

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Q_{P-} Continuous Multifunctions and $Q_{P}-$ Closed Multifunctions

Amer Khrija Abed^a

^aDepartment of Mathematics, College of Education for Pure Science, Al-Muthanna University, Samawah, Iraq.

^aE-mail[: amer.khrija@mu.edu.iq](mailto:amer.khrija@mu.edu.iq)

In this paper, by means of Q_{P} *-open and* Q_{P} *– closed sets, we introduce we have provided some basic definitions that we need in the research in addition to the definition of, Q_P − <i>continuous multifunctions and investigate certain ramifications of O_P − <i>continuous multifunctions, along with their several properties, characterizations and mutual relationships. Further we introduce new types of multifunctions, called* $Q_P - O -$ *closed multifunctions via* $Q_P -$ *open sets. The relationship between these multifunctions and* Q_{P-} *continuous multifunction are studied.*

ARTICLE INFO

Article history: Received: 05/01/2023 Rrevised form: 18/02/2023 Accepted : 20/02/2023 Available online: 31/03/2023

Keywords:

 Q_{p} ₋open set, Q_{p} – closed, Q_{p} – \log *closure*, Q_P – *interior* upper Q_P – *continuous*, *lower* Q_p – *continuous*, $Q_P - O - closedmultiplications$, *contra* Q_P – *open multifunctions*.

A B S T R A C T

MSC..

https://doi.org/10.29304/jqcm.2023.15.1.1167

1.Introduction

 Continuity is an important concept to study and investigation of classical point set topology theory, generalization of this concept can be made by using weaker forms of open groups . In 1965, O. Njaste[11] *introduced the concept and definition of α*-open and **α** − *closedsets in topology . In 1970 N. Levine***[10]** *introduced and studied the notion of Generalized closed sets* $(g - closed)$ in topology . In 1982[2], gives the concept of term $pre - open$ and $pre - closed$ sets and studies its *properties . In* **1993** [5] *introduced* the notion of *Generalized* α -closed sets in topology ($g\alpha$ – closed set). *In the year* **1994** [6], introduced and investigated the notion of αg – closed sets and αg – open sets by involving α – closed and g – *closed sets. In* 1996 [7], obtained a new class of sets in a topological space, known as $gp - closed$ sets and $pg - closed$.

∗Corresponding author

Email addresses:

Communicated by 'sub etitor'

In 2022 [8], introduced and study new class of sets is called $Q_p - closed$ set and $Q_p - open$ sets in a topological spaces. The theory of multivalued functions (multifunction) was first codified by **ber**. [13].

The aim of this paper is to a new form of continuous multivalued functions called Q_P *–continuous multifunctions, and a new type of the multivalued functions called* $Q_p - O - closed$ multifunctions are introduced and studied by using $Q_p - open$ *and* \mathbf{Q}_P – *closed* sets.

2-Preliminaries and Definitions

Throughout the present paper, X,Zand Y are always topological spaces (short: TO.S). Let ω be a subset of a TO.S X, We denote the *interior and the closure of a set* ω *by* $(mt(\omega)$ *and* $Cl(\omega)$ *, respectively* $.O(X)$ *is the of all open sets in TO. S X. . .* $C(X)$ *is the of all closed sets in* ТО. Ѕ X .the complement of a subset ω in X denoted by $\omega^\mathbb{C}$. By a topological multifunction $\varGamma\colon X\to Y$, it is meant a multifunction from a TO. S X *to another* ТО. Ѕ *. We will use the symbol ♦ to indicate end of the proof .*

Definition 2.1: Let X and Y be a TO.S:

- *1) The corresponding* $\Gamma: X \to Y$ *is called a multivalued function if given any* $X \ni X$, *then* $\Gamma(X)$ *will be a nonempty subset of* Y [1]*.*
- *2)* Let $\Gamma: X \to Y$ be a multivalued and $X \supseteq \omega$, $Y \supseteq \upsilon$ then $\Gamma(\omega) = \{ \Gamma(x) : \omega \ni x \}$ is called image of the set ω , $\Gamma^{+1}(\upsilon) = \{ X \ni x : \omega \in \mathbb{R} \}$ $\cup \supseteq \Gamma(x)$ } *is called the upper inverse of the set* \cup , $\Gamma^{-1}(\cup) = \{X \ni x : \Gamma(x) \cap \cup \neq \emptyset\}$ *is called the lower inverse of the set* \cup [13],

Remark 2.2[12] : Let $\Gamma: X \to Y$ be a multivalued function and $Y \supseteq v$, then $\Gamma^{+1}(v) = (\Gamma^{-1}(v))^C$ and $\Gamma^{-1}(v) = (\Gamma^{+1}(v))^C$ *.*

Definition 2.3: A subset ω of a TO. S X is called

- *1*) Preclosed [preopen] set if $\omega \supseteq Cl(mt(\omega))[\omega \subseteq mt(Cl(\omega))]$ [2].
- *2*) α *closed* α *open*] *set if* $\omega \supseteq Cl(mt(\text{Cl}(\omega)))$ α $\supseteq mt(Cl(mt(\omega)))[111]$.
- *3*) g closed set if $v \supset \mathcal{C}l(\omega)$ whenever $v \supset \omega$ and $O(X) \ni v$ and (ω^C) is g open [10].
- *4)* $gp closed set if \omega \supset \mathcal{C}l_p(\omega)$ whenever $\upsilon \supset \omega$ and $O(X) \ni \upsilon$, where $\mathcal{C}l_p(\omega)$ perclosuer of ω (the intersection of all perclosed sets containing ω is called perclosure of ω) and (ω^C) is gp – open [7].

