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A B S T R A C T 

      In this work we will attempt to define and investigate new classes of modules named ⨁-g-

supplemented and ⨁-g-radical supplemented as a proper generalization of class of g-lifting 

modules and identify several distinct characterizations of these modules. Additionally, we'll 

attempt to explain the concepts of projective g-covers and g-semiperfect modules. It is shown 

that the two buildings of g-semiperfect and ⨁-g-supplemented modules are the same for the 

class of projective modules. 
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1. Introduction 

       In this article, all rings are associative with unit, and all modules are unital right. To demonstrate that 𝐷 is a submodule 

and direct smmand of a module 𝑀, respectively, we use 𝑇 ↪ 𝑀 and (𝑇 is a d.s. of 𝑀 or, 𝑇 ↪⨁ 𝑀). 𝑅𝑎𝑑(𝑀) represents the 

radical of a module 𝑀. Mod-ℛ denotes the set of all right modules over a ring ℛ.  

      We will go through some of the fundamental notions we use often in our work. For 𝑀 ∈ Mod-ℛ, 𝑇 ↪ 𝑀 is named 

small in 𝑀, we write 𝑇 ↪𝑠 𝑀 if, 𝑇 ≠ 𝑀 and ∀ proper 𝐵 ↪ 𝑀, we have 𝑇 + 𝐵 ≠ 𝑀; and 𝑇 named 𝛿-small in 𝑀, we write 

𝑇 ↪𝛿𝑠 𝑀 if, ∀ 𝐵 ↪ 𝑀 with 𝑀 = 𝑇 + 𝐵 and 𝑀 𝐵⁄  singular, then 𝑀 = 𝐵, see [1]. For 𝑀 ∈ Mod-ℛ, we will insert      

𝛿(𝑀) = ∑{𝑇│𝑇 ↪𝛿𝑠 𝑀}. 𝑀(≠ 0) ∈ Mod-ℛ is named hollow if, ∀ proper 𝑇 ↪ 𝑀, then 𝑇 ↪𝑠 𝑀. If the sum of the proper 

submodules of 𝑀(≠ 0) ∈ Mod-ℛ is also proper in 𝑀, then 𝑀 ∈ Mod-ℛ is named local.     

     For 𝑇, 𝐻 ↪ 𝑀 ∈ Mod-ℛ. A submodule 𝐻 is named to be a supplement (𝛿-supplement) of 𝑇 in 𝑀, respectively, if 

 𝑇 + 𝐻 = 𝑀 and 𝑇 ∩ 𝐻 ↪𝑠 𝐻 (𝑇 ∩ 𝐻 ↪𝛿𝑠 𝐻). 𝑀 ∈ Mod-ℛ is named supplemented (𝛿-supplemented), respectively, if ∀ 

submodule of 𝑀 have a supplement (𝛿-supplement) in 𝑀, according to ([2] and [3], resp.). 𝐻 ↪ 𝑀 ∈ Mod-ℛ is named to 

be a generalized (supplement) 𝛿-supplement of 𝑇, respectively, if 𝑇 + 𝐻 = 𝑀 and (𝑇 ∩ 𝐻 ↪ 𝑅𝑎𝑑(𝐻)) 𝑇 ∩ 𝐻 ↪ 𝛿(𝐻). 

𝑀 ∈Mod-ℛ is named to be a (GS-module) 𝛿-GS-module according to ([4] and [5]), respectively, if ∀ submodule of       

𝑀 ∈ Mod-ℛ have a generalized (supplement) 𝛿-supplement in 𝑀.  

     However, most authors have referred to GS-modules as Rad-supplemented modules in a number of works, thus we will 

use this title in our study. (0 ≠) 𝑇 ↪ 𝑀 ∈ Mod-ℛ is named large in 𝑀, we write 𝑇 ↪𝑒 𝑀 if 𝑇 ∩ 𝐻 ≠ 0, ∀ (0 ≠)𝐻 ↪ 𝑀. If 

𝐻 = 𝑀, ∀ 𝐻 ↪𝑒 𝑀 with 𝑇 + 𝐻 = 𝑀, then 𝑇 is named a g-small submodule of 𝑀, we write 𝑇 ↪𝑔𝑠 𝑀 (in [6], it is named an 

e-small submodule of 𝑀 and denoted as 𝑇 ≪𝑒 𝑀). If 𝑀 = 𝑇 + 𝐾 = 𝑇 + 𝐻 ∈ Mod-ℛ with 𝐻 ↪𝑒 𝐾 implies that 𝐻 = 𝐾, or 
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equivalently, 𝑀 = 𝑇 + 𝐻 and 𝑇 ∩ 𝐻 ↪𝑔𝑠 𝐻, then recall [7] that 𝐻 is a g-supplement of 𝑇 in 𝑀. 𝑀 ∈ Mod-ℛ is named      

g-supplemented if, ∀ submodule of 𝑀 have a g-supplement in 𝑀. These notions were also discussed in [8]. According to 

Zhou and Zhang [6], the generalized radical of 𝑀 ∈ Mod-ℛ as follows:    

𝑅𝑎𝑑𝑔(𝑀) = ⋂{𝑇 ↪𝑒 𝑀| 𝑇 is maximal in 𝑀} = ∑{𝑇| 𝑇 ↪𝑔𝑠 𝑀}. 

      A submodule 𝐻 is named to be a g-radical supplement of 𝑈 in 𝑀 ∈ Mod-ℛ if, whenever 𝑈 + 𝐻 = 𝑀 and 𝑈 ∩ 𝐻 ↪
𝑅𝑎𝑑𝑔(𝐻). 𝑀 ∈Mod-ℛ is named generalized radical supplemented, we write g-radical supplemented if, ∀ submodule of 

𝑀 ∈ Mod-ℛ have a g-radical supplement in 𝑀, as shown in [9].           

     The concept of ⨁-supplemented modules was first suggested by Mohamed and Müller [10]. Harmanci, Keskin and 

Smith [11] carried done further research on ⨁-supplemented modules and arrived to some significant conclusions. 

However, 𝑀 ∈ Mod-ℛ is named a ⨁-supplemented module if, ∀ 𝐻 ↪ 𝑀 have a supplement, say 𝑈, such that 𝑈 ↪⨁ 𝑀. 

𝑀 ∈ Mod-ℛ is named ⨁-𝛿-supplemented if, ∀ 𝐻 ↪ 𝑀 have a 𝛿-supplement, say 𝑈, such that 𝑈 ↪⨁ 𝑀. see [12]. The 

authors recently expanded the class of ⨁-supplemented modules to Rad-⨁-supplemented in [13]. 𝑀 ∈ Mod-ℛ is named 

Rad-⨁-supplemented if, ∀ 𝑇 ↪ 𝑀, ∃ 𝐻 ↪⨁ 𝑀 such that 𝑀 = 𝑇 + 𝐻 and 𝑇 ∩ 𝐻 ↪ 𝑅𝑎𝑑(𝐻). If 𝑅𝑎𝑑(𝐻) is changed out   

for 𝛿(𝐻) in accordance with the prior notion of Rad-⨁-supplemented, then 𝑀 ∈ Mod-ℛ is referred to as generalized       

⨁-𝛿-supplemented module, (see [14]).     

      In our study, we generalized the idea of g-lifting modules in the same way that the idea of lifting has been generalized 

to several ideas, such as G-Rad-lifting modules, see [15], FI-J-supplemented and FI-⨁-J-supplemented modules, see [16]. 

The mentioned ideas provided as the motivation for the introduction of two structures, named, ⨁-g-supplemented module 

and ⨁-g-radical supplemented module. 𝑀 ∈ Mod-ℛ is named to be ⨁-g-supplemented (⨁-g-radical supplemented), 

respectively, if ∀ 𝐻 ↪ 𝑀 have a g-supplement (g-radical supplement), say 𝑈, such that 𝑈 ↪⨁ 𝑀.   

     We define the concept of ⨁-g-supplemented modules, in section 2. This section displays a several different charac-

teristics of this class of modules as well as how it relates to many other types of modules. We present some interesting 

counterexamples to differentiate between various other classes of modules and the ⨁-g-supplemented characteristic of 

modules. Section 3 discusses direct summands and decompositions of the category of ⨁-g-supplemented modules. It is 

illustrated that whenever a ⨁-g-supplemented module has the (𝐷3) property, its direct summands inherit it. Section 4 

defines the notions of projective g-covers and g-semiperfect modules. Section 5 is dedicated to the study and investigation 

of some of the characteristics and relations of ⨁-g-radical supplemented modules. The study and examination of some of 

the features and connections of ⨁-g-radical supplemented modules are the focus of Section 5. The idea of  ⨁-g-radical 

supplemented modules was developed as a result of numerous ⨁-g-supplemented module results. Summands and 

decompositions of modules with ⨁-g-radical supplements are covered in Section 6. You can find the ideas that are not 

covered here in [17, 2]. 

 

Lemma 1.1. ([6]) Let 𝑀 ∈ Mod-ℛ, we deduce:  

(i) For 𝑈 ↪ 𝑀, the next are identical.   

       (a) 𝑈 ↪𝑔𝑠 𝑀. 

       (b) If  𝐻 + 𝑈 = 𝑀, then 𝐻 ↪⨁ 𝑀 with a module 𝑀 𝐻⁄  semisimple.  

(ii) Assume 𝑈, 𝑇 and 𝐻 are submodules of 𝑀 with 𝑇 ↪ 𝑈.   

        (a) If 𝑈 ↪𝑔𝑠 𝑀, then 𝑇 ↪𝑔𝑠 𝑀 and 𝑈 𝑇⁄ ↪𝑔𝑠 𝑀 𝑇⁄ .  

        (b) 𝑈 + 𝐻 ↪𝑔𝑠 𝑀 if and only if 𝑈 ↪𝑔𝑠 𝑀 and 𝐻 ↪𝑔𝑠 𝑀.  

(iii) If 𝐻 ↪𝑔𝑠 𝑀 and 𝑓: 𝑀 ⟶ 𝑀′ is any homomorphism, then 𝑓(𝐻) ↪𝑔𝑠 𝑀′. In particuler, if 𝐻 ↪𝑔𝑠 𝑀 ↪ 𝑀′, then  

𝐻 ↪𝑔𝑠 𝑀′.    

(iv) Assume 𝐻1 ↪ 𝑀1 ↪ 𝑀, 𝐻2 ↪ 𝑀2 ↪ 𝑀 and 𝑀 = 𝑀1⨁𝑀2, then 𝐻1⨁𝐻2 ↪𝑔𝑠 𝑀1⨁𝑀2 if and only if  𝐻1 ↪𝑔𝑠 𝑀1 and  

𝐻2 ↪𝑔𝑠 𝑀2.  
 

Lemma 1.2. ([18]) 𝑅𝑎𝑑𝑔(𝑀) =⊕𝑡∈𝜏 𝑅𝑎𝑑𝑔(𝐻𝑡), for 𝑀 =⊕𝑡∈𝜏 𝐻𝑡 ∈ Mod-ℛ.    

2. ⨁-g-supplemented modules   

We describe the notion of ⨁-g-supplemented modules in this section and look at some of its unique features. 

 

Definition 2.1. 𝑀 ∈ Mod-ℛ is named to be ⨁-g-supplemented if, ∀ 𝐻 ↪ 𝑀 have a g-supplement, say 𝑈, such that 

𝑈 ↪⨁ 𝑀. If a ring ℛ is ⨁-g-supplemented as ℛ-module, it is referred to as a ⨁-g-supplemented ring. To represent 

the category of all ⨁-g-supplemented modules, we shall use the symbol 𝐷𝐺𝑆. 
       

     Evidently, all modules that are ⨁-supplemented or ⨁-𝛿-supplemented modules, including ⨁-g-supplemented 

which implies g-supplemented modules. 
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      If there exists submodules 𝑇 and 𝐵 of 𝑀 such that 𝑀 = 𝑇⨁𝐵 with 𝑇 ↪ 𝑈 and 𝑈 ∩ 𝐵 ↪𝑔𝑠 𝑀 (so in 𝐵) ∀ 𝑈 ↪ 𝑀, 

then 𝑀 ∈Mod-ℛ is named to be e-lifting (in our work, g-lifting) [8]. 𝑀 ∈ Mod-ℛ is named to be generalized hollow if, 

∀ proper 𝑇 ↪ 𝑀, then 𝑇 ↪𝑔𝑠 𝑀 [7]. The category of hollow modules, as you can see, is generalized hollow in general. 

If 𝑅𝑎𝑑𝑔(𝑀) is maximal and g-small in 𝑀, then 𝑀 ∈ Mod-ℛ is referred to as g-local (in [18], e-local). Moreover, as 

seen in the next example, it indicates no link between the classes (g-local and generalized hollow; local and g-local) 

modules. 
 

