

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

About e-gH modules

Osama Basim Mohammed^a, Thaar Younis Ghawi^b

^aDepartment of Mathematics, College of Education, University of Al-Qadisiyah, Iraq, E-mail: edu-math.post26@qu.edu.iq

^bDepartment of Mathematics, College of Education, University of Al-Qadisiyah, Iraq, E-mail: thar.younis@qu.edu.iq

ARTICLEINFO

ABSTRACT

Article history: Received: 03/02/2023 Rrevised form: 25/03/2023 Accepted : 30/03/2023 Available online: 31/03/2023

Keywords:

Hopfian modules e-gH modules Right e-domin ring

https://doi.org/10.29304/jqcm.2023.15.1.1174

1. Introduction

Throughout this paper, all modules are unitary left R-modules and R is an associative ring with identity. A nonzero submodule $S \leq M$ is said to be essential in M denoted by $S \leq M$, if $N \cap S \neq 0$ for every nonzero submodule N of M [2]. A submodule E of M is called small (e-small) denoted by $E \ll M$ (resp. $E \ll_e M$) if for every (essential) submodule N of M with the property M = E + N implies N = M [13]. A module $M \neq 0$ is called uniform if for every submodule E of M with $E \neq 0$, then E is essential [2]. M is called generalized hollow if any proper submodule of M is e-small in M [4]. The endomorphisms of modules it has been studied in many authors. V.A. Hiremath introduced the concept of Hopfian module, defined as a module M is called Hopfian if for every surjective R-endomorphism of M is an isomorphism [5]. In [1] Gorbani and Haghany introduced generalized for Hopfian called generalized Hopfian (gH), a module, is said to be gH if it has a small kernel for every surjective R-endomorphism of M. K. Varadarajan in 1992 introduced the concept of co-Hopfian module, defined as a module M is called Hopfian if for every injective R-endomorphism of M is an isomorphism [12]. In [8] introduced a proper generalized for Hopfian called e-gH module. A module is said to be e-gH if for every surjective *R*-endomorphism of *M* has an *e*-small kernel. In section 2. We proved some relation between *e*-gH module and some other concepts. We show that every semisimple module is *e*-gH, we give a case that make the concepts e-gH and gH modules are identical. Theorem 2.12 showed the equivalent between Hopfian and e-gH. Also introduced a new definition in section 2 called it right *e*-domin ring defined as, a nonzero ring *R* is called a right *e*-domain if, $r_R(x) \ll_e R_R$ for any nonzero element $x \in R$ where $r_R(x)$ denote the right annihilator of x in R. In the same section showed the relation between Hopfian module, semi-Hopfian (see [10]) and e-gH. We also showed the e-gH property of M[x] as an R[x] module. Finally, we investigate the behavior of *e*-gH module under localization.

Communicated by:

This article introduced and explored the concept of the *e*-gH module and its relation to many other module types.

MSC. 16D10, 16D70, 16D99

^{*}Corresponding author: Osama Basim Mohammed

Email addresses: edu-math.post26@qu.edu.iq

2. e-gH modules and adjacent concepts

Start with these results.

Proposition 2.1. Every generalized hollow module is *e*-gH.

Proof: Let *M* be a generalized hollow module and $\varphi: M \to M$ an epimorphism. So we have that $ker\varphi \ll_e M$ and hence *M* is an e-gH module.

Remark 2.2. The reverse of Proposition 2.1, is not necessary, in general, as the following example shows: From [8, Remarks and Examples 2.2(6)], the \mathbb{Z} -module \mathbb{Z} is e-gH, but it is not generalized hollow, since (0) is the only e-small submodule of \mathbb{Z} as a \mathbb{Z} -module.

In following, we will give a case that make the concepts *e*-gH and gH modules are identical.

Proposition 2.3. Let *M* be an indecomposable module, then *M* is gH if and only if it is e-gH.

Proof: The necessity is follows by [8, Remarks and Examples 2.2(1)]. Conversely, let M be an e-gH module and $\varphi: M \to M$ an epimorphism. Therefore, $ker\varphi \ll_e M$. It follows that $ker\varphi \neq M$, since if, $ker\varphi = M$ then $\varphi = 0$ which implies φ is not an epimorphism, a contradiction. By [3, Proposition 3.7], $ker\varphi \ll M$ and hence M is gH.