*Definition 2.4***[8]***: A subset ω of a TO.S X is called Q_P* − *closed* [Q_P − *open*] *set if* $ω ⊇ Cl_{gp}(int(ω))$ *, where* $Cl_{gp}(int(ω))$ *is gp* − *closure of* $int(\omega)$ [$\omega \subseteq int_{gp} (Cl(\omega))$, where $Cl_{gp}(int(\omega))$ gp interior of $Cl(\omega)]$ $Q_p C(X)[Q_p O(X)]$ is the set of all Q_p – closed $[Q_p$ – open sets in a TO.SX.

Definition 2.5:

- *1)* $Cl_{QP}(\omega)$ *is called* Q_P *closure of* ω *in a* TO. S X *if* $Cl_{QP}(\omega) = \bigcap \{v : v \supseteq \omega \text{ and } Q_P C(X) \ni v\}$ [8].
- *2*) $mt_{QP}(\omega)$ is called Q_p interior of ω in a TO. S X if $mt_{QP}(\omega) = \cup \{v : v \subseteq \omega \text{ and } Q_pO(X) \ni v\}$ [8].
- *3*) We say that a set v of a TO. S X is a Q_P neighborhood of a point x if v contains a Q_P open set to which x belongs.

Remark 2.6 [8]

The diagram below represents the relationship between the $Q_P -$ closed type sets and the other closed sets :

3) Pointwise convergent if it is both upper pointwise convergent and lower pointwise convergent .

Definition 2.9 Let $\Gamma: X \rightarrow Y$ *be a topological multifunction, then*

1) I is called upper, (lower) continuous (short: U.C, L.C), at a point $X \ni x$, if for each open set v in Y with $v \supseteq I(x)$ ($I(x) \cap v \neq \emptyset$) there *exists open set* ω *containing* x *such that* $v \supseteq \Gamma(\omega)$ ($\Gamma(z) \cap v \neq \phi$ for all $z \in \omega$), Γ is said to be U.C.C.L.C, if Γ is U.C.(L.C) at each point $X \ni$ *x.* Γ is called continuous, if it is U.C and L.C at each point $X \ni X$. [12]

- *2) I* is called (upper per (lower per) continuous (short : U.P.C, L.P.C)), at a point $X \ni X$, if for each open set vin Y with $\nu \supseteq I(x)$ ($I(x) \cap \nu \neq \emptyset$) there exists per – open set ω containing x such that $\nu \supseteq I(\omega)$ ($I(z) \cap \nu \neq \emptyset$ for all $z \in \omega$), Γ is said to be $U.P.C(L.P.C)$, if Γ is $U.P.C(L.P.C)$ at each point $X \ni x$. Γ is called per - continuous, if it is $U.P.C$ and $L.P.C$ at each point $X \ni x$. [13]
- *3)* Γ is called $(upper \alpha$ $(lower \alpha)$ continuous $(short: U, \alpha, C, L, \alpha, C))$, at a point $X \ni x$, if for each open set ψ in Y with $\psi \supseteq I(x)$ $(\Gamma(x) \cap C)$ $v \neq \phi$) there exists α − open set ω containing x such that $v \supseteq I(\omega)(I(z) \cap v \neq \phi$ for all $z \in \omega$), *F* is said to be U. α . C(L. α . C), if *F* is $U.\alpha$. $C(L.\alpha$. $C)$ at each point $X \ni x$. Γ is called α – continuous, if it is $U.\alpha$. C and $L.\alpha$. C at each point $X \ni x$. [14]
- *4*) *I* is called surjection if for each $Y \ni y$ there exists an element $X \ni x$ such that $\Gamma(x) \ni y$. [9]
- *5*) *I* is called point closed (connected , compact) if for each $X \ni x$, $\Gamma(x)$ is closed (connected , compact) in Y.[3]

. −*continuous multifunctions*

In the following section, the new concept of −continuous multifunctions, introduced and studied and several characterization and properties of these forms are proved .