Example 2.2. We have ℤ-module ℤ24 is g-local, because that 𝑅𝑎𝑑𝑔(𝑀) = 2ℤ24 ↪𝑔𝑠 ℤ24 and maximal in ℤ24. As 3ℤ24 

is not g-small in ℤ24, then ℤ24 does not generalized hollow, also it is easily to see that ℤ24 not local ℤ-module. Since 

all of its submodules are g-small, each semisimple 𝑀 ∈ Mod-ℛ is generalized hollow, however, it is not g-local; in 

fact, 𝑅𝑎𝑑𝑔(𝑀) = 𝑀. The class of simple modules is local but not g-local. 
 

     However, we will show that the g-local module is an element of the 𝐷𝐺𝑆. The following lemma, which can be 

found in [18, Proposition 2.14], must be used first.  
 

Lemma 2.3. Assume 𝑀 ∈ Mod-ℛ and 𝑈 ↪ 𝑀. If 𝑀 is g-local, so either 𝑈 ↪𝑔𝑠 𝑀 or there is semisimple 𝑇 ↪ 𝑀 such 

that 𝑀 = 𝑈⨁𝑇.  
 

      The next outcome is implied from Lemma 2.3. 
 

Proposition 2.4. 𝑀 ∈ 𝐷𝐺𝑆, whenever 𝑀 is g-local.     
                                                        

     Each semisimple module is belong to 𝐷𝐺𝑆 but not g-local. According to this illustration, the inverse of the 

previously stated statement was never true, in general.   
 

Remark 2.5.  Any generalized hollow module is g-lifting, and hence ⨁-g-supplemented. 
 

     In general, a ⨁-g-supplemented module does not have to be generalized hollow; for example, in Example 2.2, the 

ℤ-module ℤ24 is not generalized hollow, while it is ⨁-g-supplemented, in fact ℤ24 as ℤ-module g-local. For another 

illustration of class of ⨁-g-supplemented modules that is not g-lifting, see Example 2.18.     
 

Lemma 2.6. For 𝑀(≠ 0) ∈ 𝐷𝐺𝑆, the generalized radical of 𝑀 is nonzero.   

Proof. If 𝑅𝑎𝑑𝑔(𝑀) = 0. Let 𝑇 ↪ 𝑀, then ∃ 𝑈 ↪⨁ 𝑀 such that 𝑀 = 𝑇 + 𝑈 and 𝑇 ∩ 𝑈 ↪𝑔𝑠 𝑈. So 𝑇 ∩ 𝑈 ↪ 𝑅𝑎𝑑𝑔(𝑀) = 0, 

hence 𝑇 ↪⨁ 𝑀, and 𝑀 is semisimple. So 𝑅𝑎𝑑𝑔(𝑀) = 𝑀 = 0, a contradiction.                                                                              
 

Proposition 2.7. Let 𝑀(≠ 0) ∈Mod-ℛ be indecomposable with 𝑅𝑎𝑑𝑔(𝑀) ≠ 𝑀. Then 𝑀 is local and g-local, whenever 

𝑀 ∈ 𝐷𝐺𝑆.      

Proof. Because that 𝑅𝑎𝑑𝑔(𝑀) ≠ 𝑀 and according to [7, Theorem 4], the observation that an ⨁-g-supplemented 

indecomposable module imply generalized hollow proves that 𝑀 is local. According to Lemma 2.6, we deduce 

𝑅𝑎𝑑𝑔(𝑀) ≠ 0 that implies 𝑀 is not simple, and is therefore a g-local module according to [18, Proposition 2.7].       
  

Lemma 2.8. Assume 𝐴, 𝐵 ↪ 𝑀 ∈ Mod-ℛ such that 𝑇 is a g-supplement of 𝐴 + 𝐵 in 𝑀 and 𝐺 a g-supplement of     

  𝐴 ∩ (𝑇 + 𝐵) in 𝐴, then 𝑇 + 𝐺 is a g-supplement of 𝐵 in 𝑀. 

Proof. Look at [8, Lemma 6].    
 

Theorem 2.9. A finite direct sums of class 𝐷𝐺𝑆 is closed. 

Proof. Suppose 𝑀𝑡 ∈ 𝐷𝐺𝑆 for 1 ≤ 𝑡 ≤ 𝑛 where 𝑛 ∈ ℤ+. To show that 𝑀 =⊕𝑡∈𝜏 𝑀𝑡 ∈ 𝐷𝐺𝑆. Consider the situation 

where the index set 𝜏 = {1,2}. If 𝐿 ↪ 𝑀, then 𝑀 = 𝑀1 + 𝑀2 + 𝐿, trivially has 0 as a g-supplement inside 𝑀. Suppose 

𝐻 is a g-supplement of 𝑀2 ∩ (𝑀1 + 𝐿) inside 𝑀2 such that 𝐻 ↪⨁ 𝑀2, Lemma 2.8 implies 𝐻 is a g-supplement of 

 𝑀1 + 𝐿 inside 𝑀. Let 𝐺 be a g-supplement of 𝑀1 ∩ (𝐿 + 𝐻) inside 𝑀1 such that 𝐺 ↪⨁ 𝑀1. Again, by Lemma 2.8, 𝐻 +

𝐺 is a g-supplement of 𝐿 inside 𝑀. Also, we deduce 𝐻 + 𝐺 = 𝐻⨁𝐺 ↪⨁ 𝑀1⨁𝑀2 = 𝑀, and then 𝑀 = 𝑀1⨁𝑀2 ∈ 𝐷𝐺𝑆.   

                                                                                                                     
 

Corollary 2.10. The finite direct sums of g-lifting, generalized hollow or g-local modules belong to 𝐷𝐺𝑆. 
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       In Proposition 2.13 we shall examine a sufficient case for a ⨁-g-supplemented module to be inherited by its 

submodules. The previous is established in [19, Lemma 2.3]. 
 

Lemma 2.11. Assume 𝑀 ∈ Mod-ℛ and 𝑇 ↪ 𝑀 with 𝑀 𝑇⁄  projective. If 𝐵 ↪⨁ 𝑀 = 𝐵 + 𝑇, then 𝐵 ∩ 𝑇 ↪⨁ 𝑀.   
 

Lemma 2.12. Let 𝑀 ∈ Mod-ℛ, 𝐿 ↪ 𝑉 ↪ 𝑀 and 𝑈 ↪ 𝑀. If 𝑉 is a g-supplement of 𝑈. Then,   

(i) 𝐿 ↪𝑔𝑠 𝑉 if and only if  𝐿 ↪𝑔𝑠 𝑀. 

(ii) 𝑅𝑎𝑑𝑔(𝑉) = 𝑉 ∩ 𝑅𝑎𝑑𝑔(𝑀).  

Proof. (i)  ⟹) From Lemma 1.1(iii).  

⟸) Let 𝑇 ↪𝑒 𝑉 such that 𝐿 + 𝑇 = 𝑉. As 𝑀 = 𝑈 + 𝑉, then 𝑀 = 𝑈 + 𝐿 + 𝑇. Since 𝐿 ↪𝑔𝑠 𝑀, 𝑀 = 𝑈 + 𝑇 because 

 𝑈 + 𝑇 ↪𝑒 𝑀. Thus 𝑇 = 𝑉, since 𝑉 is a g-supplement of 𝑈 in 𝑀. Hence 𝐿 ↪𝑔𝑠 𝑉.   

(ii) In the fact 𝑅𝑎𝑑𝑔(𝑉) ⊆ 𝑉 ∩ 𝑅𝑎𝑑𝑔(𝑀) always holds. Suppose 𝑚 ∈ 𝑉 ∩ 𝑅𝑎𝑑𝑔(𝑀) then 𝑚 ∈ 𝑅𝑎𝑑𝑔(𝑀), so by [7, 

Lemma 5] 𝑚𝑅 ↪𝑔𝑠 𝑀. As 𝑚𝑅 ↪ 𝑉 and 𝑉 is a g-supplement in 𝑀, so (i) implies 𝑚𝑅 ↪𝑔𝑠 𝑉 and hence 𝑚 ∈ 𝑅𝑎𝑑𝑔(𝑉). 

Therefore 𝑉 ∩ 𝑅𝑎𝑑𝑔(𝑀) ⊆ 𝑅𝑎𝑑𝑔(𝑉) and the necessary equality is achieved.           
 

      In instance, if 𝑉 is a d.s. of a module 𝑀 in the prior lemma, then (i) and (ii) are holds.                
 

Proposition 2.13. Let 𝑀 ∈ 𝐷𝐺𝑆 and 𝑇 ↪ 𝑀. If 𝑀 𝑇⁄  is projective, then 𝑇 ∈ 𝐷𝐺𝑆.   

Proof. Suppose that 𝐾 ↪ 𝑇. Then ∃ 𝐿 ↪⨁ 𝑀 such that 𝑀 = 𝐾 + 𝐿 and 𝐾 ∩ 𝐿 ↪𝑔𝑠 𝐿, as 𝑀 ∈ 𝐷𝐺𝑆. It follows that 𝑀 =

𝑇 + 𝐿 and so 𝑇 ∩ 𝐿 ↪⨁ 𝑀, also for 𝑇 from Lemma 2.11. Moreover, 𝑇 = 𝐾 + (𝑇 ∩ 𝐿) and 𝐾 ∩ (𝑇 ∩ 𝐿) = 𝐾 ∩ 𝐿 ↪𝑔𝑠 𝑀, 

Lemma 2.12(i) implies that 𝐾 ∩ (𝑇 ∩ 𝐿) ↪𝑔𝑠 𝑇 ∩ 𝐿. Hence 𝑇 ∈ 𝐷𝐺𝑆.                                                                                  
 

      For 𝑀 ∈ Mod-ℛ, 𝑇 ↪ 𝑀 is named fully invariant if 𝑓(𝑇) ⊆ 𝑇 for each 𝑓 ∈ 𝐸𝑛𝑑𝑅(𝑀). 𝑀 is named duo (weak duo), 

respectively, if all its submodules (d.s(s)) are fully invariant [20]. The class of duo modules are weak duo. Also 

 𝐴 ↪ 𝑀 ∈ Mod-ℛ is named distributive if, 𝐴 ∩ (𝐵 + 𝐶) = (𝐴 ∩ 𝐵) + (𝐴 ∩ 𝐶) or 𝐴 + (𝐵 ∩ 𝐶) = (𝐴 + 𝐵) ∩ (𝐴 + 𝐶) for 

each 𝐵, 𝐶 ↪ 𝑀. 𝑀 ∈ Mod-ℛ is named distributive if all its submodules are distributive [21].       
 

     Here, we will show that in some cases, the class 𝐷𝐺𝑆 is closed under the quotient.  
 

Theorem 2.14. Let 𝑀 ∈ 𝐷𝐺𝑆, and 𝑇 ↪ 𝑀. Then,     

(i) If for each 𝐵 ↪⨁ 𝑀, we have (𝑇 + 𝐵) 𝑇⁄ ↪⨁ 𝑀 𝑇⁄ , then 𝑀 𝑇⁄ ∈ 𝐷𝐺𝑆.  

(ii) If for each decomposition 𝑀 = 𝑀1⨁𝑀2,  𝑇 = (𝑇 ∩ 𝑀1)⨁(𝑇 ∩ 𝑀2), then 𝑀 𝑇⁄ ∈ 𝐷𝐺𝑆.  

(iii) 𝑀 𝑇⁄ ∈ 𝐷𝐺𝑆, if whenever 𝑇 is fully invariant. In specifically, each duo module in 𝐷𝐺𝑆 has also quotient module 

in 𝐷𝐺𝑆.   

(iv) 𝑀 𝑇⁄ ∈ 𝐷𝐺𝑆, if whenever 𝑇 is distributive. In specifically, each distributive module in 𝐷𝐺𝑆 has also quotient 

module in 𝐷𝐺𝑆.    

Proof. (i) Consider 𝑇 ↪ 𝑋 ↪ 𝑀. As 𝑀 ∈ 𝐷𝐺𝑆, it follows that 𝑀 = 𝑋 + 𝐵 and 𝑋 ∩ 𝐵 ↪𝑔𝑠 𝐵 for some 𝐵 ↪⨁ 𝑀. Thus, 

𝑀 𝑇⁄ = 𝑋 𝑇⁄ + (𝑇 + 𝐵) 𝑇⁄ . Let 𝜋 ∶ 𝐵 ⟶ (𝑇 + 𝐵) 𝑇⁄  be a natural map. As 𝑋 ∩ 𝐵 ↪𝑔𝑠 𝐵, Lemma 1.1(iii) implies 

𝜋(𝑋 ∩ 𝐵) = (𝑇 + (𝑋 ∩ 𝐵)) 𝑇⁄ = (𝑋 𝑇⁄ ) ∩ (𝑇 + 𝐵) 𝑇⁄ ↪𝑔𝑠 (𝑇 + 𝐵) 𝑇⁄ . By hypothesis, (𝑇 + 𝐵) 𝑇⁄ ↪⨁ 𝑀 𝑇⁄  and 

so 𝑀 𝑇⁄ ∈ 𝐷𝐺𝑆.   

