.3, 0.4, 0.5 , 0.6 ,0.7, 0.8 ,0.9 ,1  
ξ(x): 0.3 0.33 0.36 0.39 0.42 0.45 0.48 0.51 0.54 0.57 0.6 

The performance gradient in relation to the coefficient is simple to assess. 

An equal equidistant grid of points in [0, 1], (Fig. 4 & 5) shows the analytic and neurally solution in the 

training set, which was utilized to train the feed forward NN. Then oral result of MNFS, Table 

(3)(4)(5) and (6) both provide the precise answer and train's accuracy errors. 

Table 3 - Analytic and MNFS solution of example 6.2, ε=0.5, r=0.7. 

Table 4 - Accuracy of solutions of example 6.2, ε=0.5,r=0.7. 

 

  

 

 

 

 

 

 
 
 

Fig. 4 - An analytic and neurally solution of example 6.2, with ε=0.5. 

Solution of MNFS 𝝍𝐭(𝐱) Analytic solution input 

𝝍𝐭(𝐱) 𝝍𝐭(𝐱) 𝝍𝐚(𝐱) 𝝍𝐚(𝐱) x 

0.300000000000000 -0.300000000000000 0.300000000000000 -0.300000000000000 0 
0.272727270653980 -0.272727276784370 0.272727272727273 -0.272727272727273 0.1 
0.250004321998000 -0.250000566532000 0.250000000000000 -0.250000000000000 0.2 
0.230769230769231 -0.230769230553390 0.230769230769231 -0.230769230769231 0.3 
0.214285714867205 -0.214285714299432 0.214285714285714 -0.214285714285714 0.4 
0.200004321998710 -0.200004399875300 0.200000000000000 -0.200000000000000 0.5 
0.187500005422190 -0.187500005439987 0.187500000000000 -0.187500000000000 0.6 
0.176470588999531 -0.176470588994398 0.176470588235294 -0.176470588235294 0.7 
0.166666600418643 -0.166666666677400 0.166666666666667 -0.166666666666667 0.8 
0.157894734219869 -0.157894736800743 0.157894736842105 -0.157894736842105 0.9 
0.150000000000000 -0.150000000000000 0.150000000000000 -0.150000000000000 1 

The error [𝐄(𝐱)]𝐫 = |[𝝍𝐚(𝐱)]𝒓 − [𝝍𝐭(𝐱)]𝐫| 

[𝐄(𝐱)]𝐫 [𝐄(𝐱)]𝐫 

0 0 
2.07329E-09 4.0571E-09 

4.322E-06 5.66532E-07 
0 2.15841E-10 

5.81491E-10 1.37177E-11 
4.322E-06 4.39988E-06 

5.42219E-09 5.43999E-09 
7.64237E-10 7.59104E-10 
6.6248E-08 1.07333E-11 

2.62224E-09 4.13623E-11 
0 0 

MSE=3.39671E-12 MSE=1.78908E-12 
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Table 5 -  Analytic and MNFS solution of example 6.2, ε=0.5, x=0.5. 

 

Table 6 - Accuracy of solutions of example 6.2, ε=0.5,x=0.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 - Analytic and neural solution of example 6.2, with ε=0.5. 

Solution of MNFS 𝝍𝐭(𝐱) Analytic solution input 

𝝍𝐭(𝐱) 𝝍𝐭(𝐱) 𝝍𝐚(𝐱) 𝝍𝐚(𝐱) r 

0.666666666665309 -0.666666666664398 0.666666666666667 -0.666666666666667 0 
0.600059771260000 -0.600005429870000 0.600000000000000 -0.600000000000000 0.1 
0.533333333387653 -0.533333308543298 0.533333333333333 -0.533333333333333 0.2 
0.466666007599225 -0.466666664432997 0.466666666666667 -0.466666666666667 0.3 
0.400005346899600 -0.400043298755430 0.400000000000000 -0.400000000000000 0.4 
0.333333333995438 -0.333338644320987 0.333333333333333 -0.333333333333333 0.5 
0.266666655433998 -0.266666666666434 0.266666666666667 -0.266666666666667 0.6 
0.200000443399765 -0.200554323567800 0.200000000000000 -0.200000000000000 0.7 
0.133333333338876 -0.133333333775446 0.133333333333333 -0.133333333333333 0.8 
0.066666667765553 -0.066666666666535 0.066666666666667 -0.066666666666667 0.9 
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 1 