Definition 3.1 Let $\Gamma: X \rightarrow Y$ *be a topological multifunction; then*

- *1) Upper* Q_p *continuous* (U, Q_p, C) *at a point* $X \ni x$, if for each open set *v* in Y with $\Gamma(x) \supset \nu$ there exists $Q_p(X) \ni \omega$ containing x such that $\nu \supseteq I(\omega)$. *F* is said to be U.Q_P.C, if *F* is U.Q_P. Cat each point $X \ni x$.
- *2) Lower* Q_P *continuous* (*L.* Q_P . *C*) at a point $X \ni x$, if for each open set *v* in Ywith $\Gamma(x) \cap v \neq \emptyset$ there exists $Q_P O(X) \ni \omega$ containing x such *that* $\Gamma(z) \cap \nu \neq \emptyset$ *for all* $z \in \omega$. *T* is said to be *L*. Q_p . *C*, *if T* is *L*. Q_p . *C* at each point $X \ni x$.
- *3*) Q_P -continuous (Q_P, C) at a point $X \ni x$, if it is both (U, Q_P, C) and (L, Q_P, C) at x . Γ is called Q_P, C , if it is Q_P, C at each point $X \ni x$.

 $\pmb{Example}$ $\pmb{3.2}$: Let $X = \{e_1, e_2\}$, $T_X = \{X, \phi, \{e_1\}, \{e_2\}\}$ be a TO. S on X $X = \{h_1, h_2, h_3\}$, $T_Y = \{Y, \phi, \{h_1\}, \{h_2, h_3\}\}$ be a TO. S on Y . A multifunction $Γ: X → Y$ defines by $Γ$ by $Γ(e_1) = h_1$, and $Γ(e_2) = {h_2, h_3}}. Γ$ is $U.Q_P.C$ and $L.Q_P.C$.

Theorem 3.3 Let $\Gamma: X \to Y$ be a topological multifunction; then the following statements are equivalent:

- $1)$ \vdots l Q_p *.* C *.*
- *2*) $Q_P O(X)$ ∋ $\Gamma^{-1}(v)$, for each open set v in a T0.S Y .
- 3) $Q_P C(X) \ni T^{+1}(k)$, for each closed set κ in a TO.S Y.
- *4*) $Cl(T(\omega)) \supseteq \Gamma\left(Cl_{OP}(\omega)\right)$, for each set ω in a TO.S X
- 5) $I^{+1}(\mathfrak{Cl}(\beta))$ $\supseteq \mathfrak{Cl}_{\mathbb{Q} P}\left(I^{+1}(\beta)\right)$, for each set β in a <code>TO.S Y</code> .
- *6*) $\int_0^\infty m t_{QP}\left(I^{-1}(\beta)\right) \supset I^{-1}(mt(\beta))$, for each set β in a TO.S Y.
- *7*) For each $X \ni x$ and for each open set v in a TO.S Y such that $\Gamma(x) \cap \nu \neq \emptyset$, there exists a Q_P neighborhood ω of x such that if $\omega \ni u$; *then* $\Pi(u) \cap v \neq \emptyset$.
- *8)* For each X ∋ x and for each $\int x^a$ which Q_P converges to x in X and for each open set υ in Y , such that $\varGamma^{-1}(\upsilon)$ ∋ x ; then the net χ_a is $\emph{eventually}$ in $\emph{I}^{-1}(\emph{v})$.

Proof : 1) \Rightarrow 2) Let $\Gamma^{-1}(v) \ni x$ in a TO. S X , vany open subset of of a TO. S Y , from 1) we get there exists $Q_P O(X) \ni \omega$ such $that \Gamma^{-1}(v) \supseteq \omega \ni x$; therefore , $Q_P O(X) \ni \Gamma^{-1}(v)$.

2) ⇒ 3) Let κ be a closed set in a TO.S Y ; then κ^c is open set in Y from 2) we obtain $Q_PO(X) \ni \Gamma^{-1}(\kappa^C)$, since $Q_PO(X) \ni \Gamma^{-1}(\kappa^C) =$ $(I^{+1}(\kappa))^{c}$; then $Q_{P}C(X) \ni I^{+1}(\kappa)$.

3) \Rightarrow 4) Let $X \supseteq \omega$; then $\Gamma(\omega)$ is subset of a TO.S Y and $Cl(\Gamma(\omega))$ is closed set in Y . since Γ is L. Q_P . C ; then $Q_P{\cal C}(X) \ni \Gamma^{+1}\bigl(Cl(\Gamma(\omega))\bigr)$, in $\mathit{view}\;\; \mathit{fact} \;\; \mathit{that}\;\; \mathit{Cl}(\mathcal{J}(\omega)) \supseteq \mathcal{I}(\omega) \quad \text{implies} \;\; \mathit{that}\;\; \mathit{to}\;\; I^{+1}\big(\mathit{Cl}(\mathcal{J}(\omega))\big) \supseteq \omega\,,\; \mathit{It}\;\; \mathit{follows}\;\; \mathit{that}\;\; \mathit{Cl}_\mathit{QP}\big(\mathit{I}^{+1}\big(\mathit{Cl}(\mathcal{J}(\omega))\big)\big) \supseteq \mathit{Cl}_{\mathit{QP}}(\omega)\;\;;\;\; \mathit{therefore}\;\; \math$ $\mathsf{Cl}\big(\varGamma(\omega)\big) \supseteq \varGamma \big(\mathsf{Cl}_{\mathbb{Q}P}\big(\varGamma^{+1}\big(\mathsf{Cl}\big(\varGamma(\omega)\big)\big)\big)\big) \supseteq \varGamma(\mathsf{Cl}_{\mathbb{Q}P}(\omega))$.

