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A B S T R A C T 

Count data models have become very common in several disciplines in recent years. Since these 
types of models can often be studied incorrectly using OLS methods, several solutions have 
been proposed to address this problem. One of these methods the normal-scale mixture 
method with different types of priors of the scale parameter. The importance of this method is 
to solve the issue of the bias-variance tradeoff by adding a local scale parameter to reduce the 
variance at the origin and reduce the bias at the tails. In this paper, a compound-gamma prior 
is placed for the scale parameter and the relevant Gibbs sampler is solved for posterior 
inference. The comparison of the performance of the proposed model with some other existing 
methods using both very sparse and low sparsity simulated data shows that the proposed 
model performs very well.   
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1. Introduction 

Consider the linear model  

 

𝑦 = 𝑋𝛽 + 𝜖,  (1) 

where 𝑦 = (𝑦1, ⋯ , 𝑦𝑛)𝑇 , 𝑋 = (𝑥1, ⋯ , 𝑥𝑝), 𝛽 = (𝛽1, ⋯ , 𝛽𝑝)𝑇  and 𝜖 = (𝜖1, ⋯ , 𝜖𝑛)𝑇 ,defined by 𝜖𝑖 ∼ 𝑁(0, 𝜎2), are the 
vector of observations, the design matrix of covariates, the vector of unknown regression coefficient and the vector of 
errors, respectively. In this paper we assume that this model is concerned with count data. The study of Bayesian 
regression for count data has become an important area in this subject. Several studies have been proposed such as 
the study of the crash frequency and its influencing factors [17], the study of university credits and it is relationship 
to pre-enrolment assessment tests [7], the Malaysian motor insurance claim [5], socioeconomic factors and number 
of tuberculosis [16] and the application of count data to environmental epidemiology [11]. These varies examples 
show the importance and the need to develop… 
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The development of count data models in the framework of Bayesian regression was develop in several stages 
beginning in the 1970s to the modern day [14,6,13]. The most notable of these stages is the work by [9] involving the 
use of a Poisson process to analysis regression models. Some of modern advances in this arena have involved the 
introduction of quantiles through conditional quantile functions [10] which requires some particular assumptions 
about the model while allowing the researcher to analyze the effect of the covariates on each quantile of the 
distribution [12]. Since the dependent variable 𝑦 defined by (1) is a generated using a Poisson countable process 

𝑦𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖)  

𝜇
𝑖

∼𝑒𝑥𝑝 𝑒𝑥𝑝 {𝑥𝑖
𝑇𝛽}  

(2) 

With only nonnegative integers then it is necessary to convert it to a continuous variable. In order to do this we use 
the jittering process presented in [12] by adding a uniform variable 𝑢𝑖  to our dependent variable 𝑦𝑖  then taking the 
log to produce the desired continuous variable 

𝑦𝑖
∗ =𝑙𝑛 𝑙𝑛 {𝑦𝑖 + 𝑢𝑖}   

𝑢𝑖 ∼ 𝑢𝑛𝑖𝑓(0,1) 
(3) 

In this paper, we will analyze the Bayesian regression framework in the present of count data with a normal scale-
mixture combined with a normal-compound gamma prior of the form 

𝛽
𝑗
|𝜎2, 𝑧1 ∼ 𝑁(0, 𝜎2𝑧1)  

𝑧1 ∼ 𝐶𝐺(𝑐1, … , 𝑐𝑁 , 𝜙) 

𝜎2 ∼ 𝐼𝐺(𝑐0, 𝑑0) 

(4) 

where 𝐶𝐺(𝑐1, … , 𝑐𝑁 , 𝜙) is a compound-gamma distribution of order 𝑁 and 𝐼𝐺(𝑐0, 𝑑0) is the inverse gamma distribution 
with shape parameter 𝑐0 and scale parameter 𝑑0.  

The paper will be structured as follows: in section 2 the compound gamma prior will be introduced, in section 3 our 
sampler with be derived, in sections 4 and 5 we will use simulated and real data, respectively, to compare the accuracy 
of our model with other models.  

1. The normal-compound gamma prior 

The compound gamma prior can be written as 

 

𝜋(𝑥) = ∫
∞

0

… ∫
∞

0

𝐺(𝑧1, 𝑐1, 𝑧2)𝐺(𝑧2, 𝑐2, 𝑧3) … 𝐺(𝑧𝑁 , 𝑐𝑁 , 𝑧𝑁+1)𝑑𝑧2 … 𝑑𝑧𝑁 

 
 

(5) 

Or alternatively [1] 

𝜋(𝑥) = ∫
∞

0

… ∫
∞

0

[∏

𝑁

𝑖=1

𝑧𝑖+1
𝑐𝑖

𝛤(𝑐𝑖)
𝑧𝑖

𝑐𝑖−1
{−𝑧𝑖𝑧𝑖+1} ] 𝑑𝑧2 … 𝑑𝑧𝑁 (6) 

where 𝑧1 = 𝑥 and 𝑧𝑁+1 = 𝜙 is a constant. A more efficient way is to write this a product of multiple scale mixtures [1] 
with 

𝑧1 ∼ 𝐺(𝑐1, 1), 𝑧2 ∼ 𝐼𝐺(𝑐2, 1), … , 𝑧𝑁 ∼ {𝐺(𝑐𝑁 , 𝜙) 𝑜𝑑𝑑   𝑁 𝐼𝐺(𝑐𝑁 , 𝜙) 𝑒𝑣𝑒𝑛   𝑁  (7) 

where 𝐺(𝑎, 𝑏) is the gamma distribution with shape parameter 𝑎 and inverse scale (rate) parameter 𝑏.  