Corollary 2.4. If *M* is a uniform module, then *M* is gH if and only if it is *e*-gH.

Proof: By [7, Examples 3.51(1)], since any uniform module is indecomposable. \Box

Proposition 2.5. If *M* is a semisimple module, then *M* is *e*-gH.

Proof: Let *M* be a semisimple module and let $f \in End(M)$ be an epimorphism. To prove $kerf \ll_e M$, let $L \leq M$ such that kerf + L = M. Since *M* is semisimple, so the only essential submodule of *M* is itself, that is L = M. Thus, $ker\varphi \ll_e M$ and hence *M* is *e*-gH.

The reverse of Proposition 2.5, is generally incorrect, as the following example shows.

Example 2.6. For all prime number p, it is well known that \mathbb{Z}_{p^2} as a \mathbb{Z} -module is Noetherian, thus it is *e*-gH by [8, Remarks and Examples 2.2(3)]. While \mathbb{Z}_{p^2} is not semisimple as a \mathbb{Z} -module, because is not a direct summand of \mathbb{Z}_{p^2} for all prime p.

Corollary 2.7. Every simple module is *e*-gH.

Proof: It follows directly by Proposition 2.5.

Remark 2.8. The reverse of Corollary 2.7, is generally incorrect, as example shows: by [8, Remarks and Examples 2.2(6)] the \mathbb{Z} -module \mathbb{Z} is *e*-gH and it is not simple. \Box

Theorem 2.9. Let *M* be an *e*-gH module. If $g: M \to M \oplus \dot{M}$ is an epimorphism for some module \dot{M} , then \dot{M} is semisimple.

Proof. Let $g: M \to M \oplus \dot{M}$ be an epimorphism for some module \dot{M} . Consider the projection map $\rho: M \oplus \dot{M} \to M$. Then $\rho g \in End(M)$ and $ker(\rho g) = g^{-1}(ker\rho) = g^{-1}(0 \oplus \dot{M})$. Since M is e-gH, then $g^{-1}(0 \oplus \dot{M}) \ll_e M$. By [13, Proposition 2.5,(2)], we have that $0 \oplus \dot{M} = g(g^{-1}(0 \oplus \dot{M})) \ll_e M \oplus \dot{M}$. Thus, $\dot{M} \ll_e \dot{M}$ by [13, Proposition 2.5,(3)]. Therefore \dot{M} is a semisimple module, by [11, Lemma 2.4]. \Box

By compare between Proposition 2.5 and Theorem 2.9, we have:

Corollary 2.10. Let *M* be an *e*-gH module. If $g: M \to M \oplus \hat{M}$ is an epimorphism for some module \hat{M} , then \hat{M} is *e*-gH.

Theorem 2.11. Let *R* be a ring. Then the following are equivalent.

(1) Each *R*-module is *e*-gH.

- (2) Each projective *R*-module is *e*-gH.
- (3) Each free *R*-module is *e*-gH.

(4) R is semisimple.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ holds.

(3) \Rightarrow (4) By [6, Lemma 4.4.3], $R^{\mathbb{N}}$ is a free *R*-module and so is *e*-gH, by (3). As $R^{\mathbb{N}} \cong R^{\mathbb{N}} \oplus R^{\mathbb{N}}$, Theorem 2.9, implies $R^{\mathbb{N}}$ is semisimple. Therefore *R* is semisimple.

(4) \Rightarrow (1) Suppose that *R* be a semisimple ring. From [6, Corollary 8.2.2], any *R*-module *M* is semisimple, and hence by Proposition 2.5, *M* is *e*-gH. \Box

Theorem 2.12. Consider the following for an *R*-module *M*:

(1) M is Hopfian.

(2) *M* is *e*-gH.

(3) *M* is Dedekind finite.

Then $(1) \Rightarrow (2) \Rightarrow (3)$. If *M* is quasi-projective, then $(3) \Rightarrow (1)$.

Proof. (1) \Rightarrow (2) [8, Remarks and Examples 2.2(2)].

 $(2) \Rightarrow (3)$ Assume $f, g \in End(M)$ such that fg = 1. It follows that g is injective and f is surjective. Thus, M = fg(M) = f(g(M)). By [8, Theorem 2.3], we have that M = g(M), that means g is invertible. Hence gf = 1. Therefore End(M) is a Dedekind finite ring. So (3), holds.