 \mathcal{A} \Rightarrow 5) Let $Y \supsetneq \beta$, then $Q_P C(X) \supseteq C I_{QP} (r^{+1}(\beta))$, from this we get $I^{+1}(\beta) \supseteq C I_{QP} (r^{+1}(\beta))$, then $\left(\Gamma\left(\Gamma^{+1}(\beta)\right)\right) \supseteq \Gamma\left(C I_{QP} (r^{+1}(\beta))\right)$ and $Cl(\beta) \supseteq Cl\left(\Gamma\left(\Gamma^{+1}(\beta)\right)\right)$, this is implies $\Gamma^{+1}\left(\mathrm{Cl}(\beta)\right) \supseteq \Gamma^{+1}\left(\mathrm{Cl}\left(\Gamma\left(\Gamma^{+1}(\beta)\right)\right)\right) \supseteq Cl_{QP}\left(\Gamma^{+1}(\beta)\right)$.

5) \Rightarrow 6) let β any set of a TO.S Y, then $Q_P O(X) \ni m t_{QP} (\Gamma^{-1}(\beta)$ and $Q_P C(X) \ni (m t_{QP} (\Gamma^{-1}(\beta)))^C = \mathcal{C}l_{QP} (\Gamma^{-1}(\beta))^C = \mathcal{C}l_{QP} (\Gamma^{+1}(\beta^C))$

Then
$$
(\Gamma^{+1}Cl(\beta^c)) \supseteq Cl_{QP}(\Gamma^{+1}(\beta^c))
$$
 and $(\Gamma^{+1}Cl(\beta^c)) = \Gamma^{+1}((mt\beta))^c = (\Gamma^{-1}(mt\beta)^c)$ from this we get $mt_{QP}(\Gamma^{-1}(\beta)) \supseteq \Gamma^{-1}(mt(\beta))$.

6) \Rightarrow 7) Let *X* ∋ *x* and *v* be any open set in a TO. S *Y*, such that $\Gamma(x) \cap v \neq \phi$, then $m t_{QP}(\Gamma^{-1}(v)) \supseteq \Gamma^{-1}(m t(v))$, and $m t_{\rho P} \left(\Gamma^{-1}(\nu) \right) \supseteq \Gamma^{-1}(\nu)$. It follows that $Q_P O(X) \ni \Gamma^{-1}(\nu)$, we take $\omega = \Gamma^{-1}(\nu)$ is Q_P – neighborhood, then for each $\omega \ni u$, $\varGamma(u) \cap \nu \neq \phi$, .

 (7) ⇒8) Let X ∋ x and let a net χ_α which Q_P – converges to x in a TO.S X , vany open set in a TO.S Y , such that $\varGamma^{-1}(v)$ ∋ x from $7)$ there exists $Q_PO(X) \ni \omega$ and containing x , $\varGamma(u) \cap \upsilon \neq \phi$ for each $\omega \ni u$, then $\omega = \varGamma^{-1}(\upsilon)$, since χ_α is Q_P – converges to x in a T0. S X , then χ_α is eventually in every Q_p – neighborhood of a point x, therefore , the net $\chi^{}_{\alpha}$ is eventually in $\mathit{\Gamma}^{-1}(v)$.

 $(8) \Rightarrow 1$) *Suppose that* 1) is not true, there exists a point $X \exists x$ and v an open set in a TO.S Y with $\Gamma^{-1}(v) \ni x$ such that for set $Q_P O(X) \ni x$ ω containing x , $\ \ \Gamma^{\text{-}1}(\nu) \not\ni \omega$. Let $\omega \ni \chi_{\omega}$ and $\ \ \Gamma^{\text{-}1}(\nu) \not\ni \chi_{\omega}$ for each $\ \ Q_P$ $O(X) \ni \omega$ and containing x , therefore , the net χ_{ω} $\ Q_P$ – converges to a point x , but χ_{ω} is not eventually in $\ L^{-1}(\nu)$. This is contradiction , hence $\ \Gamma$ is L. Q_P . C. \bullet

Theorem 3.4 Let $\Gamma: X \to Y$ be a topological multifunction; then the following statements are equivalent:

- $1)$ I *is U.Q.C.*
- *2*) $Q_P O(X)$ ∋ $\Gamma^{+1} (v)$, for each open set v in a T0.S Y .
- 3) $Q_P C(X) \ni \overline{\Gamma}^{-1}(k)$, for each closed set κ in a TO.S Y.
- 4) $\qquad \qquad \Gamma^{-1}\bigl({\rm Cl}(\beta)\bigl) \supseteq {\rm Cl}_{QP}\bigl(\varGamma^{-1}(\beta)\bigr)$, for each set β in a ${\rm TO.S}\,$ Y .
- *5)* $\int_0^\infty t^{\frac{1}{2}} f(t^{-1}(\beta)) dt = I^{-1} \int_0^\infty t^{\frac{1}{2}} f(t) dt$, for each set β in a TO.S Y .
- *6)* For each $X \ni x$ and for each open set v in a TO.S Y such that $v \supseteq I(x)$, there exists a Q_p neighborhood ω of x such that if $\omega \ni u$; then $\nu \supseteq \Gamma(u)$.
- *7*) For each $X \ni x$ and for each n et χ_a which Q_P converges to x in X and for each open set υ in Y , such that $\varGamma^{+1}(\upsilon) \ni x$; then the net χ_a is eventually in $\varGamma^{+1}(\nu)$.

Proof : The details of the proof are similar to the details in the previous theorem . ♦

Remark 3.5 The following implication are hold

- *1)* Γ is $L.C \Rightarrow \Gamma$ is $L.\alpha.C \Rightarrow \Gamma$ is $L.P.C \Rightarrow \Gamma$ is $L.Q_P.C$
- 2) Γ is $U \colon \mathcal{C} \implies \Gamma$ is $U \colon \mathcal{C} \implies \Gamma$ is $U \colon \mathcal{P} \colon \mathcal{C} \implies \Gamma$ is $U \colon \mathcal{Q}_P \colon \mathcal{C} \implies \Gamma$

 While the converses are not true in general as the following

Example 3.6: Let $\Gamma: (X, T_X) \to (Y, T_Y)$ be a topological multifunction, where $X = \{e_1, e_2, e_3\}$, $T_X = \{X, \phi, \{e_1\}\}$ and $Y = \{h_1, h_2, h_3\}$, $T_Y = \{x, h_1, h_2, h_3\}$ $\{Y, \phi, \{h_3\}, \{h_1, h_2\}\}\$. Define Γ by Γ (e₁) = Γ (e₂) = h_1 , and Γ (e₃) = h_3 , then $\{h_3\}$ an open set in a T0. S Y and Γ ⁺¹(h_3) = $\{e_3\} \in Q_P$ O(X) but $\{e_3\}$ *is not per – open set in a* TO.S *X*, therefore Γ *is U.Q_p.C but* Γ *is not U.P.C*

Theorem 3.7 Let $\Gamma: X \to Y$ be a topological multifunction, if Γ is U, Q_p, C , then $G: X \to \Gamma(X)$ is also U, Q_p, C where $G(x) = \Gamma(x)$.

Proof: Let vany open set in a TO.S Y, then $\Gamma(X)/\Gamma(\nu)$ *is open set in a space* $\Gamma(X)$ *,* $G^{+1}(\Gamma(X)/\Gamma(\nu)) = X/\Gamma(G^{+1}(\nu)) = I^{+1}(\nu)$ *, since I* is U.Q_P.C, then $Q_P O(X) \ni I^{+1}(v)$, therefore, G is U.Q_P.C.

Theorem 3.8 Let $\{F_e: X \to Y, D \ni \ell, D \text{ index}\}$ be a net of U . Q_P . $C(L, Q_P, C)$ topological multifunctions , Γ_ℓ be an upper (lower) pointwise $convergent$ to $\varGamma:X\to Y$ and \varGamma is point closed , if Y is normal (regular) and for each open set $\mathcal M$ of $\ Y$ with $\varGamma^{-1}(\mathcal M)\neq\emptyset$ $\big(\varGamma^{+1}(\mathcal M)\neq\emptyset\big)$ and $D\ni\varnothing$ *, there exists* $\beta \leq L$ such that $\ \ \Gamma_L(x)/\mathcal{M} \neq \phi(\mathcal{M} \supseteq \Gamma_L(x)$, for all $\ \ \Gamma^{-1}(\mathcal{M}) \ni x\big(\Gamma^{+1}(\mathcal{M}) \ni x\big)$, then $\ \ \Gamma$ is also $\ \ U,Q_P$. $C(L,Q_P,C)$.