Proof. The proof of this equivalence is giving in [1]. 
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Figure 1. Plot of the NCG prior with the solid, dashed represent 𝑁 = 2 and 𝑁 = 4, respectively, while the thick and 
thin lines represent larger and smaller values of 𝑐1, respectively. 

 

The properties of this prior were extensively studied in [1]. Most interestingly, it was shown that this prior is a 
generalization of various popular models (See [2,15,3] for 𝑁 = 2 and [4] for 𝑁 = 4). In particular, it was shown that 
this model works for data with different degrees of sparsity. This property is farther demonstrated in Figure 1. The 
above prior has been investigated in several scenarios and types of data. In this paper, it is our aim to derive the 
analyze the posterior inference in the area of count data. We notice that for small values of 𝑐1, both in the cases of 
compounding two and four gamma distributions for there is singularity at zero and distribution mass is concentrated 
near zero. Thus, this shows how the model works for sparse data. This is shown by the thin lines in the graph. On the 
other hand, the thick lines show the prior for the non-sparse framework where more the distribution has at both tails 
of the distribution. In [2], it is shown that for 𝑁 = 2 the EM algorithm can accurate sample the true sparsity (or 
density) of our data to get more insight to the value of our hyperparameters. 

2. Posterior Inference 

The full conditionals for 𝑁 = 2 were calculated by [2] to obtain 

𝛽|𝑟𝑒𝑠𝑡 ∼ 𝑁(𝜇𝛽 , 𝛴−1𝜎2) 𝑧1|𝑟𝑒𝑠𝑡 ∼ 𝐺𝐼𝐺 (
𝛽𝑇𝛽

𝜎2𝑧2

, 2, 𝑐1 −
1

2
) 𝑧2|𝑟𝑒𝑠𝑡 ∼ 𝐼𝐺 (𝑐2 +

1

2
,

𝛽𝑇𝛽

2𝜎2𝑧1

+ 1) 𝜎2|𝑟𝑒𝑠𝑡

∼ 𝐼𝐺 (
𝑛 + 𝑝 + 2𝑐0

2
,
(𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽) + 𝛽𝑇𝑍−1𝛽 + 2𝑑0

2
) 

(8) 

More generally for 𝑁 ≥ 2, the full conditionals are given by [1] 

𝛽|𝑟𝑒𝑠𝑡 ∼ 𝑁(𝜇𝛽 , 𝛴−1𝜎2) 𝑧𝑜𝑑𝑑|𝑟𝑒𝑠𝑡 ∼ 𝐺𝐼𝐺 (
𝛽𝑇𝑍−𝑘

−1𝛽

𝜎2
, 2, 𝑐𝑘 −

1

2
) 𝑧𝑒𝑣𝑒𝑛|𝑟𝑒𝑠𝑡 ∼ 𝐼𝐺 (𝑐𝑘 +

1

2
,
𝛽𝑇𝑍−1𝛽

2𝜎2
+ 1) 𝜎2|𝑟𝑒𝑠𝑡

∼ 𝐼𝐺 (
𝑛 + 𝑝 + 2𝑐0

2
,
(𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽) + 𝛽𝑇𝑍−1𝛽 + 2𝑑0

2
) 

(9) 

where 𝜇𝛽 = 𝜉
2
−2𝛴−1𝑋𝑇𝑉−1(𝑦 − 𝜉

1
𝑣),𝑉 = 𝑑𝑖𝑎𝑔(𝑣1, … , 𝑣𝑛), 𝑍 = 𝑑𝑎𝑖𝑔(∏𝑁

𝑖=1 𝑧𝑘1, … , ∏𝑁
𝑖=1 𝑧𝑘𝑝), 𝑍−𝑘 =

𝑑𝑎𝑖𝑔(∏𝑁
𝑖=1,𝑖≠𝑘 𝑧𝑘1, … , ∏𝑁

𝑖=1,𝑖≠𝑘 𝑧𝑘𝑝) and 𝛴 = 𝜉2
−2𝑋𝑇𝑉−1𝑋 + 𝑍−1. Therefore, we have the normal distribution 

𝑁(𝜇𝛽 , 𝛴−1𝜎2). For updating the hyperparameters, again we follow [1] using  
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𝑄(𝜉, 𝜉𝑜𝑙𝑑) =     ∑

𝑁

𝑘=1

∑

𝑝

𝑖=1

(−1)𝑘+1  𝑐𝑘𝐸
𝑐𝑘

𝑜𝑙𝑑
 
[( 𝑧𝑘𝑖)|𝑦∗] + 𝑐𝑁( 𝜙) − ∑

𝑁

𝑘=1

( 𝛤(𝑐𝑘))