(3) ⇒ (1) Let $g \in End(M)$ be a surjective. As M is quasi-projective, then there is an $h \in End(M)$ such that gh = 1. By (3), hg = 1. Thus g is an injective and this complete the proof. □

Proposition 2.13. Every nonzero e-small quasi-Dedekind module is e-gH.

Proof. Let $M \neq 0$ be an *e*-small quasi-Dedekind module, and let $f \in End(M)$ be a surjective. Then $f \neq 0$. By assumption, $kerf \ll_e M$ and hence M is *e*-gH. \Box

Example 2.14. The convers of Proposition 2.13, is generally incorrect. Consider \mathbb{Z}_{12} as \mathbb{Z} -module. Then the set of all surjective endomorphisms of \mathbb{Z}_{12} are $f_1(\bar{x}) = \bar{x}$, $f_2(\bar{x}) = 5\bar{x}$, $f_3(\bar{x}) = 7\bar{x}$ and $f_4(\bar{x}) = 11\bar{x}$ which has zero kernel (i.e., $kerf_i = 0 \ll_e \mathbb{Z}_{12}$ for all i = 1,2,3,4). Therefore \mathbb{Z} -module \mathbb{Z}_{12} is *e*-gH. Now, let $g: \mathbb{Z}_{12} \to \mathbb{Z}_{12}$ defined by $f(\bar{x}) = 4\bar{x}$ for all $\bar{x} \in \mathbb{Z}_{12}$. Then $0 \neq g \in End(\mathbb{Z}_{12})$, but $kerg = 3\mathbb{Z}_{12}$ is not *e*-small in \mathbb{Z}_{12} (in fact $3\mathbb{Z}_{12} + 2\mathbb{Z}_{12} = \mathbb{Z}_{12}$ while $2\mathbb{Z}_{12}$ is a proper essential in \mathbb{Z}_{12}). This mean \mathbb{Z}_{12} is not *e*-small quasi-Dedekind \mathbb{Z} -module.

Recall that an *R*-module *M* is anti-Hopfian if *M* is non-simple and all nonzero factor modules of *M* are isomorphic to *M*

Proposition 2.15. Let *M* be an anti-Hopfian module. Then *M* is *e*-gH if and only if *M* is generalized Hollow. **Proof.** Assume that *M* is an *e*-gH module and *N* any proper submodule of *M*. If N = 0, then *N* is *e*-small in *M*. Let $N \neq 0$. We have $M/N \neq N$, so by assumption $M/N \cong M$. By [8, Theorem 2.19], *N* is an *e*-small submodule of *M*. Therefore *M* is generalized Hopfian. The converse is proved in Proposition 2.1. \Box

Proposition 2.16. Let *M* be a quasi-projective module. If *M* is co-Hopfian then it is Hopfian, and so *e*-gH.

Proof. Assume $g \in End(M)$ is an epimorphism. As M is a quasi-projective module, then there exists an $h \in End(M)$ such that gh = 1, then gh is an injective and so is h. As M is co-Hopfian, so h is automorphism, i.e., h is a surjective. Now, if $x \in kerg$, then $x \in M$ and g(x) = 0. As $h: M \to M$ is a surjective, then h(a) = x for some $a \in M$. Then 0 = g(x) = g(h(a)) = gh(a), so $a \in kergh = 0$ implies x = h(0) = 0. Hence kerg = 0, i.e., g is an injective and hence M is Hopfian. By [8, Remarks and Examples 2.2(2)], M is e-gH. \Box

Theorem 2.17. Let *M* be a module, consider the following cases:

(1) if $g \in End(M)$ is a surjective, then kerg is semisimple.

(2) if $g \in End(M)$ has a right inverse, then kerg is semisimple.

(3) if $g \in End(M)$ has a right inverse, then $kerg \ll_e M$.

(4) *M* is *e*-gH.

Then $(1) \Rightarrow (2) \Rightarrow (3)$. If *M* is quasi-projective, then $(3) \Rightarrow (4) \Rightarrow (1)$.

Proof. (1) \Rightarrow (2) Let $g \in End(M)$ has a right inverse. Thus gf = 1 for some $f \in End(M)$. Therefore $g \in End(M)$ is a surjective, and so *kerg* is semisimple, by (1).