(ii) Let 𝑇 ↪ 𝑀 and let 𝐵 ↪⨁ 𝑀. Therefore, 𝑀 = 𝐵⨁�̀� for some �̀� ↪ 𝑀. To prove that (𝑇 + 𝐿) 𝑇⁄ ↪⨁ 𝑀 𝑇⁄ . By 

assumption, 𝑇 = (𝑇 ∩ 𝐵)⨁(𝑇 ∩ �̀�). Thus (𝐵 + 𝑇) ∩ (�̀� + 𝑇) ↪ (𝐵 + 𝑇 + �̀�) ∩ 𝑇 + (𝐵 + 𝑇 + 𝑇) ∩ �̀�. So (𝐵 + 𝑇) ∩

(�̀� + 𝑇) ↪ 𝑇 + (𝐵 + 𝑇 ∩ 𝐵 + 𝑇 ∩ �̀�) ∩ �̀� this implies (𝐵 + 𝑇) ∩ (�̀� + 𝑇) ↪ 𝑇, thus 𝑀 𝑇⁄ = (𝐵 + 𝑇) 𝑇⁄ ⨁ (�̀� + 𝑇) 𝑇⁄ . 

This means that (𝐵 + 𝑇) 𝑇⁄ ↪⨁ 𝑀 𝑇⁄ . By (i), the result has been as follows. 

The implications (iii) and (iv) followed directly from (ii).    
 

Proposition 2.15. For an arbitrary nonsingular 𝑀 ∈ Mod-ℛ, 𝑀 is ⨁-𝛿-supplemented if and only if 𝑀 ∈ 𝐷𝐺𝑆.  

Proof. The requirement is evident. Assume that 𝑀 ∈ 𝐷𝐺𝑆. If 𝑇 ↪ 𝑀, then ∃ 𝑉 ↪⨁ 𝑀 such that 𝑀 = 𝑇 + 𝑉 and 

 𝑇 ∩ 𝑉 ↪𝑔𝑠 𝑉. Suppose 𝑉 = (𝑇 ∩ 𝑉) + 𝐾 whenever 𝑉 𝐾⁄  is singular. As 𝑀 is nonsingular, then 𝑉 is also nonsingular, 

and so 𝐾 ↪𝑒 𝑉 that implies 𝐾 = 𝑉. Thus 𝑇 ∩ 𝑉 ↪𝛿𝑠 𝑉 and hence 𝑀 is ⨁-𝛿-supplemented.    
            

      Moreover,  𝑀 ∈ Mod-ℛ is named to be refinable if for each 𝑈,𝑉 ↪ 𝑀 with 𝑀 = 𝑈 + 𝑉,  ∃ �̀� ↪⨁ 𝑀 such that  

 �̀� ↪ 𝑈 and 𝑀 = �̀� + 𝑉.     
 

Proposition 2.16. If 𝑀 ∈Mod-ℛ is refinable, then 𝑀 ∈ 𝐷𝐺𝑆 if and only if it is g-supplemented.      

Proof. The requirement is evident. Suppose 𝑀 ∈ Mod-ℛ is g-supplemented, and 𝑇 ↪ 𝑀. Thus 𝑀 = 𝑇 + 𝑉 and 
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 𝑇 ∩ 𝑉 ↪𝑔𝑠 𝑉 for some 𝑉 ↪ 𝑀. Since 𝑀 is refinable, 𝑀 = 𝑇 + �̀� for a �̀� ↪⨁ 𝑀 with �̀� ↪ 𝑉. Evidently, 𝑇 ∩ �̀� ↪𝑔𝑠 𝑀, 

Lemma 2.12(i) implies that 𝑇 ∩ �̀� ↪𝑔𝑠 �̀�. Hence 𝑇 has a g-supplement �̀� ↪⨁ 𝑀. Therefore 𝑀 ∈ 𝐷𝐺𝑆.    
                                                                                                                                                                                

      Each g-lifting module, by definition, belongs to 𝐷𝐺𝑆. The following example demonstrates the existence of               

a ⨁-g-supplemented module that does not seem to be g-lifting.        
 

Example 2.17. According to [8], assume that ℛ = ℤ8 therefore 2ℛℛ 4ℛℛ⁄  and ℛℛ  are both g-lifting, while 

(2ℛℛ 4ℛℛ⁄ )⨁ℛℛ does not be g-lifting. It follows that (2ℛℛ 4ℛℛ⁄ )⨁ℛℛ  is a ⨁-g-supplemented module, from 

Corollary 2.10.  
   

      If ∀ 𝑈, 𝑉 ↪ 𝑀 ∈ Mod-ℛ with 𝑀 = 𝑈 + 𝑉, ∃ an 𝑓 ∈ 𝐸𝑛𝑑𝑅(𝑀) such that 𝐼𝑚𝑓 ↪ 𝑈 and  𝐼𝑚(1 − 𝑓) ↪ 𝑉, then 𝑀 is 

named 𝜋-projective. If ∀ 𝑈, 𝑉 ↪⨁ 𝑀 ∈ Mod-ℛ, 𝑈 ∩ 𝑉 ↪⨁ 𝑀 then 𝑀 named a module with SIP.     
      

    The theorem below shows that the two categories g-lifting modules and ⨁-g-supplemented modules coincide in 

some cases. 
 

Theorem 2.18. Assume 𝑀 ∈ 𝐷𝐺𝑆 and any of the next claims must be satisfied: 

(i) 𝑀 is duo. 

(ii) 𝑀 is distributive. 

(iii) 𝑀 is 𝜋-projective. 

(iv) 𝑀 is refinable and have the SIP. 

Then 𝑀 ∈ Mod-ℛ is g-lifting.   

Proof. (i) Let 𝑇 ↪ 𝑀. As 𝑀 ∈ 𝐷𝐺𝑆, then ∃ 𝐵 ↪⨁ 𝑀 such that 𝑀 = 𝑇 + 𝐵 and 𝑇 ∩ 𝐵 ↪𝑔𝑠 𝐵. Then ∃ 𝐷 ↪ 𝑀 with 

 𝑀 = 𝐵⨁𝐷. Since 𝑇 is fully invariant, 𝑇 = (𝑇 ∩ 𝐵)⨁(𝑇 ∩ 𝐷), and hence 𝑀 = (𝑇 ∩ 𝐷)⨁𝐵, where 𝑇 ∩ 𝐷 ↪ 𝑋 and 𝑇 ∩

𝐵 ↪𝑔𝑠 𝐵.      

(ii) Comparable to proof (i).   

(iii) Let 𝑇 ↪ 𝑀, then ∃ 𝐵 ↪⨁ 𝑀 such that 𝑀 = 𝑇 + 𝐵 and 𝑇 ∩ 𝐵 ↪𝑔𝑠 𝐵, since 𝑀 ∈ 𝐷𝐺𝑆. From 𝜋-projectivity for 𝑀,    

∃ 𝐾 ↪ 𝑇 with 𝑀 = 𝐾⨁𝐿, see [2, 41.14]. Hence 𝑀 is g-lifting.    

(iv) Since 𝑀 ∈ 𝐷𝐺𝑆 and 𝑇 ↪ 𝑀, then ∃ 𝐵 ↪⨁ 𝑀 such that 𝑀 = 𝑇 + 𝐵 and 𝑇 ∩ 𝐵 ↪𝑔𝑠 𝐵. Since 𝑀 is refinable,∃ 𝐾 ↪⨁ 𝑀  

with 𝐾 ↪ 𝑇 such that 𝑀 = 𝐾 + 𝐵. So 𝐵 ∩ 𝐾 ↪⨁ 𝑀, as 𝑀 have the SIP. Then ∃ 𝑈 ↪ 𝑀 such that 𝑀 = (𝐵 ∩ 𝐾)⨁𝑈. 

Thus, 𝐵 = (𝐵 ∩ 𝐾)⨁(𝐵 ∩ 𝑈), and so 𝑀 = 𝐾 + 𝐵 = 𝐾⨁(𝐵 ∩ 𝑈). Evidently, 𝑇 ∩ (𝐵 ∩ 𝑈) ↪𝑔𝑠 𝑀.                                                                                                                                                                                
 

Theorem 2.19. For 𝑀 ∈ Mod-ℛ, consider the following:   

(i) 𝑀 ∈ 𝐷𝐺𝑆.  

(ii) 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄  is semisimple.   

Then (𝒊) ⟹ (𝒊𝒊), whenever 𝑀 is distributive, and (𝑖𝑖) ⟹ (𝑖) whenever 𝑀 is refinable with 𝑅𝑎𝑑𝑔(𝑀) ↪𝑔𝑠 𝑀.   

Proof. (𝑖) ⟹ (𝑖𝑖) Let 𝑇 ↪ 𝑀, then ∃ 𝐵 ↪⨁ 𝑀 such that 𝑀 = 𝑇 + 𝐵 and 𝑇 ∩ 𝐵 ↪𝑔𝑠 𝐵, and so 𝑇 ∩ 𝐵 ↪𝑔𝑠 𝑀. Since 𝑀 ∈ 

Mod-ℛ is distributive and 𝑇 ∩ 𝐵 ↪ 𝑅𝑎𝑑𝑔(𝑀), then we deduce 𝑅𝑎𝑑𝑔(𝑀) = (𝑇 ∩ 𝐵) + 𝑅𝑎𝑑𝑔(𝑀) = (𝑇 + 𝑅𝑎𝑑𝑔(𝑀)) ∩

(𝐵 + 𝑅𝑎𝑑𝑔(𝑀)). Hence 
𝑀

𝑅𝑎𝑑𝑔(𝑀)
=

𝑇+𝑅𝑎𝑑𝑔(𝑀)

𝑅𝑎𝑑𝑔(𝑀)
⨁

𝐵+𝑅𝑎𝑑𝑔(𝑀)

𝑅𝑎𝑑𝑔(𝑀)
, as required.  

(𝒊𝒊) ⟹ (𝒊) Assume that 𝑇 ↪ 𝑀. From (𝑖𝑖), ∃ 𝐵 ↪ 𝑀 with 
𝑀

𝑅𝑎𝑑𝑔(𝑀)
=

𝑇+𝑅𝑎𝑑𝑔(𝑀)

𝑅𝑎𝑑𝑔(𝑀)
⨁

𝐵

𝑅𝑎𝑑𝑔(𝑀)
. Therefore 𝑀 = 𝑇 + 𝐵 and 

𝑅𝑎𝑑𝑔(𝑀) = (𝑇 + 𝑅𝑎𝑑𝑔(𝑀)) ∩ 𝐵 = (𝑇 ∩ 𝐵) + 𝑅𝑎𝑑𝑔(𝑀), it follows that 𝑇 ∩ 𝐵 ↪ 𝑅𝑎𝑑𝑔(𝑀) implies 𝑇 ∩ 𝐵 ↪𝑔𝑠 𝑀. 

Since 𝑀 = 𝑇 + 𝐵 ∈ Mod-ℛ is refinable, then ∃ 𝑈 ↪⨁ 𝑀 with 𝑀 = 𝑇 + 𝑈 where 𝑈 ↪ 𝐵. From Lemma 2.12(i), 

 𝑇 ∩ 𝑈 ↪𝑔𝑠 𝑈, and this end the proof.                                                                                              

3.  Main results   

      This part examines the cases under which direct summands of ⨁-g-supplemented modules can be ⨁-g-

supplemented.  
 

    Let 𝑛 ∈ ℤ+ and 𝜏 = {1,2, … , 𝑛}. If all of the modules in the collection {𝑀𝑖| 𝑖 ∈ 𝜏} are 𝑀𝑗-projective for all (𝑖 ≠ 𝑗) ∈ 𝜏, 

then the collection is referred to as relatively projective. It is unknown wether direct summands inherit the 

property ⨁-g-supplemented.  
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Theorem 3.1. Let {𝑀𝑡| 𝑡 ∈ {1,2, … , 𝑛}} be a family of relatively projective modules. Then, for each 𝑡 ∈ {1,2, … , 𝑛}, 

𝑀𝑡 ∈ 𝐷𝐺𝑆 if and only if 𝑀 =⊕𝑡=1
𝑛 𝑀𝑡 ∈ 𝐷𝐺𝑆. 