Proof: Suppose Γ *is not* U , Q _{P}, C at a point \mathcal{E} *in* X ; then there exists an open set U in Y containing $\Gamma(\mathcal{E})$ such that for Q _{P} $$ *open set* ω in X containing ϵ , there exists $\omega \ni \epsilon_0$ and $\nu \ncong I(\epsilon_0)$, that's mean $I(\epsilon_0)/\nu^c \neq \phi$, by the assumption Y is normal and Y $\ni I(\epsilon)$, $\Gamma(\mathcal{E})$ *closed and* $\nu \supseteq \Gamma(\mathcal{E})$, there exists an open set Θ such that $\nu \supseteq \text{Cl}(\Theta) \supseteq \Theta \supseteq \text{Cl}(\mathcal{E})$, let's say $\mathcal{M} = Y - \text{Cl}(\Theta)$, then $\mathcal{M} \supseteq \nu^{\mathcal{E}}$. Where $\langle \Gamma_{\ell}: X \to Y, D \ni \ell \rangle$ is upper pointwise convergent to Γ at \mathcal{E} . that's mean there exists $D \ni \mathcal{I}$ whereas $\Gamma_{\ell}(\mathcal{E}) \subseteq \Theta$, for each $\mathcal{I} \leq \ell$, where $\Gamma(\mathcal{E}_0)/\gamma v^c \neq \phi$, and then $\Gamma(\mathcal{E}_0)/\gamma M \neq \phi$ implies that $\emptyset \neq \Gamma^{-1}(M) \ni \mathcal{E}_0$. subsequently there exists $\gamma \leq \mathcal{L}$ whereas $\emptyset \neq \mathcal{M}/\Gamma(\mathcal{L})$, for all \varGamma^{-1} $(\mathcal{M}) \ni x$, implies that $\emptyset \neq \mathcal{M}/\Gamma_L(\mathcal{E}_0)$, therefore $\Theta \not\supseteq \Gamma(\mathcal{E}_0)$, whereas Γ_L is not $U.Q_P.C$ at \mathcal{E} , this contradiction ; therefore, Γ is $U. Q_p. C.$

With the same details, it can be shown that Γ *is L.Q.p.C*

Theorem 3.9 Let $\Gamma: X \to Y$ be an U.Q_P.C topological multifunction and point compact , if Y is Hausdorff – space and $\Gamma(x_1) \cap \Gamma(x_2) = \phi$, for all $x_1 \neq x_2$ in a TO. S X, then X is $Q_P - H$ space.

Proof: Let x_1 , x_ℓ be any points of X such that x_1 , $\neq x_\ell$, since $\Gamma(x_1)$, $\Gamma(x_\ell)$ are compact sets, $\Gamma(x_1) \cap \Gamma(x_\ell) = \phi$ in a TO. SY and Y is a Hausdorff space , there exist two open sets v_j containing $I(x_j)$ and v_ℓ containing $I(x_\ell)$ and $v_j \cap v_\ell = \phi$. Since Γ is U . Q p. C , then $Q_P(X)$ \ni $I^{+1}(v_{\ell}), I^{+1}(v_{\ell})$ and $I^{+1}(v_{\ell}) \ni x_{\ell}$, $I^{+1}(v_{\ell}) \ni x_{\ell}$ such that $I^{+1}(v_{\ell}) \cap I^{+1}(v_{\ell}) = I^{+1}(v_{\ell} \cap v_{\ell}) = I^{+1}(\emptyset) = \emptyset$. By definition (2.7(1)) *X* is Q_p − *H* space. ◆

4. $Q_p − Q − Closed Multifunctions$

In this section, the new concept of $Q_P - 0$ –*closed multifunctions, introduced and studied, and several properties of these new concept are proved .*

Definition 4.1 A topological multifunction $\Gamma: X \to Y$ *is said to be* $Q_P - O - Closed$ *if for each* $X \ni x$ *and* $Y \ni y$, *for which* $\Gamma(x) \nexists y$, *there exists* $Q_P O(X) \ni \omega$ containing x and open set ω in a TO.S Y containing y , such that $\varGamma(x_0) \cap \omega = \phi$, for each $\omega \ni x_0$.

Example 3.6: *Let* $X = \{e_1, e_2, e_3\}$, $T_X = \{X, \phi, \{e_1\}, \{e_3\}, \{e_1, e_3\}, \{e_2, e_3\}\}$ *be a* TO.S on X $X = \{h_1, h_2, h_3\}$, T_Y *is a discrete* , TO.S on Y . A $multiplication \Gamma: X \to Y$ defines by Γ by Γ (e₁) = {h₁}, Γ (e₂) = {h₁, h₂} and Γ (e₃) = {h₂}. Γ is Q_P – O – Closed. but Γ is not Q_P – Continuous

The following theorem give the relationships between the concept Q_P *– continuous multifunctions and* $Q_P - Q - C$ *losed multifunction.*

Theorem 4.2 Let $\Gamma: X \to Y$ *be a multifunction from a* TO.S *X* into a Hausdorff TO.S *Y* , if Γ is U.Q_p. C and point compact, then Γ is Q_p $0 - Closed$.