 $(2) \Rightarrow (3)$ Let $g \in End(M)$ has a right inverse. By (2), kerg is semisimple. To show that $kerg \ll_e M$. Let kerg + L = M for some $L \leq M$. As $kerg \cap L \leq kerg$, then $(kerg \cap L) \oplus T = kerg$ for some $T \leq kerg$. Then M = T + L. Also, $T \cap L \subseteq kerg \cap L$ and $T \cap L \subseteq T$ implies $T \cap L \subseteq (kerg \cap L) \cap T = 0$. Then $T \oplus L = M$. Thus, $L \leq \oplus M$ and $M/L \cong T$ is semisimple, and hence $kerg \ll_e M$, by [13, Proposition 2.3].

 $(3) \Rightarrow (4)$ Assume $g \in End(M)$ is a surjective. Since M is quasi-projective, then there is an $h \in End(M)$ such that gh = 1, i.e., $g \in End(M)$ has a right inverse. By (3), $kerg \ll_e M$ and hence M is e-gH.

 $(4) \Rightarrow (1)$ Assume $g \in End(M)$ is a surjective. So by (4), $kerg \ll_e M$. Since *M* is quasi-projective, then *g* has a right inverse $h \in End(M)$, i.e., gh = 1. Thus, we have that kerg = (1 - hg)(M), to see this; if $x \in kerg$ then g(x) = 0 and hence hg(x) = 0. So, $x = x - hg(x) \in M - hg(M) = (1 - hg)(M)$, therefore $kerg \subseteq (1 - hg)(M)$. Now, let $y \in (1 - hg)(M)$ then y = m - hg(m) for some $m \in M$. So, g(y) = g(m) - gh(g(m)) = g(m) - g(m) = 0, then $y \in kerg$. This means $(1 - hg)(M) \subseteq kerg$ and then kerg = (1 - hg)(M). Then kerg + hg(M) = M. Also, if $x \in kerg \cap hg(M)$ then g(x) = 0 and x = hg(m) for some $m \in M$. So 0 = g(x) = gh(g(m)) = g(m), thus x = h(g(m)) = h(0) = 0. It follows that $kerg \oplus hg(M) = M$. By [13, Proposition 2.3], kerg is semisimple. \Box

Corollary 2.18. Let *M* be a projective module. Then the following are equivalent.

(1) if g ∈ End(M) is a surjective, then kerg is semisimple.
(2) if g ∈ End(M) has a right inverse, then kerg is semisimple.
(3) if g ∈ End(M) has a right inverse, then kerg ≪_e M.
(4) M is e-gH.

Now, we present the following definition.

Definition 2.19. A nonzero ring *R* is called a right *e*-domain if, $r_R(x) \ll_e R_R$ for any nonzero element $x \in R$.

Proposition 2.20. Let *R* be a nonzero right *e*-domain ring. Then every nonzero principal right ideal *I* of *R* is *e*-small quasi-Dedekind.

Proof. Let $0 \neq a \in R$. Put I = aR, $\psi : I \to I$ is a nonzero *R*-homomorphism and $x = \psi(a)$. Hence $ker\psi = \{ar \in I: f(ar) = 0\} = \{ar \in I: xr = 0\} = a.r_R(x)$. We have $0 \neq x$ (since if x = 0, then for all $at \in I$, $\psi(at) = xt = 0$. t = 0, then $at \in ker\psi$ and so $ker\psi = I$. Thus, $\psi(I) = \psi(ker\psi) = 0$, a contradiction). Since $x \neq 0$ and *R* a right *e*-domain, so $r_R(x) \ll_e R_R$. If $f: R \to I$ is given by left multiplication by *a*, i.e., f(r) = ar for all $r \in R$. Then $f(r_R(x)) = a.r_R(x) \ll_e I$, by [13, Proposition 2.5(2)], and hence $ker\psi \ll_e I$. Thus *I* is *e*-small quasi-Dedekind. \Box

Corollary 2.21. In a nonzero right *e*-domain ring, every nonzero principal right ideal is *e*-gH. *Proof.* It follows directly by Propositions 2.20 and 2.13. \Box

Corollary 2.22. Every nonzero right *e*-domain ring is *e*-gH.