Proof. Assume 𝑀 =⊕𝑡=1
𝑛 𝑀𝑡 ∈ 𝐷𝐺𝑆. We will prove 𝑀1 ∈ 𝐷𝐺𝑆. If 𝑇 ↪ 𝑀1, then ∃ 𝐵 ↪⨁ 𝑀 such that 𝑀 = 𝑇 + 𝐵 and 

𝑇 ∩ 𝐵 ↪𝑔𝑠 𝐵. We have 𝑀 = 𝑇 + 𝐵 = 𝑀1 + 𝐵, then 𝑀 = 𝑀1⨁𝐵1 for some 𝐵1 ↪ 𝐵, see [10, Lemma 4.47]. Therefore, 

𝐵 = 𝐵1⨁(𝑀1 ∩ 𝐵). It is easily to see that 𝑀1 = 𝑇 + (𝑀1 ∩ 𝐵) and 𝑀1 ∩ 𝐵 ↪⨁ 𝑀1. Because 𝑇 ∩ (𝑀1 ∩ 𝐵) = 𝑇 ∩

𝐵 ↪𝑔𝑠 𝐵 and 𝑀1 ∩ 𝐵 ↪⨁ 𝐵 implies 𝑇 ∩ (𝑀1 ∩ 𝐵) ↪𝑔𝑠 𝑀1 ∩ 𝐵, from Lemma 2.12(i). Hence 𝑀1 is ⨁-g-supplemented. 

In Theorem 2.9, the reverse is demonstrated.                                                                                         
                                                                                               

      For 𝑀 ∈ Mod-ℛ, the next requirement will be considered:    
 

 (𝐷3) If 𝐴, 𝐵 ↪⨁ 𝑀 = 𝐴 + 𝐵, then 𝐴 ∩ 𝐵 ↪⨁ 𝑀. 
 

Proposition 3.2. If 𝑀 ∈ 𝐷𝐺𝑆 has (𝐷3) and 𝑇 ↪⨁ 𝑀, then 𝑇 ∈ 𝐷𝐺𝑆.    

Proof. Assume that 𝑇 ↪⨁ 𝑀 and 𝑈 ↪ 𝑇. Since 𝑀 ∈ 𝐷𝐺𝑆, 𝑀 = 𝑈 + 𝐵 and 𝑈 ∩ 𝐵 ↪𝑔𝑠 𝐵 for some 𝐵 ↪⨁ 𝑀. It follows 

that 𝑇 = 𝑈 + (𝑇 ∩ 𝐵). Since 𝐵, 𝑇 ↪⨁ 𝑀 with 𝑀 = 𝑇 + 𝐵 implies that 𝑇 ∩ 𝐵 ↪⨁ 𝑀, as 𝑀 has (𝐷3). Also 𝑈 ∩ (𝑇 ∩ 𝐵) =

𝑈 ∩ 𝐵 ↪𝑔𝑠 𝑇 ∩ 𝐵, from Lemma 2.12(i). Therefore 𝑇 ∈ 𝐷𝐺𝑆.                                                                                                                                                                                             
 

Corollary 3.3. Let 𝑀 ∈ Mod-ℛ has the SIP. Then, for each 𝑇 ↪⨁ 𝑀, 𝑇 ∈ 𝐷𝐺𝑆 if and only if 𝑀 ∈ 𝐷𝐺𝑆. 
    

      Let 𝑀 ∈ Mod-ℛ and 𝑇 ↪ 𝑀. 𝑇 is referred to as closed if it has no proper essential extensions inside 𝑀. However, 

𝑀 is named to be extending if, each closed 𝑈 ↪ 𝑀, we have 𝑈 ↪⨁ 𝑀. Recall from [22] that if, all partial 

endomorphisms of 𝑀 have closed kernels, then    𝑀 ∈ Mod-ℛ is named polyform.   

 

Corollary 3.4. Let 𝑀 ∈ Mod-ℛ be extending and polyform. Then, for each 𝑇 ↪⨁ 𝑀, 𝑇 ∈ 𝐷𝐺𝑆 if and only if 𝑀 ∈ 𝐷𝐺𝑆.  

Proof. Evident by [23, Lemma 11] and Corollary 3.3.    
         

Corollary 3.5. If 𝑀 ∈ Mod-ℛ is quasi-projective, then  

(i) 𝑀 ∈ 𝐷𝐺S if and only if if 𝑇 ∈ 𝐷𝐺𝑆, for each 𝑇 ↪⨁ 𝑀.   

(ii) 𝑀 is ⨁-𝛿-supplemented if and only if 𝑇 is ⨁-𝛿-supplemented, for each 𝑇 ↪⨁ 𝑀.  

Proof. It follows 𝑀 has (𝐷3) property, see [10, Lemma 4.6 and Proposition 4.38]. Therefore, Proposition 3.2 and [12, 

Theorem 2.5] directly follow (i) and (ii), respectively.    
            

Corollary 3.6. Let 𝑀 ∈ Mod-ℛ be projective. The next assertions are then identical. 

(i) 𝑀 ∈ 𝐷𝐺𝑆. 

(ii) 𝑀 is ⨁-𝛿-supplemented.   

(iii) 𝑇 ∈ 𝐷𝐺𝑆, for each 𝑇 ↪⨁ 𝑀.  

(iv) 𝑇 is ⨁-𝛿-supplemented, for each 𝑇 ↪⨁ 𝑀.  

Proof. Corollary 3.5 deduce that (i) ⟺ (iii) and (𝑖𝑖) ⟺ (𝑖𝑣). According to [6], the two subclasses 𝛿-small and g-small 

submodules are identical in terms of projectivity for 𝑀, which yields (𝑖) ⟺ (𝑖𝑖).            
 

Proposition 3.7. Let 𝑀 ∈ 𝐷𝐺𝑆 whose any g-supplement is a d.s. in 𝑀. Then 𝑇 ∈ 𝐷𝐺𝑆, for each 𝑇 ↪⨁ 𝑀  

Proof. Let 𝑇 ↪⨁ 𝑀, so ∃ 𝐾 ↪ 𝑀 such that 𝑀 = 𝑇⨁𝐾. Since 𝑀 ∈ 𝐷𝐺𝑆, so it is g-supplemented and thus 𝑀 𝐾⁄  is          

g-supplemented, from [7, Theorem 2], that deduce 𝑇 is g-supplemented. Let 𝐵 ↪ 𝑇, then 𝐵 has a g-supplement 𝐶 in 

𝑇. To show 𝐻 ↪⨁ 𝑇. Note 𝑀 = 𝑇⨁𝐾 = (𝐵 + 𝐾) + 𝐶, and (𝐵 + 𝐾) ∩ 𝐶 ↪ (𝐵 + 𝐶) ∩ 𝐾 + (𝐶 + 𝐾) ∩ 𝐵 = (𝐶 + 𝐾) ∩

𝐵 ↪ 𝐵. Thus (𝐵 + 𝐾) ∩ 𝐶 ↪ 𝐵 ∩ 𝐶 ↪𝑔𝑠 𝐶. Hence 𝐵 + 𝐾 has a g-supplement 𝐶 in 𝑀. By the assumption, 𝑀 = 𝐶⨁𝐷 

for some 𝐷 ↪ 𝑀. Therefore, 𝑇 = 𝐶⨁(𝐿 ∩ 𝐷).                                                                     
 

Proposition 3.8. Let 𝑀 ∈ Mod-ℛ be 𝜋-projective. Then 𝑀 ∈ 𝐷𝐺𝑆 if and only if 𝑇 ∈ 𝐷𝐺𝑆, for each 𝑇 ↪⨁ 𝑀.     

Proof. ⟹) Directly from Theorem 2.18 and [8, Lemma 3]. 

⟸) Evident.    
 

Proposition 3.9. Let 𝑀 ∈ Mod-ℛ, and 𝑇 ↪ 𝑀 is (fully invariant or distributive) d.s. of 𝑀. Then 𝑀 ∈ 𝐷𝐺𝑆 if and only if 

𝑇 ∈ 𝐷𝐺𝑆 and 𝑀 𝑇⁄ ∈ 𝐷𝐺𝑆.      

Proof.⟹) Assume 𝑇 ↪ 𝑀 is fully invariant, then 𝑀 𝑇 ∈ 𝐷𝐺𝑆⁄ , from Theorem 2.14(iii). Let 𝐵 ↪ 𝑇, then ∃ 𝐾 ↪⨁ 𝑀 

such that 𝑀 = 𝐵 + 𝐾 and 𝐵 ∩ 𝐾 ↪𝑔𝑠 𝐾, since 𝑀 ∈ 𝐷𝐺𝑆. Then ∃ �̀� ↪ 𝑀 such that 𝑀 = 𝐾⨁�̀�. So 𝑇 = 𝑇 ∩ (𝐵 + 𝐾) =

𝐵 + (𝑇 ∩ 𝐾). By [20, Lemma 2.1], 𝑇 = (𝑇 ∩ 𝐾)⨁(𝑇 ∩ �̀�), hence 𝑇 ∩ 𝐾 ↪⨁ 𝑇. On the other side, 𝐵 ∩ (𝑇 ∩ 𝐾) = 𝐵 ∩
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𝐾 ↪𝑔𝑠 𝑀, and as 𝑇 ∩ 𝐾 ↪⨁ 𝑀, imply 𝐵 ∩ (𝑇 ∩ 𝐾) ↪𝑔𝑠 𝑇 ∩ 𝐾, according to Lemma 2.12(i). Thus, 𝑇 ∈ 𝐷𝐺𝑆. Similarly, 

when 𝑇 is distributive.     

⟸) By Theorem 2.9.    
  

Corollary 3.10. Let 𝑀 ∈ Mod-ℛ be (weak duo or distributive), and 𝑇 ↪⨁ 𝑀. Then 𝑀 ∈ 𝐷𝐺𝑆 if and only if 𝑇 ∈ 𝐷𝐺𝑆 

and 𝑀 𝑇⁄ ∈ 𝐷𝐺𝑆.      
 

Corollary 3.11. Let 𝑀 ∈ Mod-ℛ be (weak duo or distributive). Then 𝑀 ∈ 𝐷𝐺𝑆 if and only if 𝑇 ∈ 𝐷𝐺𝑆, for each 

𝑇 ↪⨁ 𝑀.    
 

     According to Theorem 2.9 and by some cases, if 𝑀 = ⨁𝑡=1
𝑛 𝑀𝑡 ∈ Mod-ℛ is weak duo or, distributive. Then, for each 

𝑡 ∈ {1,2, … , 𝑛}, 𝑀𝑡 ∈ 𝐷𝐺𝑆 if and only if 𝑀 ∈ 𝐷𝐺𝑆. 
 

Corollary 3.12. Assume 𝑀 ∈ 𝐷𝐺𝑆, then 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄ ∈ 𝐷𝐺𝑆. Also, if 𝑅𝑎𝑑𝑔(𝑀) ↪⨁ 𝑀, then 𝑅𝑎𝑑𝑔(𝑀) ∈ 𝐷𝐺𝑆.    

Proof. According to [6, Corollary 2.11] 𝑅𝑎𝑑𝑔(𝑀) ↪ 𝑀 is fully invariant. The consequence is followed directly by 

Theorem 2.14(iii) and Proposition 3.9.    
 

     The following lemma demonstrates a situation under which the subclass g-small is coincide to small submodule.  
 

Lemma 3.13. Let 𝑀 ∈ Mod-ℛ be indecomposable and let 𝑇 ↪ 𝑀 is proper. Then 𝑇 ↪𝑔𝑠 𝑀 if and only if 𝑇 ↪𝑠 𝑀.    

Proof. It is evidently.    
 

     So, we deduce: 
 

Lemma 3.14. Assume 𝑀 ∈ Mod-ℛ is indecomposable. Then 𝑀 ∈ 𝐷𝐺𝑆 if and only if 𝑀 is  ⨁-supplemented.     
 

Proposition 3.15. For an indecomposable 𝑀 ∈ Mod-ℛ, the next are coincide. 

(i) 𝑀 is hollow.  

(ii) 𝑀 is generalized hollow. 

(iii) 𝑀 is ⨁-supplemented. 

(iv) 𝑀 is ⨁-g-supplemented. 

(v) 𝑇 is ⨁-supplemented, for each 𝑇 ↪⨁ 𝑀. 

(vi) 𝑇 is ⨁-g-supplemented, for each 𝑇 ↪⨁ 𝑀.  

Proof. (𝒊) ⟺ (𝒊𝒊) Follows directly from Lemma 3.13. 

(𝒊𝒊𝒊) ⟺ (𝒊𝒗) and (𝒗) ⟺ (𝒗𝒊) Follows directly from Lemma 3.14.   

(𝒊𝒊) ⟹ (𝒗𝒊) Evident. 

(𝒗𝒊) ⟹ (𝒊𝒊) Assume 𝑇 ↪ 𝑀 ∈ Mod-ℛ is proper, then ∃ 𝐵 ↪⨁ 𝑀 such that 𝑀 = 𝑇 + 𝐵 and 𝑇 ∩ 𝐵 ↪𝑔𝑠 𝐵, as 𝑀 ∈ 𝐷𝐺𝑆. 

Because 𝑀 is indecomposable and 𝐵 ≠ 0, it follows that 𝐵 = 𝑀 and hence 𝑇 ↪𝑔𝑠 𝑀. Therefore, (ii) holds.         