+ 𝐶 

(10) 

 

where 𝜉𝑜𝑙𝑑
= (𝑐1

𝑜𝑙𝑑 , … , 𝑐𝑁
𝑜𝑙𝑑)  and 𝐶 all the terms not containing 𝑐1, 𝑐2, … , 𝑐𝑁 . Then, we have 

𝛤′
(𝑐𝑘) = ∑

𝑝

𝑖=1

(−1)𝑘+1𝐸
𝑐𝑘

𝑜𝑙𝑑[( 𝑧𝑘𝑖)|𝑦∗] + 𝑐𝑁( 𝜙)𝐼(𝑘 = 𝑁) (11) 

We will set 𝑐0 = 𝑑0 = 10−5 in the prior of 𝜎2 for estimating the hyperparameters 𝑐𝑘  from the EM algorithm. The EM 
algorithm for finding the values of 𝑐𝑘  will be used every few iterations of the MCMC algorithm. We will implement the 
self-adaptive normal compound model Monte Carlo EM (MCEM) algorithm.  

3. Simulation Studies 

To demonstrate the advantages of the proposed model, we will use simulated data to analyze the predicative ability 
of our prior and compare it to other published models. Specifically, the comparison will be applied with the Beta Prime 
model (𝑁 = 2) proposed by [3], our prior 𝑁𝐶𝐺10 with (𝑁 = 10), the Bayesian Lasso, the Bayesian adaptive Lasso 
(aLasso) and the elastic net (Enet). The simulated data will be compared with the mean squared error (MSE), the false 
positive rate (FPR) and the false negative rate (FNR).  

Simulation 1 

In our first simulation, we will study the simulated data generated with a very sparse model by setting 𝛽 =
 (7, 0, 0, 0, 0, 0, 0, 0). From the results presented in Table 1 that averaged from 𝑛 = 100 repeated simulations with 
15000 iterations each, we can see that the results show that our prior produces better than other presented methods. 
Furthermore, we can see that the compound gamma prior gives the smallest MSE compared to all the other models 
presented. The hyperparameters are updated each 100 iterations using equation (11). Additionally, our model 
preforms very well in terms FPRs and FNRs which are necessary for selecting the best model for variable selection. 
From the trace plots and histograms in Figure 2, we notice how well our prior converges compared to the stationary 
distribution. 

Table 1. Results for Simulation 1. 

 MSE (sd)  FPR (sd)  FNR (sd)   

NCG2  0.0056 (0.0050) 0.0000 (0.0000)   0.0000 (0.0000)   

NCG10  0.0036 (0.0047)  0.0000 (0.0000)   0.0000 (0.0000)   

Lasso  0.0203 (0.0177) 0.0000 (0.1000)   0.0000 (0.2000)   

aLasso  0.0063 (0.0064)  0.0000 (0.0000)   0.0000 (0.4000)   

Enet  0.0261 (0.0243) 0.0000 (0.3000)   0.0000 (0.0000)   

 

Simulation 2 

To study our model farther and get a deeper view of its behavior with different types of data will a similar size of 
covariates as the simulation above but we will decrease the sparsity of the model by setting 𝛽 =  (4.5, 2, 0, 3, 0, 0, 0, 8) 
with 𝑛 = 100 repeated simulations with 10000 iterations each. The results are showing in Table 2. We see that the 
results farther prove what Figure 1 shows, namely, that as the sparsity increase the model performs better higher 
values of 𝑁 and conversely, models with smaller values of 𝑁 are better candidates for data with less sparsity. Similar 
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to simulation 1, to the trace plots and histograms in Figure 3 show that our mode converges better than the stationary 
distribution. Similarly, the hyperparameters are updated each 100 iterations. 

Table 2. Results for Simulation 2. 

 MSE (sd)  FPR (sd)  FNR (sd)   

NCG2  0.0206 (0.0122) 0.2100 (0.2638)  0.4100 (0.4312)   

NCG10  0.0304 (0.0134) 0.2300 (0.2723)  0.4600 (0.5037)   

Lasso  0.0662 (0.0156) 0.2900 (0.4793)  0.4900 (0.5126)   

aLasso  0.0401 (0.0160) 0.2100 (0.4320)  0.4300 (0.5252)   

Enet  0.0699 (0.0208) 0.2600 (0.5912)  0.4200 (0.5523)   

 

Figure 2. Trace plots (top) and histograms (bottom) for simulation 1. 
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Figure 3. Trace plots (top) and histograms (bottom) for simulation 2. 

 

4. Conclusion 

We have shown that our proposed method for count data using normal-compound gamma prior for the scale mixture 
in the framework of normal-scale mixture perform very well compared to other existing models such as the Beta 
Prime prior (NCG2) [3], The Bayesian lasso, the Bayesian adaptive lasso and the Bayesian elastic net. We aim to study 
this method further in the future with different types of data such as censored and quantile data. 
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