Proof. Let $R = \langle 1 \rangle$ be a nonzero right *e*-domain ring. By Corollary 2.21, *R* is an *e*-gH. \Box

Proposition 2.23. Let *M* be an *R*-module. If for all regular $f \in End(M)$ has an *e*-small kernel, then *M* is *e*-gH. **Proof.** Let $f \in End(M)$ be a surjective. Then fff(M) = ff(f(M)) = f(f(M)) = f(M), i.e., *f* is regular, so by assumption $kerf \ll_e M$, and hence *M* is *e*-gH. \Box

The converse of Proposition 2.23, is generally incorrect, as the following example shows.

Example 2.24. Suppose that \mathbb{Z}_{12} as \mathbb{Z} -module. By Example 2.14, \mathbb{Z}_{12} is *e*-gH \mathbb{Z} -module. Now, let $g \in End(\mathbb{Z}_{12})$ defined by $g(\bar{x}) = 4\bar{x}$ for all $\bar{x} \in \mathbb{Z}_{12}$. Thus $g(\mathbb{Z}_{12}) = \{\bar{0}, \bar{4}, \bar{8}\}$, so $gg(\mathbb{Z}_{12}) = g(\{\bar{0}, \bar{4}, \bar{8}\}) = \{\bar{0}, \bar{4}, \bar{8}\}$, and hence $ggg(\mathbb{Z}_{12}) = g(gg(\mathbb{Z}_{12})) = g(\{\bar{0}, \bar{4}, \bar{8}\}) = \{\bar{0}, \bar{4}, \bar{8}\}$. Therefore g is regular. But $kerg = 3\mathbb{Z}_{12}$ is not *e*-small in \mathbb{Z}_{12} .

Proposition 2.25. Let *M* be a uniform *R*-module. Then *M* is Hopfian if and only if *M* semi-Hopfian and *e*-gH.

Proof. The necessity is clear. Assume *M* is a semi-Hopfian and *e*-gH *R*-module. If $f \in End(M)$ is a surjective. Then $kerf \leq^{\oplus} M$ and $kerf \ll_e M$. Thus, $kerf \oplus L = M$, i.e., kerf + L = M and $kerf \cap L = 0$ for some $L \leq M$. Since *M* uniform, then $L \leq M$ and hence L = M, as $kerf \ll_e M$. So $kerf = kerf \cap M = 0$, i.e., *f* is an injective. Therefore *M* is a Hopfian *R*-module. \Box

Suppose *M* is an *R*-module. The set $\{\sum m_i x^i | m_i \in M, i \in (I \text{ is any index set})\}$ is denoted by M[x]. Then M[x] can be as a right R[x]-module. This module is called polynomial module.

We now need to proof the following simple fact.

Lemma 2.26. Let *M* be an *R*-module. If $N \trianglelefteq M$ as *R*-module, then $N[x] \oiint M[x]$ as R[x]-module.

Proof. Let $0 \neq f = m_{\circ} + m_1 x + m_2 x^2 + \dots + m_k x^k \in M[x]$, where $k \in \mathbb{N}$. If $m_{\circ} \neq 0$, there exists an $r_{\circ} \in R$ such that $0 \neq m_{\circ}r_{\circ} \in N$ (as $N \trianglelefteq M$). If $m_i r_{\circ} = 0$ for all $1 \le i \le t$, then $fr_{\circ} = m_{\circ}r_{\circ}$, that is $0[x] \neq fr_{\circ} \in N[x]$, and the proof is ends. Let $m_1 r_{\circ} \neq 0$, then there exists an $r_1 \in R$ such that $0 \neq m_1 r_{\circ}r_1 \in N$ (as $N \trianglelefteq M$). Continuing with this argument, we get $r \in R$ such that $0[x] \neq fr \in N[x]$. Hence $N[x] \trianglelefteq M[x]$. \Box

Proposition 2.27. Let *M* be an *R*-module. If M[x] is *e*-gH as R[x]-module, then *M* is *e*-gH as *R*-module. **Proof.** Assume that $\psi: M \to M$ is an *R*-epimorphism. Define the *R*-homomorphism $\psi[x]: M[x] \to M[x]$ by $\psi[x](\sum m_i x^i) = \sum \psi(m_i) x^i$. Let $\sum m_i x^i \in M[x]$. Since ψ is a surjective map, so for any $m_i \in M$ there is $n_i \in M$ such that $\psi(n_i) = m_i$, then $\psi[x](\sum n_i x^i) = \sum \psi(n_i) x^i = \sum m_i x^i$, that means $\psi[x]$ is a surjective. Therefore $ker(\psi[x]) = ker\psi[x] \ll_e M[x]$. To prove that $ker\psi \ll_e M$. Let $L \trianglelefteq M$ such that $ker\psi + L = M$, then $ker(\psi[x]) + L[x] = (ker\psi + L)[x] = M[x]$. From Lemma 2.26, $L[x] \trianglelefteq M[x]$, then L[x] = M[x] (as $ker(\psi[x]) \ll_e M[x]$) so L = M, thus $ker\psi \ll_e M$. Hence *M* is *e*-gH as *R*-module. \Box