(𝒊𝒊) ⟹ (𝒊𝒗) Evident. (𝒊𝒗) ⟹ (𝒊𝒊) The same as proof  (𝑣𝑖) ⟹ (𝑖𝑖).    
 

    Proposition 3.15 and Remark 2.5 focus attention to the fact that, in addition to Theorem 2.18, an indecomposable 

notion is also seen as a requirement that defines ⨁-g-supplemented as    g-lifting.  
 

      The idea of Dual Goldie dimension of 𝑀 ∈ Mod-ℛ was established by Varadarajan [24], and denoted by 

corank(𝑀). Furthermore, whenever 𝑀 = 0, corank(𝑀) = 0. Let 𝑀 ≠ 0, and an 𝑘 ∈ ℤ+. For 1 ≤ 𝑡 ≤ 𝑘, if ∃ an 

epimorphism 𝜑: 𝑀 ⟶ 𝛱𝑡=1
𝑘 𝐿𝑡  where 𝐿𝑡 ≠ 0, then we call that corank(𝑀) ≥ k. If corank(𝑀) ≥ 𝑘 and corank(𝑀) ≱

𝑘 + 1, then corank(𝑀) = 𝑘 is defined. If corank(𝑀) ≥ 𝑘, for any 𝑘 ≥ 1, then we put corank(𝑀) = ∞. In [24] it was 

proved that corank(𝑀) = 𝑘 < ∞ if and only if ∃ an epimorphism 𝜑: 𝑀 ⟶ 𝛱𝑡=1
𝑘 𝑁𝑡  where 𝑁𝑖  is hollow, for 1 ≤ 𝑡 ≤ 𝑘, 

and 𝐾𝑒𝑟𝜑 ↪𝑠 𝑀. Furthermore, 𝑀 ∈ Mod-ℛ is hollow if and only if  corank(𝑀) = 1. 
         

      If the direct decomposition 𝐻 =⊕𝑡∈𝜏 𝐻𝑡  of 𝐻 ∈ Mod-ℛ is the direct sum of indecomposable 𝐻𝑡 ↪ 𝐻, 𝑡 ∈ 𝜏, it is 

named to as being indecomposable, see [17, P.140]. 
   

Proposition 3.16. If 𝐻 =⊕𝑡=1
𝑚 𝐻𝑡 ∈ Mod-ℛ is an indecomposable decomposition, then the next are coincide. 

(i) 𝐻1, 𝐻2, … , 𝐻𝑚   are hollow. 

(ii) 𝐻1, 𝐻2, … , 𝐻𝑚  are generalized hollow. 

(iii) 𝑇 is ⨁-supplemented, for each 𝑇 ↪⨁ 𝐻. 

(iv) 𝑇 is ⨁-g-supplemented, for each 𝑇 ↪⨁ 𝐻.  
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Proof. (𝒊) ⟺ (𝒊𝒊) Suppose that 𝐻 =⊕𝑡=1
𝑚 𝐻𝑡  is an indecomposable decomposition module, this means 𝐻𝑡 ↪ 𝐻 is 

indecomposable, for all 𝑡 = 1,2, … , 𝑚. Thus, Proposition 3.15 implies the result. 

(𝒊) ⟹ (𝒊𝒊𝒊) Assume 𝑇 ↪⨁ 𝐻. If 𝑇 = 𝐻, [11, Corollary 1.6] implies 𝑇 is ⨁-supplemented. Assume 𝑇 ≠ 𝐻, so ∃ �̀� ↪ 𝐻 

such that 𝐻 = 𝑇⨁�̀�. Since corank(𝑇) = 1, 𝑇 is hollow, and thus 𝑇 is ⨁-supplemented.   

(𝒊𝒊𝒊) ⟹ (𝒊) We have 𝐻𝑡 ↪ 𝐻 is indecomposable, for each 𝑡 = 1,2, … , 𝑚. From (iii), for each 𝑖 = 1,2, … , 𝑚, 𝐻𝑡  is                 

⨁-supplemented, and hence 𝐻𝑡  is hollow, see Proposition 3.15. 

(𝒊𝒊) ⟹ (𝒊𝒗) According to Proposition 3.15, we deduce 𝐻1, 𝐻2, … , 𝐻𝑚  are hollow, and by the implication (𝑖) ⟹ (𝑖𝑖𝑖), 

we deduce 𝑇 is ⨁-supplemented, and hence it is ⨁-g-supplemented, for each 𝑇 ↪⨁ 𝐻.    

(𝒊𝒗) ⟹ (𝒊𝒊) Analogous to (𝑖𝑖𝑖) ⟹ (𝑖).    
 

       Additionally, similar to the previous outcome, if it is possible to hypothesis that 𝐻 ∈ Mod-ℛ has a finite 

decomposition 𝐻 =⊕𝑡=1
𝑚 𝐻𝑡  such that 𝐸𝑛𝑑𝑅(𝐻𝑡) is local for all 𝑡 = 1,2, … , 𝑚, this implies 𝐻𝑅  is an indecomposable 

decomposition see [17, Theorem 12.6], and we arrive at a similar conclusion.   
 

     The decomposition of ⨁-g-supplemented modules will be investigated next.  
 

Proposition 3.17. Let 𝐻 ∈ 𝐷𝐺𝑆, then we can write 𝐻 = 𝐻1⨁𝐻2 where 𝐻1 ∈ Mod-ℛ with 𝑅𝑎𝑑𝑔(𝐻1) ↪𝑔𝑠 𝐻1 and 

 𝐻2 ∈ Mod-ℛ with 𝑅𝑎𝑑𝑔(𝐻2) = 𝐻2.  

Proof. Suppose 𝑀 ∈ 𝐷𝐺𝑆. As 𝑅𝑎𝑑𝑔(𝐻) ↪ 𝐻, so ∃ 𝐻1, 𝐻2 ↪ 𝐻 such that 𝐻1 + 𝑅𝑎𝑑𝑔(𝐻) = 𝐻 and 𝐻1 ∩ 𝑅𝑎𝑑𝑔(𝐻) ↪𝑔𝑠  

𝐻1, where 𝐻 = 𝐻1⨁𝐻2. 𝑅𝑎𝑑𝑔(𝐻1) ↪ 𝐻1 ∩ 𝑅𝑎𝑑𝑔(𝐻) follows that 𝑅𝑎𝑑𝑔(𝐻1) ↪𝑔𝑠 𝐻1. From Lemma 1.2, we conclude 

that 𝐻 = 𝐻1⨁𝑅𝑎𝑑𝑔(𝐻2), and thus 𝑅𝑎𝑑𝑔(𝐻2) = 𝐻2.                                                                                                                          
 

Proposition 3.18. If 𝐻 ∈ 𝐷𝐺𝑆, then 𝐻 = 𝐻1⨁𝐻2 where 𝐻1 is semisimple and 𝐻2 ∈ Mod-ℛ with 𝑅𝑎𝑑𝑔(𝐻2) ↪𝑒 𝐻2.    

Proof. Look at [8, Proposition 3].                                                                                                
 

Theorem 3.19. For 𝐻 ∈ Mod-ℛ with (𝐷3), the next are coincide.     

(i) 𝑇 ∈ 𝐷𝐺𝑆, for each 𝑇 ↪⨁ 𝐻.  

(ii) 𝐻 ∈ 𝐷𝐺𝑆 . 

(iii) 𝐻 = 𝐻1⨁𝐻2 where 𝐻1 is semisimple and 𝐻2 ∈ 𝐷𝐺𝑆 with 𝑅𝑎𝑑𝑔(𝐻2) ↪𝑒 𝐻2. 

(iv) 𝐻 = 𝐻1⨁𝐻2 where 𝐻1, 𝐻2 ∈ 𝐷𝐺𝑆 with 𝑅𝑎𝑑𝑔(𝐻1) ↪𝑔𝑠 𝐻1 and 𝑅𝑎𝑑𝑔(𝐻2) = 𝐻2.   

Proof. (𝒊𝒊) ⟹ (𝒊) Follows directly from Proposition 3.2.     

(𝒊) ⟹ (𝒊𝒊𝒊) Follows directly from Proposition 3.18 and part (𝑖).  

(𝒊𝒊𝒊) ⟹ (𝒊𝒊) Because that ecah semisimple module implies ⨁-g-supplemented, Theorem 2.9 gives the required. 

(𝒊) ⟹ (𝒊𝒗) Follows directly from Proposition 3.17 and part (𝑖).   

(𝒊𝒗) ⟹ (𝒊𝒊) Follows directly form Theorem 2.9.    
 

4. Applications 

     The classes projective g-covers and g-semiperfect modules will be explored in this part.  

 

Definition 4.1. If 𝑃 ∈ Mod-ℛ and 𝑓: 𝑃 ⟶ 𝑀 is a surjective with 𝑘𝑒𝑟𝑓 ↪𝑔𝑠 𝑃, the pair (𝑃, 𝑓) is referred to as a g-cover 

of 𝑀 ∈ Mod-ℛ. If 𝑃 ∈ Mod-ℛ is projective, (𝑃, 𝑓) is referred to as a projective g-cover of the module 𝑀. 𝑀 ∈ Mod-ℛ 

is named g-semiperfect if all of its quotient modules have a projective g-cover. However, if 𝑅𝑅 is a g-semiperfect 

module, a ring 𝑅 is named g-semiperfect.    

 

      The characterization of projective ⨁-g-supplemented modules can be found here.     
 

Theorem 4.2. For a projective 𝑀 ∈ Mod-ℛ, the next are coincide. 

(i) 𝑀 ∈ 𝐷𝐺𝑆.  

(ii) 𝑀 is g-semiperfect.  

Proof. (𝒊) ⟹ (𝒊𝒊) Suppose 𝑀 ∈ 𝐷𝐺𝑆. Let 𝐻 ↪ 𝑀, so ∃ 𝑇 ↪⨁ 𝑀 such that 𝑀 = 𝐻 + 𝑇 and 𝐻 ∩ 𝑇 ↪𝑔𝑠 𝑇. Therefore 𝑇 is 

projective. Define 𝑓: 𝑇 ⟶ 𝑀 𝐻⁄  by 𝑓(𝑡) = 𝑡 + 𝐻 for all 𝑡 ∈ 𝑇. Then 𝑓 is a surjective and 𝑘𝑒𝑟𝑓 = 𝐻 ∩ 𝑇 ↪𝑔𝑠 𝑇. Hence 

𝑓: 𝑇 ⟶ 𝑀 𝐻⁄  is a projective g-cover, and then (ii) holds.    



Thaar Younis Ghawi                                                          Vol. 15(1) 2023 , pp  Math.   109–121                   9 

 

 

 

 

 

 

 

(𝒊𝒊) ⟹ (𝒊) Assume 𝐴 ↪ 𝑀, then from (𝑖𝑖), 𝑀 𝐴⁄  has a projective g-cover 𝑓: 𝐹 ⟶
𝑀

𝐴
. As 𝑀 is projective, then ∃               

a homomorphism ℎ: 𝑀 ⟶ 𝐹 with 𝑓ℎ = 𝜋, as 𝜋: 𝑀 ⟶
𝑀

𝐴
  is the natural epimorphism. Thus, 𝐹 = ℎ(𝑀) + 𝑘𝑒𝑟𝑓. As 

𝑘𝑒𝑟𝑓 ↪𝑔𝑠 𝐹, from Lemma1.1(i) ∃ a semisimple submodule 𝑌 ↪ 𝐹 such that 𝐹 = ℎ(𝑀)⨁𝑌. Hence ℎ(𝑀) is projective. 