Proof: Suppose $\Gamma: X \to Y$ is U, Q_p, C on a TO. SX and $\Gamma(x) \neq y$, since $\Gamma(x)$ is compact and Y is Hausdorff TO. S, then there exist *disjoint two open set* v_1 *and* v_2 *in a* TO.S Y such that $v_1 \ni y$ and $v_2 \ni T(x)$. Since \varGamma is U,Q_P,C , there exists $\ Q_PO(X) \ni \omega$ such that $\omega \ni \omega$ x implies $v_2 \supseteq I(\omega)$, then $I(\omega) \cap v_1 = \phi$. It follows that Γ is $Q_P - O - closed$.

Theorem 4.3 *If* $\Gamma: X \rightarrow Y$ *is a* Q_P − 0 − Closed multifunction, then Γ (Θ) *is closed subset of a* T0.SY, for each Θ Q_P − Compact relative toa TO. S $X\;$.

Proof: Assume Γ (Θ) \neq y, *then for each* $\Theta \ni x$, Γ (x) $\neq y$ *. By definition* (4.1) *there exist* Q_P $O(X) \ni \omega_x$ *containing* x *and an open set* ν_x α *containing y such that* $\Gamma(\omega_x)\cap \nu_x\ =\ \phi$ *. The family* $\{\omega_x:\ \Theta\ni x\ \}$ *is a cover of a set* Θ *and* Q_P $O(X)$ $\ni\omega_x$ *for each x , since* Θ *is* Q_P *–* $Compact$

there exists a finite subset M of Θ such that \cup { $\omega_x : M \ni x$ } \supseteq Θ . Take $\nu = \{v_x : M \ni x\}$, then ν is an open set containing element $(y$ and $\varGamma(\Theta) \, \cap \, \upsilon \, = \, \phi$, this means that $\varGamma(\Theta)^c \supseteq \upsilon$, therefore , $\varGamma(\Theta)$ is closed in a T0.S Y. \bullet

Definition 4.4 *A* topological multifunction $\Gamma: X \to Y$ is called contra Q_P – open if the image of every Q_P – open set in a TO.S X is closed set in а ТО. S *Y*.

Theorem 4.5 *if* $\Gamma: X \rightarrow Y$ is contra Q_P − open multifunction such that the inverse image for each point of a TO. SY is Q_P − Closed set in a TO. S X, then Γ is $Q_P - Q - C$ *losed*.

Proof: Let $\Gamma(x) \neq y$ *, then* $\Gamma^{-1}(y) \neq x$ *, since* $\Gamma^{-1}(y)$ Q_P *– Closed, then there exists* $v \quad Q_P$ *– open set containing* x *such that* $v \cap \Gamma^{-1}(y)$ *=* . *Since* − , *then* () *is closed set in* ТО. Ѕ *, this is implies that there exists an open set* ℳ *in* ТО. Ѕ *such that* ℳ ∋ y and $\Gamma(v)$ ∩ $\mathcal{M} = \phi$. Hence Γ is $Q_p - O - C$ losed .◆

Theorem 4.6 If { Γ _ℓ: $X \to Y$, $I \ni l$ } is a family of $Q_P - 0 - C$ losed multifunction from a TO.S X into a TO.S Y, then $\Gamma(x) = \cap \Gamma_{I \ni l}(x)$. is $Q_P - C$ $0 - Closed$, $\Gamma(x) = \cap_{I \ni \ell} \Gamma_{\ell}(x)$.

Proof: let $\Gamma(x_1) \neq y_1$, then there exists $I \ni \ell_1$ such that $\Gamma_{\ell_1}(x_1) \neq y_1$, since Γ_{ℓ_1} is Q_P - Closed, then there exists $Q_P O(X) \ni v$ containing x_1 and ω open set $\;$ in $\;$ TO.S Y containing y_1 such that $\varGamma_{\ell_1}(\omega) \cap \omega = \phi$, from this we obtain $\varGamma(\omega) \cap \omega = \phi$, therefore , \varGamma is $Q_P - O - C$ losed . \blacklozenge

Theorem 4.7 If $\Gamma: X \to Y$ is $Q_P - O - C$ losed topological multifunction , then $\Gamma^{-1}(v)$ is $Q_P - C$ losed , for each v compact set in a TO.SY.