Now, we will investigate the behavior of *e*-gH module under localization.

Proposition 2.28. Let *M* be an *R*-module and *S* is a multiplicative closed subset of *R*, such that $\mathcal{L}(L) \cap S = \emptyset$ for any $L \leq M$. If $S^{-1}M$ is *e*-gH as $S^{-1}R$ -module, then *M* is *e*-gH as *R*-module.

Proof. Suppose that $f: M \to M$ is an *R*-epimorphism. Define $S^{-1}R$ -endomorphism $S^{-1}f: S^{-1}M \to S^{-1}M$ by $S^{-1}f\left(\frac{m}{s}\right) = \frac{f(m)}{s}$ for all $m \in M$, $s \in S$. Then we have $Im(S^{-1}f) = S^{-1}(Imf) = S^{-1}M$, then $S^{-1}f$ is an $S^{-1}R$ -epimorphism. As $S^{-1}M$ is *e*-gH, thus $ker(S^{-1}f) = S^{-1}(kerf) \ll_e S^{-1}M$ and so $kerf \ll_e M$, by [9, Lemma 2.3.3(2)]. Hence *M* is *e*-gH. \Box

Proposition 2.29. Let *M* be an *R*-module and *S* is a multiplicative closed subset of *R*, such that for all proper submodule *N* of *M*, $[N:_M s] = N$, for all $s \in S$. If $S^{-1}M$ is *e*-gH as $S^{-1}R$ -module, then *M* is *e*-gH as *R*-module. **Proof.** By [9, Lemma 2.3.9(2)], the proof is analogues to proof Proposition 2.28.

Conclusion

There are many communication between the e-gH module and modules of other classes. Future desires have deeper outcomes for the questions posed in this work.

References

[1] A. Ghorbani and A. Haghany, Generalized Hopfian modules, Journal of Algebra 255 (2002), pp. 324-341.

[4] I. M-A. Hadi and S. H. Aidi, e-Hollow modules, Int. J. of Advanced Sci. and Technical Research, issue 5, 3(2015), pp.453-461.

[6] F. Kasch, Modules and rings, Academic press, New York, (1982).

^[2] K. R. Goodearl, Ring theory, Nonsingular Rings and Modules, Dekker, Newyork, (1976).

^[3] I. M-A. Hadi and S. H. Aidi, On e-small submodules, Ibn Al-Haitham Jour. for Pure & Appl. Sci., 28(3) (2015), pp.214-222.

^[5] V. A. Hiremath, Hopfian rings and Hopfian modules, Indian J. Pure Appl. Math. 17 (1986), pp. 895-900.

^[7] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer, New York, 1999.

^[8] O. B. Mohammed and T. Y. Ghawi, Modules in which every surjective endomorphism has an e-small kernel, Journal of Kufa for Mathematics and Computer, to appear, 2023.

^[9] M. M. Obaid, Principally g-Supplemented Modules and Some Related Concepts, M. Sc. Thesis, College of Education, University of Al-Qadisiyah, Iraq, 2022.

^[10] A. Pinar and A. Ç. Özcan, Semi co-Hopfian and Semi Hopfian Modules, East-West J. of Mathematics: 10(1) (2008), pp.57-72.

^[11] L. V. Thuyet and P. H. Tin, Some characterizations of modules via essentially small submodules, Kyungpook Math. J. 56(2016), pp.1069-1083.

^[12] K. Varadarajan, Hopfian and co-Hopfian objects, Publ. Mat. 36 (1992), p. 293-317.

^[13] D. X. Zhou and X.R. Zhang, Small-Essential submodules and Morita Duality, Southeast Asian Bulletin of Mathematics, 35(2011), pp.1051-1062.