Then 𝑘𝑒𝑟ℎ ↪⨁ 𝑀, 𝑀 = 𝑘𝑒𝑟ℎ⨁𝑇 for some 𝑇 ↪ 𝑀. Since 𝑘𝑒𝑟ℎ ↪ 𝑘𝑒𝑟𝜋 = 𝐴, then 𝑀 = 𝐴 + 𝑇. We claim that 𝑘𝑒𝑟𝑓 ∩

ℎ(𝑇) = ℎ(𝑋 ∩ 𝑇). Assume 𝑎 ∈ 𝑘𝑒𝑟𝑓 ∩ ℎ(𝑇), then 𝑓(𝑎) = 0 and 𝑎 = ℎ(𝑦) for some 𝑦 ∈ 𝑇. Then 𝜋(𝑦) = 𝑓(ℎ(𝑦)) =

𝑓(𝑎) = 0, 𝑦 ∈ 𝐴 and then 𝑎 = ℎ(𝑦) ∈ ℎ(𝐴 ∩ 𝑇). Suppose 𝑎 ∈ ℎ(𝐴 ∩ 𝑇), 𝑎 = ℎ(𝑦) for some 𝑦 ∈ 𝐴 ∩ 𝑇. So 𝑥 = ℎ(𝑦) ∈

ℎ(𝑇). Also, 𝑦 ∈ 𝐴 = 𝑘𝑒𝑟𝜋  imply 𝑓(ℎ(𝑦)) = 𝜋(𝑦) = 0, and so 𝑎 = ℎ(𝑦) ∈ 𝑘𝑒𝑟𝑓. Therefore 𝑎 ∈ 𝑘𝑒𝑟𝑓 ∩ ℎ(𝑇). We have 

𝑘𝑒𝑟𝑓 ∩ ℎ(𝑇) = ℎ(𝐴 ∩ 𝑇). 𝑀 = 𝑘𝑒𝑟ℎ⨁𝑇 implies ℎ(𝑀) = ℎ(𝑇) ↪⨁ 𝐹. Since 𝑘𝑒𝑟𝑓 ↪𝑔𝑠 𝐹, 𝑘𝑒𝑟𝑓 ∩ ℎ(𝑇) ↪𝑔𝑠 𝐹, so ℎ(𝐴 ∩

𝑇) ↪𝑔𝑠 𝐹, from Lemma 2.12(i), we have ℎ(𝐴 ∩ 𝑇) ↪𝑔𝑠 ℎ(𝑇). Because ℎ is an isomorphism between 𝑇 and ℎ(𝑇), then 

ℎ−1(𝑘𝑒𝑟𝑓 ∩ ℎ(𝑇)) ↪𝑔𝑠 𝑇, but 𝐴 ∩ 𝑇 ↪ ℎ−1(𝑘𝑒𝑟𝑓 ∩ ℎ(𝑇)) that deduce 𝐴 ∩ 𝑇 ↪𝑔𝑠 𝑇. Therefore 𝑇 is a g-supplement of 

𝐴 in 𝑀 ∈ Mod-ℛ.                                                                                                                                                                              
 

The outcome that followed will then arrive. 
  

Corollary 4.3. 𝑅 ∈ 𝐷𝐺𝑆 if and only if 𝑅 is g-semiperfect, for each ring 𝑅.  

5.   ⨁-g-radical supplemented modules  

       In this part, we offer a new category of modules named ⨁-g-radical supplemented, which is an extension of         

⨁-g-supplemented modules.  
 

Definition 5.1. 𝑀 ∈ Mod-ℛ is named to be ⨁-g-radical supplemented if, ∀ 𝐻 ↪ 𝑀 have a generalized radical 

supplement, say 𝑈, such that 𝑈 ↪⨁ 𝑀. To denote the category of all   ⨁-g-radical supplemented modules, we will 

use the symbol 𝐷𝐺𝑅𝑆. 
 

     In between classes of ⨁-g-supplemented module and g-radical supplemented module, it is obvious that the class 

of ⨁-g-radical supplemented module exists. Yet, we do have the next simple fact.    
 

Proposition 5.2. Let 𝑀 ∈ Mod-ℛ. If 𝑅𝑎𝑑𝑔(𝑀) = 𝑀, then 𝑀 ∈ 𝐷𝐺𝑅𝑆.  

Proof. It is easy.    
 

Proposition 5.3. Suppose 𝑀 ∈ Mod-ℛ with 𝑅𝑎𝑑𝑔(𝑀) ↪𝑔𝑠 𝑀. If 𝑀 ∈ 𝐷𝐺𝑅𝑆 then 𝑀 ∈ 𝐷𝐺𝑆.    

Proof. Evident by the definition and Lemma 2.12(𝑖).    
 

Lemma 5.4. If 𝑀 ∈ Mod-ℛ is finitely generated, then 𝑅𝑎𝑑𝑔(𝑀) ↪𝑔𝑠 𝑀.   

Proof. Let 𝑀 ∈ Mod-ℛ is finitely generated and let 𝑇 ↪𝑒 𝑀 with 𝑅𝑎𝑑𝑔(𝑀) + 𝑇 = 𝑀. As 𝑀 is finitely generated and 

𝑅𝑎𝑑𝑔(𝑀) the sum of all g-small submodules of 𝑀, then ∃ a finite set of g-small submodules 𝐵1, 𝐵2, … , 𝐵𝑛 of 𝑀 with 

∑ 𝐵𝑡
𝑛
𝑡=1 + 𝑇 = 𝑀. According to Lemma 1.1(ii), we deduce that ∑ 𝐵𝑡

𝑛
𝑡=1 ↪𝑔𝑠 𝑀, and then  𝑇 = 𝑀. Thus  

𝑅𝑎𝑑𝑔(𝑀) ↪𝑔𝑠 𝑀.     
 

      The following follows from Lemma 5.4 and Proposition 5.3, and is immediate. 
 

Corollary 5.5. If 𝑀 ∈ Mod-ℛ is finitely generated, then 𝑀 ∈ 𝐷𝐺𝑆 if and only if 𝑀 ∈ 𝐷𝐺𝑅𝑆. 
  

Proposition 5.6. Suppose 𝑀(≠ 0) ∈ Mod-ℛ is indecomposable with 𝑅𝑎𝑑𝑔(𝑀) ≠ 𝑀. Then the next are coincide.  

(𝒊) 𝑀 ∈ 𝐷𝐺𝑆. 

(𝒊𝒊) 𝑀 ∈ 𝐷𝐺𝑅𝑆.  

(𝒊𝒊𝒊) 𝑀 is g-local.    

Proof. (𝒊) ⟹ (𝒊𝒊) Evident. (𝒊𝒊) ⟹ (𝒊) Proposition 5.3 can be used to establish that 𝑅𝑎𝑑𝑔(𝑀) ↪𝑔𝑠 𝑀 as follows; let 

𝑇 ↪𝑒 𝑀 with 𝑅𝑎𝑑𝑔(𝑀) + 𝑇 = 𝑀. Since 𝑀 ∈ 𝐷𝐺𝑅𝑆, then ∃ 𝐵 ↪⨁ 𝑀 such that 𝑇 + 𝐵 = 𝑀 and 𝑇 ∩ 𝐵 ↪ 𝑅𝑎𝑑𝑔(𝐵). Since 

𝑀 is indecompsable, either 𝐵 = 𝑀 or 𝐵 = 0. Assume that 𝐵 = 𝑀, then 𝑇 ↪ 𝑅𝑎𝑑𝑔(𝑀) and so 𝑅𝑎𝑑𝑔(𝑀) = 𝑀, which is 

a contradiction. Hence 𝐵 = 0, and thus 𝑇 = 𝑀, as required.  

(𝒊) ⟹ (𝒊𝒊𝒊) and (𝒊𝒊𝒊) ⟹ (𝒊) Directly from Propositions 2.7 and 2.4, respectively.    
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Proposition 5.7. Let 𝐻1, 𝐻2 ∈ 𝐷𝐺𝑅𝑆. If 𝐻 = 𝐻1⨁𝐻2, then 𝐻 ∈ 𝐷𝐺𝑅𝑆.  

Proof. Suppose that 𝑇 ↪ 𝐻. As (𝑇 + 𝐻1) ∩ 𝐻2 ↪ 𝐻2, then ∃ 𝐵 ↪⨁ 𝐻 such that ((𝑇 + 𝐻1) ∩ 𝐻2) + 𝐵 = 𝐻2 and 

(𝑇 + 𝐻1) ∩ 𝐵 ↪ 𝑅𝑎𝑑𝑔(𝐵). We deduce that 𝐻 = 𝐻1 + ((𝑇 + 𝐻1) ∩ 𝐻2) + 𝐵 = 𝐻1 + ((𝑇 + 𝐵) + 𝐻1) ∩ 𝐻2 = (𝑇 + 𝐵) +

𝐻1. Also, since (𝑇 + 𝐵) ∩ 𝐻1 ↪ 𝐻1 , then ∃ 𝐿 ↪⨁ 𝐻1 such that ((𝑇 + 𝐵) ∩ 𝐻1) + 𝐿 = 𝐻1 and (𝑇 + 𝐵) ∩ 𝐿 ↪ 𝑅𝑎𝑑𝑔(𝐿).  

It follows that 𝐻 = (𝑇 + 𝐵) + 𝐻1 = (𝑇 + 𝐵) + ((𝑇 + 𝐵) ∩ 𝐻1) + 𝐿 = 𝑇 + (𝐵 + 𝐿), however, it is easy to see that 𝑇 ∩

(𝐵 + 𝐿) ↪ ((𝑇 + 𝐿) ∩ 𝐵) + ((𝑇 + 𝐵) ∩ 𝐿), and hence 𝑇 ∩ (𝐵 + 𝐿) ↪ 𝑅𝑎𝑑𝑔(𝐵)⨁𝑅𝑎𝑑𝑔(𝐿) = 𝑅𝑎𝑑𝑔(𝐵⨁𝐿). Thus 

𝐵⨁𝐿 ↪⨁ 𝐻.                                                                  
 

Corollary 5.8. The category 𝐷𝐺𝑅𝑆 is closed under finite direct sums. 
  

    Using Corollaries 2.10 and 2.11, one can immediately establish a finite direct sums of g-lifting, generalized hollow, 

or g-local modules that belong to 𝐷𝐺𝑅𝑆. 
 

Proposition 5.9. Let 𝑀 ∈ 𝐷𝐺𝑅𝑆. If 𝐻 ↪ 𝑀 suct that 𝑀 𝐻⁄  projective, then 𝐻 ∈ 𝐷𝐺𝑅𝑆.    

Proof. Let 𝑇 ↪ 𝐻. As 𝑀 ∈ 𝐷𝐺𝑅𝑆, then ∃ 𝐵 ↪⨁ 𝑀 such that 𝑀 = 𝑇 + 𝐵 and 𝑇 ∩ 𝐵 ↪ 𝑅𝑎𝑑𝑔(𝐵). From Lemma 2.11, we 

have 𝐻 ∩ 𝐵 ↪⨁ 𝑀. Therefore 𝐻 = 𝑇 + (𝐻 ∩ 𝐵). Also 𝑇 ∩ (𝐻 ∩ 𝐵) ↪ (𝐻 ∩ 𝐵) ∩ 𝑅𝑎𝑑𝑔(𝑀) = 𝑅𝑎𝑑𝑔(𝐻 ∩ 𝐵), by Lemma 

2.12(ii). And it is clearly 𝐻 ∩ 𝐵 ↪⨁ 𝐻, therefore 𝐻 ∈ 𝐷𝐺𝑅𝑆.                                                                                                                                                                                          
 

Theorem 5.10. Let 𝑀 ∈ 𝐷𝐺𝑅𝑆, and 𝑇 ↪ 𝑀. Then,  

(i) If for any 𝐵 ↪⨁ 𝑀, we have (𝑇 + 𝐵) 𝑇⁄ ↪⨁ 𝑀 𝑇⁄ , then 𝑀 𝑇⁄ ∈ 𝐷𝐺𝑅𝑆.    

(ii) If for any decomposition 𝑀 = 𝑀1⨁𝑀2, 𝑇 = (𝑇 ∩ 𝑀1)⨁(𝑇 ∩ 𝑀2), then 𝑀 𝑇⁄ ∈ 𝐷𝐺𝑅𝑆.  

(iii) If 𝑇 is fully invariant in 𝑀, 𝑀 𝑇⁄ ∈ 𝐷𝐺𝑅𝑆. Furthermore, the factor module of each duo module in 𝐷𝐺𝑅𝑆 is so in 

𝐷𝐺𝑅𝑆.      

(iv) If 𝑇 is distributive in 𝑀, 𝑀 𝑇⁄ ∈ 𝐷𝐺𝑅𝑆. Furthermore, the factor module of each distributive module in 𝐷𝐺𝑅𝑆 is 

also in 𝐷𝐺𝑅𝑆.  

Proof. (i) Consider 𝑇 ↪ 𝑈 ↪ 𝑀. Since 𝑀 ∈ 𝐷𝐺𝑅𝑆, then 𝑀 = 𝑈 + 𝐵 and 𝑈 ∩ 𝐵 ↪ 𝑅𝑎𝑑𝑔(𝐵) for some 𝐵 ↪⨁ 𝑀. It 

follows 
𝑀

𝑇
=

𝑈

𝑇
+

𝑇+𝐵

𝑇
. Also, 

𝑈

𝑇
∩

𝑇+𝐵

𝑇
=

𝑈∩(𝑇+𝐵)

𝑇
=

𝑇+(𝑈∩𝐵)

𝑇
. Consider the canonical epimorphism 𝜋 ∶ 𝐵 ⟶

𝑇+𝐵

𝑇
. Since 

 𝑈 ∩ 𝐵 ↪ 𝑅𝑎𝑑𝑔(𝐵), 𝜋(𝑈 ∩ 𝐵) ↪ 𝜋(𝑅𝑎𝑑𝑔(𝐵)) implies 
𝑇+(𝑈∩𝐵)

𝑇
↪ 𝑅𝑎𝑑𝑔(

𝑇+𝐵

𝑇
), see [6, Corollary 2.11(1)]. By hypothesis, 

we get  
𝑇+𝐵

𝑇
↪⨁ 𝑀

𝑇
. Hence  

𝑀

𝑇
∈ 𝐷𝐺𝑅𝑆.    