Proof: Let v be arbitrary compact set in a TO. S*Y* and $\Gamma^{-1}(v) \not\ni x$, $\Gamma^{-1}(v) = \{x : \Gamma(x) \cap v \neq \emptyset\}$, then $\Gamma^{-1}(\ell) \not\ni x$, for each $v \ni \ell$. Since Γ *is* Q_P − Closed, there exist $Q_P O(X) \ni M_{\kappa\ell}$ and open set \mathcal{M}_{ℓ} such that $M_{\kappa\ell} \ni x$ and $\mathcal{M}_{\ell} \ni \ell$ *implies* $\Gamma(\mathcal{M}_{\kappa\ell}) \cap \mathcal{M}_{\ell} = \emptyset$. The family $\{\mathcal{M}_\ell:\ \upsilon\ni\ell\}$ is open cover of υ , since υ is compact , then there exists $\{\mathcal{M}_{\ell_1}$, \mathcal{M}_{ℓ_2} , \mathcal{M}_{ℓ_3} , ..., $\mathcal{M}_{\ell_n}\}$ is finite sub cover such that $\ \cup_{i=1}^n\ \mathcal{M}_{\ell_i}\supseteq \upsilon$, Let $\mathcal{M}_x = \bigcap_{i=1}^n \mathcal{M}_{x\ell_i}$ such that $\mathcal{M}_x \ni x$. If $\mathcal{M}_x \cap \Gamma^{-1}(v) = \phi$, then $\Gamma^{-1}(v)$ is Q_P \subset Closed . Now , for showing this , suppose $\mathcal{M}_x \cap \Gamma^{-1}(v) \neq 0$ ϕ , there exists \mathcal{M}_x \Rightarrow x_0 and $\Gamma^{-1}(v) \Rightarrow x_0$ then $\mathcal{M}_{x\ell_i} \Rightarrow x_0$, for each $i = 1,2, ..., n$ and $\Gamma(x_0) \cap v \neq \phi$, this implies there exists $\Gamma(x_0) \Rightarrow y$ and $v \Rightarrow$ y , since $\cup_{i=1}^n$ \mathcal{M}_{ℓ_i} \supseteq υ , there $i=j$, there exists $\mathcal{M}_{x\ell_j}$ such that $\varGamma\Big(\;\mathcal{M}_{\ell x_j}\Big)$ \cap $\mathcal{M}_{\ell_j}\neq\phi$, this is contradiction , therefore \mathcal{M}_x \cap $\Gamma^{-1}(v) = \phi$ and $\Gamma^{-1}(v)$ is Q_p − Closed set in X. \bullet

 Now , the following theorem is study the converse of theorem 4.2 *.*

Corollary 4.8 *If* $\Gamma: X \to Y$ is $Q_P - O - C$ *losed topological multifunction and* Y *is a compact a* TO. S, *then* Γ *is* U, Q_P, C .

Proof: Let $\Gamma: X \to Y$ be Q_p – Closed and v be any closed subset of a TO.S, since Y is a compact space, then v is compact set in Y, from t heorem (4.7) we get $\varGamma^{-1}(\nu)$ is $Q_P-{\it Closed}$, this implies \varGamma is $U.Q_P.$ ${\cal C}$. \bullet

5-Conclusion

Concepts of openness and continuity is the basic concepts of study and survey of topological spaces. In this work, we introduced some new concepts of a kind of continuous multifunctional functions called Q_P − Continuous multifunctions and studied its properties and it turned out to be an expansion of the space of continuous multifunctional and we have obtained some theorems that can be generalized to this type of *continuity.This work is extended to* $Q_P -$ *closed multifunctions and the relationships between* $Q_P -$ *Continuous and* $Q_P -$ *closed multifunctions are explored.*

References

- *[1]Adams , Colin , "Introduction to Topology Pure and Applied", printed in the united states of America , 2008 .*
- *[2] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb "On precontinuous and weak precontinuous mappings" Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.*
- *[3] Basu , C. K. , and GHosh , M. K. ,"Properties of Almost Continuous Multifunction " ,Southeast Asian Bulletin of Math. , (2008) 32 : 223-234 .*
- *[4] Ganguly , D. K. and Mitra , Chandrani , "On Some Weaker Forms of B* -Continuity for Multifunction" , Soohow Journal of Math., vol. 32 , NO. 1 , January (2006) : pp. 59-69 .*
- *[5] H. Maki, R. Devi, and K. Balachandran, "Generalized α-closed sets in topology," Bulletin Fukuoka University, vol. 42, pp. 13–21, 1993.*
- *[6] H. Maki, K. Balachandran, and R. Devi, "Associated topologies of generalized α-closed sets and α-generalized closed sets," Memoirs of the Faculty of Science Kochi University Series A Mathematics, vol. 15, pp. 51–63, 1994.*

[8] H. Zhou, O. G. Hammad, and A. M. Khalil "On Qp-Closed Sets in Topological Spaces" Hindawi , Journal of Math.Vol. 2022 , 10 pages,2022 [9]James , J. , "Multifunction And Graphs" Pacific J. Math. , 79(2) , (1978) , 509-529 .

[10]N. Levine, "Generalized closed sets in topology," Rendiconti del Circolo Matematico di Palermo, vol. 19, no. 1, pp. 89–96, 1970. .

[11]Orhan ,Ozer , "A Not on Multifunction" , Acta . sci,Math 46, (1983), 121-529 .

[12] Simithson , R. E. , "Subcontinuity for Multifunctions" , Pacific Journal of math. 1, 283-288, 1975

[13]V.Popa and Noiri, "On upper and lower pre-continuous multifunctions" Real Anal.sExchange 22(1) (1997), 362-376.

[14]V.Popa and Noiri, T., "On Upper And Lower Weakly α-Continuous Multifunctions" Novi Sad J. Math Vol. 32, No. 1, 2002, 7-24