The error [𝐄(𝐱)]𝐫 = |[𝝍𝐚(𝐱)]𝒓 − [𝝍𝐭(𝐱)]𝐫| 

[𝐄(𝐱)]𝐫 [𝐄(𝐱)]𝐫 

1.35758E-12 2.26863E-12 
5.97713E-05 5.42987E-06 
5.43197E-11 2.479E-08 
6.59067E-07 2.23367E-09 
5.3469E-06 4.32988E-05 

6.62105E-10 5.31099E-06 
1.12327E-08 2.32647E-13 

4.434E-07 0.000554324 
5.54271E-12 4.42113E-10 
1.09889E-09 1.31659E-13 

0 0 



Tabark Aqeel Al-Janabi , Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 15(1) 2023 , pp  Math.   29–45            13 

 

References 
 

[1]  F. Marini," Comprehensive Chemometrics", 3.14 Neural Networks, Elsevier, 
2009,https://doi.org/10.1016/B978-044452701-1.00128-9  
[2]   K.V. Shihabudheen,G.N. Pillai," Knowledge-Based Systems ", Elsevier 
15 July 2018,https://doi.org/10.1016/j.knosys.2018.04.014  
[3]  Ali  M. H.,"Design Fast  Feed-Forward Neural  Networks to  Solve Two  
Point Boundary  Value Problems",  M.Sc.  Thesis,  College  of  Education Ibn  
Al-Haitham,University of Baghdad, Iraq, 2012.  
[4] Hussein A. A. T., "Design Fast Feed-Forward Neural Networks to Solve  
Singular Boundary Value Problems", M.Sc.  Thesis, College  of Education Ibn  
Al-Haitham,University of Baghdad, Iraq, 2013.  
[5] Tawfiq  L. N. M., Al-Abrahemee K. M. M.,"Design Neural Network to  
Solve  Singular  Perturbation  Problems",  Applied  and  Computational  
Mathematics, Vol. 3, No. 3, 1-5, 2014 . 
[6] K.M.M. Al-Abrahemee. Modification of high performance training algorithm for solving singular perturbation 

partial differential equations with cubic convergence, Journal of Interdisciplinary Mathematics, 24(7), 2035-
2047, (2021) https://doi.org/10.1080/09720 502.2021.2001136 

[7] Russul Kareem & Khalid M.M. Al-Abrahemee, Modification artificial neural networks for solving singular 
perturbation problems'Journal of Interdisciplinary Mathematics,(2022), 
https://doi.org/10.1080/09720502.2022.2072063. 

[8] Zadeh, L. A., “Fuzzy Sets”, In Fuzzy Sets and Applications: Selected papers by L. A. Zadeh, Edited by Yager R. R., 
Ovehinnikos S.,      Tong R.M. and Ngnyen W.T., John Wiely and Sons, Inc., 1987. 

[9] Dubois, D. and Prade, H., “Fuzzy Sets and Systems; Theory and Applications”, Academic Press, Inc., 1980. 
[10] Yan, J., Ryan, M. and Power, J., “Using Fuzzy Logic: Towards Intelligent Systems”,       Prentice Hall, Inc., 1994.  
[11] Al-Doury, N. E., “Application of Fuzzy Set Theory in Character Cursive Recognition”, M.Sc. Thesis, College of 

Education, Ibn Al-Haitham, University of Baghdad, 2002. 
[12] S. Effati, M. Pakdaman, "Artificial Neural Network Approach for Solving Fuzzy Differential Equations", 

Information Sciences, 180, 1434-1457, 2010. 
 
 
 
 
 
 
 