(ii) To prove that, we will use property in part (i). Assume that 𝑇 ↪ 𝑀 and let 𝐵 ↪⨁ 𝑀, 𝑀 = 𝐵⨁�̀� for some �̀� ↪ 𝑀. 

So 
𝑀

𝑇
=

𝐵+𝑇

𝑇
+

�̀�+𝑇

𝑇
. Also (𝐵 + 𝑇) ∩ (�̀� + 𝑇) ↪ (𝐵 + 𝑇 + �̀�) ∩ 𝑇 + (𝐵 + 𝑇 + 𝑇) ∩ �̀� ↪ 𝑇 + (𝐵 + 𝑇) ∩ �̀�. But we have 

that 𝑇 = (𝑇 ∩ 𝐵)⨁(𝑇 ∩ �̀�) implies (𝐵 + 𝑇) ∩ (�̀� + 𝑇) ↪ 𝑇 + (𝐵 + 𝑇 ∩ 𝐵 + 𝑇 ∩ �̀�) ∩ �̀�, thus (𝐵 + 𝑇) ∩ (�̀� + 𝑇) ↪ 𝑇, 

and so 
𝑀

𝑇
= (

𝐵+𝑇

𝑇
) ⨁ (

�̀�+𝑇

𝑇
). Therefore  

𝑇+𝐵

𝑇
↪⨁ 𝑀

𝑇
. This completes the proof. 

(iii) and (iv) are consequences directly from (ii).    
 

     For 𝑀 ∈ Mod-ℛ, if ∃ 𝑇 ↪⨁ 𝑀 such that 𝑇 ↪ 𝑈 and 
𝑈

𝑇
↪ 𝑅𝑎𝑑𝑔(

𝑀

𝑇
), for ecah 𝑈 ↪ 𝑀, then we say that 𝑀 has property 

(Pg
∗). It is simple to demonstrate that 𝑀 has (Pg

∗) if and only if for any 𝑈 ↪ 𝑀, ∃ a decomposition 𝑀 = 𝑇 ⊕ 𝐵 with 

𝑇 ↪ 𝑈 and 𝑈 ∩ 𝐵 ↪ 𝑅𝑎𝑑𝑔(𝐵). It is evident that each module with (Pg
∗) is in 𝐷𝐺𝑅𝑆. Each finite direct sum of modules 

with (Pg
∗) is in 𝐷𝐺𝑅𝑆, according to Corollary 5.8. However, g-lifting for modules is stronger than (Pg

∗) property.        
  

     Next we will then demonstrate similar characterizations for the category of ⨁-g-radical supplemented modules. 
 

Theorem 5.11. Assume 𝑀 ∈ 𝐷𝐺𝑅𝑆 and verify each one of the listed cases:     

(i) 𝑀 is duo. 

(ii) 𝑀 is distributive. 

(iii) 𝑀 is 𝜋-projective.  

(iv) 𝑀 is refinable and have the SIP. 

(v) 𝑀 is indecomposable.  

Then 𝑀 has the property (Pg
∗).   

Proof. (𝒊), (𝒊𝒊), (𝒊𝒊𝒊) and (𝒊𝒗) are all the same proof Theorem 2.18.  

(𝒗) Suppose 𝐻 ↪ 𝑀. If 𝐻 = 𝑀, the proof is evidently. Assume 𝐻 ≠ 𝑀, so 𝑀 = 𝐻 + �̀� and 𝐻 ∩ �̀� ↪ 𝑅𝑎𝑑𝑔(�̀�) where 

𝑀 = 𝐹 ⊕ �̀�, as 𝑀 ∈ 𝐷𝐺𝑅𝑆. From (𝑣), 𝐹 = 0 and �̀� = 𝑀. Hence 𝐹 ↪ 𝐻 and 𝐻 ∩ �̀�  ↪ 𝑅𝑎𝑑𝑔(�̀�), as required.                                                                                                                            
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Proposition 5.12. Let 𝑀 ∈ Mod-ℛ is refinable, then 𝑀 ∈ 𝐷𝐺𝑅𝑆 if and only if 𝑀 is g-radical supplemented.    

Proof. The necessity is evident. Now, if 𝑇 ↪ 𝑀, then ∃ 𝐵 ↪ 𝑀 such that 𝑀 = 𝑇 + 𝐵 and 𝑇 ∩ 𝐵 ↪ 𝑅𝑎𝑑𝑔(𝐵). Since 𝑀 is 

refinable, then ∃ �̀� ↪⨁ 𝑀 such that 𝑀 = 𝑇 + �̀� and �̀� ↪ 𝐵. It follows 𝑇 ∩ �̀� = (𝑇 ∩ 𝐵) ∩ �̀� ↪ 𝑅𝑎𝑑𝑔(𝑀) ∩ �̀� =

𝑅𝑎𝑑𝑔(�̀�), according to Lemma 2.12(ii), and hence 𝑀 ∈ 𝐷𝐺𝑅𝑆.    
                                                                                                                                                                                

Corollary 5.13. Assume the next for a refinable 𝑀 ∈ Mod-ℛ with 𝑅𝑎𝑑𝑔(𝑀) ↪𝑔𝑠 𝑀. 

(i) 𝑀 is g-radical supplemented. 

(ii) 𝑀 is g-supplemented.  

(iii) 𝑀 ∈ 𝐷𝐺𝑅𝑆. 

(iv) 𝑀 ∈ 𝐷𝐺𝑆. 

(v) 𝑀 𝑅𝑎𝑑𝑔⁄ (𝑀) is semisimple. 

Then (𝒊) ⟺ (𝒊𝒊) ⟺ (𝒊𝒊𝒊) ⟺ (𝒊𝒗) and  (𝒗) ⟹ (𝒊𝒗). Also (𝒊𝒗) ⟹ (𝒗) if, 𝑀 is distributive. 

Proof. (𝒊) ⟺ (𝒊𝒊𝒊) Follows from Proposition 5.12. 

(𝒊𝒊) ⟺ (𝒊𝒗) Follows directly from Proposition 2.16.  

(𝒊𝒊𝒊) ⟺ (𝒊𝒗) Follows directly from Proposition 5.3. 

(𝒊𝒗) ⟹ (𝒗) Follows directly from Theorem 2.19.    
 

Proposition 5.14. Assume the next for a projective 𝑀 ∈ Mod-ℛ.  

(𝒊) 𝑀 ∈ 𝐷𝐺𝑅𝑆. 

(𝒊𝒊) 𝑀 is g-semiperfect. 

Then (𝒊𝒊) ⟹ (𝒊); and if 𝑅𝑎𝑑𝑔(𝑀) ↪𝑔𝑠 𝑀 then (𝒊) ⟹ (𝒊𝒊).  

Proof. Directly from Proposition 5.3 and Theorem 4.2.    

6. Main results 

      This part looks at the direct summands and decompositions of modules that have the property of ⨁-g-radical 

supplemented.  
   

Theorem 6.1. Let {𝐻𝑡| 𝑡 ∈ (𝜏  𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒)} be a family of relatively projective modules. Then 𝐻 =⊕𝑡∈𝜏 𝐻𝑡 ∈ 𝐷𝐺𝑅𝑆 if 

and only if 𝐻𝑡 ∈ 𝐷𝐺𝑅𝑆, for all 𝑡 ∈ 𝜏. 

Proof. Corollary 5.8 implies the sufficiency. We will prove 𝐻1 ∈ 𝐷𝐺𝑅𝑆. Suppose 𝑈 ↪ 𝐻1, then 𝑀 = 𝑈 + 𝐾 and 𝑈 ∩

𝐾 ↪ 𝑅𝑎𝑑𝑔(𝐾) for some 𝐵 ↪⨁ 𝐻. Since 𝐻 = 𝐻1 + 𝐵, so by [10, Lemma 4.47] ∃ 𝐵1 ↪ 𝐵 with 𝐻 = 𝐻1⨁𝐵1 that gives 

𝐵 = 𝐵1⨁(𝐻1 ∩ 𝐵). As 𝐻1 ∩ 𝐵 ↪⨁ 𝐵, then 𝑈 ∩ (𝐻1 ∩ 𝐵) = 𝑈 ∩ 𝐵 ↪ (𝐻1 ∩ 𝐵) ∩ 𝑅𝑎𝑑𝑔(𝐵) = 𝑅𝑎𝑑𝑔(𝐻1 ∩ 𝐵), form 

Lemma 2.12(ii). Easily show 𝐻1 = 𝑈 + (𝐻1 ∩ 𝐵) and 𝐻1 ∩ 𝐵 ↪⨁ 𝐻1, as required.                                                                                                                                
 

Proposition 6.2. Let 𝐻 = 𝐻1⨁𝐻2 ∈ Mod-ℛ. Then 𝐻1 ∈ 𝐷𝐺𝑅𝑆 if and only if for each 𝑇 𝐻2⁄ ↪ 𝐻 𝐻2⁄ , ∃ 𝐵 ↪⨁ 𝐻 such 

that 𝐵 ↪ 𝐻1, 𝐻 = 𝑇 + 𝐵 and  𝑇 ∩ 𝐵 ↪ 𝑅𝑎𝑑𝑔(𝐻).  

Proof. Assume 𝐻1 ∈ 𝐷𝐺𝑅𝑆. Let 𝑇 𝐻2⁄ ↪ 𝐻 𝐻2⁄ . As 𝑇 ∩ 𝐻1 ↪ 𝐻1, then 𝐻1 = (𝑇 ∩ 𝐻1) + 𝐵 and 𝑇 ∩ 𝐵 ↪ 𝑅𝑎𝑑𝑔(𝐵)             

for some 𝐵 ↪⨁ 𝐻1. Hence 𝐻 = (𝑇 ∩ 𝐻1) + 𝐵 + 𝐻2 = 𝑇 + 𝐵 and 𝑇 ∩ 𝐵 ↪ 𝑅𝑎𝑑𝑔(𝐻). Conversely, suppose 𝑈 ↪ 𝐻1. 

Consider (𝑈 ⊕ 𝐻2) 𝐻2⁄ ↪ 𝐻 𝐻2⁄ . From the hypothesis, 𝐻 = (𝑈 + 𝐵) ⊕ 𝐻2 and (𝑈 + 𝐻2) ∩ 𝐵 ↪ 𝑅𝑎𝑑𝑔(𝐻) for some 

𝐵 ↪⨁ 𝐻 with 𝐵 ↪ 𝐻1. Thus 𝐻1 = 𝑈 + 𝐵, and by Lemma 2.12(ii) 𝑈 ∩ 𝐵 ↪ 𝐵 ∩ 𝑅𝑎𝑑𝑔(𝐻) = 𝑅𝑎𝑑𝑔(𝐵). Therefore, 𝐵 is                  

a generalized radical supplement of 𝑈 in 𝐻1 and 𝐵 ↪⨁ 𝐻1, hence 𝐻1 ∈ 𝐷𝐺𝑅𝑆.                                                                                                                           
                                                                           

Proposition 6.3. If 𝑀 ∈ 𝐷𝐺𝑅𝑆 with (𝐷3), then 𝑇 ∈ 𝐷𝐺𝑅𝑆 for each 𝑇 ↪⨁ 𝑀.   

Proof. Let 𝑇 ↪⨁ 𝑀, and 𝑈 ↪ 𝑇. Since 𝑀 ∈ 𝐷𝐺𝑅𝑆, 𝑀 = 𝑈 + 𝐻 and 𝑈 ∩ 𝐻 ↪ 𝑅𝑎𝑑𝑔(𝐻) for some 𝐻 ↪⨁ 𝑀. So, 𝑇 = 𝑈 +

(𝑇 ∩ 𝐻). As 𝑀 has (𝐷3) with 𝑀 = 𝑇 + 𝐻, then 𝑇 ∩ 𝐻 ↪⨁ 𝑀. From Lemma 2.12(ii), we deduce 𝑈 ∩ (𝑇 ∩ 𝐻) ↪

(𝑇 ∩ 𝐻) ∩ 𝑅𝑎𝑑𝑔(𝑀) = 𝑅𝑎𝑑𝑔(𝑇 ∩ 𝐻), as required.    
 

      For 𝑀 ∈ Mod-ℛ is referred to as having the summand sum property, we write SSP, if for each 𝑈, 𝑉 ↪⨁ 𝑀 implies 

𝑈 + 𝑉 ↪⨁ 𝑀. Thus, we deduce:    
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Proposition 6.4. Let 𝑀 ∈ 𝐷𝐺𝑅𝑆 has the SIP, or SSP. Then 𝑇 ∈ 𝐷𝐺𝑅𝑆, for each 𝑇 ↪⨁ 𝑀.   

Proof. Let 𝑀 ∈ 𝐷𝐺𝑅𝑆. Assume 𝑀 has the SIP, then it has (𝐷3), Proposition 6.3 implies the result. If 𝑀 has the SSP. 

Let 𝑇 ↪⨁ 𝑀, then 𝑀 = 𝑇 ⊕ �̀� for some �̀� ↪ 𝑀. To show 𝑀 �̀�⁄ ∈ 𝐷𝐺𝑅𝑆. Let 𝑈 ↪⨁ 𝑀, then also 𝑈 + �̀� ↪⨁ 𝑀, as 𝑀 has 

the SSP. Thus, 𝑀 = (𝑈 + �̀�) ⊕ 𝐵 for some 𝐵 ↪ 𝑀. Then 
𝑀

�̀�
= (

𝑈+�̀�

�̀�
) ⊕ (

𝐵+�̀�

�̀�
). By Theorem 5.10(i), the proof is end.                                                                  

 

Proposition 6.5. Let 𝑀 ∈ 𝐷𝐺𝑅𝑆 whose any generalized radical supplement in 𝑀 is a d.s., then 𝑇 ∈ 𝐷𝐺𝑅𝑆, for each 

𝑇 ↪⨁ 𝑀.   

Proof. Suppose that 𝑇 ↪⨁ 𝑀. Then 𝑀 = 𝑇 ⊕ 𝐵 for some 𝐵 ↪ 𝑀. We have 𝑀 is a g-radical supplemented module, as 

𝑀 ∈ 𝐷𝐺𝑅𝑆. It follows 𝑀 𝐵⁄ ≅ 𝑇 is g-radical supplemented, from [9, Lemma 2.7]. Let 𝑈 ↪ 𝑇, 𝑈 has a generalized 

radical supplement 𝑉 in 𝑇. To show that 𝑉 ↪⨁ 𝑇. Notice that 𝑀 = 𝑇 ⊕ 𝐵 = (𝑈 + 𝐵) + 𝑉 and (𝑈 + 𝐵) ∩ 𝑉 ↪

(𝑈 + 𝑉) ∩ 𝐵 + (𝑉 + 𝐵) ∩ 𝑈 = (𝑉 + 𝐵) ∩ 𝑈 ↪ 𝑈. Hence (𝑈 + 𝐵) ∩ 𝑉 ↪ 𝑈 ∩ 𝑉 ↪ 𝑅𝑎𝑑𝑔(𝑉). It follows that 𝑈 + 𝐵 has   

a generalized radical supplement 𝑉 in 𝑀, so by assumption, ∃ �̀� ↪ 𝑀 with 𝑀 = 𝑉 ⊕ �̀�. Therefore 𝑇 = 𝑉 ⊕ (𝑇 ∩ �̀�).                                                               
 

Proposition 6.6. If 𝑀 ∈ Mod-ℛ has property (Pg
∗), then 𝑇 ∈ 𝐷𝐺𝑅𝑆, for each 𝑇 ↪⨁ 𝑀.    

Proof. Let 𝑇 ↪⨁ 𝑀, and 𝐵 ↪ 𝑇. Since 𝑀 has (Pg
∗), then ∃ 𝑈, �̀� ↪ 𝑀 such that 𝑈 ↪ 𝐵 and 𝐵 ∩ �̀� ↪ 𝑅𝑎𝑑𝑔(�̀�) where 

𝑀 = 𝑈 ⊕ �̀�. Therefore 𝑇 = 𝑈 ⊕ (𝑇 ∩ �̀�), i.e., 𝑇 ∩ �̀� ↪⨁ 𝑇. Hence 𝑇 = 𝑋 + (𝑇 ∩ �̀�). Assume 𝑎 ∈ 𝐵 ∩ �̀�, then 𝑎 ∈

𝑅𝑎𝑑𝑔(𝑀) and so 𝑎𝑅 ↪𝑔𝑠 𝑀, see [7, Lemma 5]. Lemma 2.12(i) implies that 𝑎𝑅 ↪𝑔𝑠 𝑇 ∩ �̀�, and then 𝑎 ∈ 𝑅𝑎𝑑𝑔(𝑇 ∩ �̀�). 

Therefore 𝐵 ∩ (𝑇 ∩ �̀�) = 𝐵 ∩ �̀� ↪ 𝑅𝑎𝑑𝑔(𝑇 ∩ �̀�), and so 𝑇 ∩ �̀� is a generalized radical supplement of 𝐵 in 𝑇.                                                                                            
 

      Using the two outcomes Theorem 5.11 and Proposition 6.6, we can conclude the following: 
 

Corollary 6.7. If 𝑀 ∈ Mod-ℛ is 𝜋-projective, then 𝑀 ∈ 𝐷𝐺𝑅𝑆 if and only if 𝑇 ∈ 𝐷𝐺𝑅𝑆, for each 𝑇 ↪⨁ 𝑀. 
 

Proposition 6.8. Let 𝑀 ∈ Mod-ℛ, and 𝑇 ↪ 𝑀 is (fully invariant or distributive) d.s. of 𝑀. Then 𝑀 ∈ 𝐷𝐺𝑅𝑆 if and only 

if  𝑇 ∈ 𝐷𝐺𝑅𝑆 and 𝑀 𝑇⁄ ∈ 𝐷𝐺𝑅𝑆.     

Proof. ⟹) From Theorem 5.10(iii), if 𝑇 ↪ 𝑀 is fully invariant, then 𝑀 𝑇⁄ ∈ 𝐷𝐺𝑅𝑆. Assume that 𝑇 ↪⨁ 𝑀 is any fully 

invariant, and 𝐵 ↪ 𝑇. Because 𝑀 ∈ 𝐷𝐺𝑅𝑆, then 𝑀 = 𝐵 + 𝐴 and 𝐵 ∩ 𝐴 ↪ 𝑅𝑎𝑑𝑔(𝐴) for some decomposition 𝑀 =

𝐴⨁�̀�. Thus 𝑇 = 𝐵 + (𝑇 ∩ 𝐴). From [20, Lemma 2.1] 𝑇 = (𝑇 ∩ 𝐴)⨁(𝑇 ∩ �̀�), that means 𝑇 ∩ 𝐴 ↪⨁ 𝑇. Lemma 2.12(ii) 

implies that 𝐵 ∩ (𝑇 ∩ 𝐴) ↪ 𝑅𝑎𝑑𝑔(𝑀) ∩ (𝑇 ∩ 𝐴) = 𝑅𝑎𝑑𝑔(𝑇 ∩ 𝐴). Thus, 𝑇 ∈ 𝐷𝐺𝑅𝑆. Similarly, when 𝑇 is distributive.   

⟸) Evidently, from Proposition 5.7.    
 

       The following corollaries of proposition 6.8 directly follow. 
 

Corollary 6.9. Assume 𝑀 ∈ Mod-ℛ is weak duo or distributive, and let 𝑇 ↪⨁ 𝑀. Then 𝑀 ∈ 𝐷𝐺𝑅𝑆 if and only if 

 𝑇 ∈ 𝐷𝐺𝑅𝑆 and 𝑀 𝑇⁄ ∈ 𝐷𝐺𝑅𝑆. 
 

Corollary 6.10. Assume 𝑀 ∈ Mod-ℛ is weak duo or distributive. Then 𝑀 ∈ 𝐷𝐺𝑅𝑆 if and only if 𝑇 ∈ 𝐷𝐺𝑅𝑆, for each 

𝑇 ↪⨁ 𝑀.   
 

Corollary 6.11. If 𝑀 ∈ 𝐷𝐺𝑅𝑆, then 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄ ∈ 𝐷𝐺𝑅𝑆. Moreover, 𝑅𝑎𝑑𝑔(𝑀) ∈ 𝐷𝐺𝑅𝑆 whenever 𝑅𝑎𝑑𝑔(𝑀) ↪⨁ 𝑀. 

Proof. Theorem 5.10(iii) and Proposition 6.8 respectively come next.    
  

      When 𝑀 ∈ Mod-ℛ is weak duo or distributive, one can observe a finite decomposition 𝑀 =⊕𝑡=1
𝑚 𝑀𝑡 ∈ 𝐷𝐺𝑅𝑆 if 

and only if 𝑀𝑡 ∈ 𝐷𝐺𝑅𝑆 for 𝑡 ∈ {1,2, … , 𝑚}. Additionally, an effort will be made to satisfy a specific instance that 

requires that this feature is achieved for each category of modules, as is seen below. 
    

Proposition 6.12. Let {𝐻𝑡}𝑡∈𝜏 be a family of modules with 𝐻 = ⨁𝑡∈𝜏𝐻𝑡 . If 𝐻 ∈ Mod-ℛ is duo, then 𝐻 ∈ 𝐷𝐺𝑅𝑆 if and 

only if, for each 𝑡 ∈ 𝜏, 𝐻𝑡 ∈ 𝐷𝐺𝑅𝑆.   

Proof. Corollary 6.10 follows the necessity. Conversely, let 𝑈 ↪ 𝐻, then 𝑈 ∩ 𝐻𝑡 ↪ 𝐻𝑡  for each 𝑡 ∈ 𝜏. By assumption, ∃ 

𝑉𝑡 ↪⨁ 𝐻𝑡  such that 𝐻𝑡 = (𝑈 ∩ 𝐻𝑡) + 𝑉𝑡  and (𝑈 ∩ 𝐻𝑡) ∩ 𝑉𝑡 = 𝑈 ∩ 𝑉𝑡 ↪ 𝑅𝑎𝑑𝑔(𝑉𝑡) for each 𝑡 ∈ 𝜏. From [20, Lemma 2.1] 

𝑈 =⊕𝑡∈𝜏 (𝑈 ∩ 𝐻𝑡). Let 𝑉 = ⨁𝑡∈𝜏𝑉𝑡 , it is easily to show 𝑉 ↪⨁ 𝐻. Thus,  𝐻 = 𝑈 + 𝑉 and 𝑈 ∩ 𝑉 =⊕𝑡∈𝜏 (𝑈 ∩ 𝐻𝑡) ∩

(⊕𝑡∈𝜏 𝑉𝑡) =⊕𝑡∈𝜏 (𝑈 ∩ 𝑉𝑡) ↪⊕𝑡∈𝜏 𝑅𝑎𝑑𝑔(𝑉𝑡) = 𝑅𝑎𝑑𝑔(𝑉) by Lemma 1.2, as required.                                                                           
 

Proposition 6.13. Assume 𝐻 ∈ 𝐷𝐺𝑅𝑆, then 𝐻 = 𝐻1⨁𝐻2 such that 𝐻1 is semisimple and 𝐻2 ∈ Mod-ℛ has essential 

generalized radical.  

Proof. According to [9, Proposition 2.13].    
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Theorem 6.14. If 𝑀 ∈ Mod-ℛ has (𝐷3), then the next are coincide.    

(i) 𝑇 ∈ 𝐷𝐺𝑅𝑆, for each 𝑇 ↪⨁ 𝑀.  

(ii) 𝑀 ∈ 𝐷𝐺𝑅𝑆.  

(iii) 𝑀 = 𝑀1⨁𝑀2 where 𝑀1 is semisimple and 𝑀2 ∈ 𝐷𝐺𝑅𝑆 with 𝑅𝑎𝑑𝑔(𝑀2) ↪𝑒 𝑀2. 

(iv) 𝑀 = 𝑀1⨁𝑀2 where 𝑀1 in 𝐷𝐺𝑅𝑆 and 𝑀2 ∈ Mod-ℛ with 𝑅𝑎𝑑𝑔(𝑀2) = 𝑀2.  

Proof. (𝒊𝒊) ⟹ (𝒊) Directly from Proposition 6.3.  

(𝒊) ⟹ (𝒊𝒊𝒊) Directly from Proposition 6.13 and part (𝑖).   

(𝒊𝒊𝒊) ⟹ (𝒊𝒊) Directly from Proposition 5.7. 

(𝒊) ⟹ (𝒊𝒗) As 𝑀 ∈ 𝐷𝐺𝑅𝑆 and 𝑅𝑎𝑑𝑔(𝑀) ↪ 𝑀, then ∃ 𝑀1, 𝑀2 ↪ 𝑀 such that  𝑀 = 𝑀1⨁𝑀2, 𝑅𝑎𝑑𝑔(𝑀) + 𝑀1 = 𝑀 and 

𝑅𝑎𝑑𝑔(𝑀) ∩ 𝑀1 ↪ 𝑅𝑎𝑑𝑔(𝑀1). It follows 𝑀1 ∈ 𝐷𝐺𝑅𝑆, by (𝑖). From Lemma 1.2, we deduce that 𝑀 = 𝑀1⨁𝑅𝑎𝑑𝑔(𝑀2) 

and then 𝑅𝑎𝑑𝑔(𝑀2) = 𝑀2.    

(𝒊𝒗) ⟹ (𝒊𝒊) Directly from Propositions 5.2 and 5.7.       
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