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1. Introduction 

     Throughout this paper, all modules are unitary left 𝑅-modules and 𝑅 is an associative ring with identity. A nonzero 

submodule 𝑆 ≤ 𝑀 is said to be essential in 𝑀 denoted by 𝑆 ⊴ 𝑀, if 𝑁 ∩ 𝑆 ≠ 0 for every nonzero submodule 𝑁 of 𝑀 [2]. A 

submodule 𝐸 of 𝑀 is called small (𝑒-small) denoted by 𝐸 ≪ 𝑀 (resp. 𝐸 ≪𝑒 𝑀) if for every (essential) submodule 𝑁 of 𝑀 

with the property 𝑀 = 𝐸 + 𝑁 implies 𝑁 = 𝑀 [13]. A  module 𝑀 ≠ 0 is called uniform if for every  submodule 𝐸 of  𝑀 

with 𝐸 ≠ 0, then 𝐸 is essential [2]. 𝑀 is called generalized hollow if any proper submodule of 𝑀 is 𝑒-small  in 𝑀 [4]. The 

endomorphisms of modules it has been studied in many authors. V.A. Hiremath introduced the concept of Hopfian module, 

defined as a module 𝑀 is called Hopfian if for every surjective 𝑅-endomorphism of 𝑀 is an isomorphism [5]. In [1] 
Gorbani and Haghany introduced generalized for Hopfian called generalized Hopfian (gH), a module, is said to be gH if it 

has a small kernel for every surjective 𝑅-endomorphism of 𝑀. K. Varadarajan in 1992 introduced the concept of co-

Hopfian module, defined as a module 𝑀 is called Hopfian if for every injective 𝑅-endomorphism of 𝑀 is an isomorphism 

[12]. In [8] introduced a proper generalized for Hopfian called 𝑒-gH module. A module is said to be 𝑒-gH if for every 

surjective         𝑅-endomorphism of 𝑀 has an 𝑒-small kernel. In section 2. We proved some relation between 𝑒-gH module 

and some other concepts. We show that every semisimple module is 𝑒-gH, we give a case that make the concepts e-gH 

and gH modules are identical. Theorem 2.12 showed the equivalent between Hopfian and 𝑒-gH. Also introduced a new 

definition in section 2 called it right 𝑒-domin ring defined as, a nonzero ring 𝑅 is called a right 𝑒-domain if, 𝑟𝑅(𝑥) ≪𝑒 𝑅𝑅  

for any nonzero element 𝑥 ∈ 𝑅 where 𝑟𝑅(𝑥) denote the right annihilator of 𝑥 in 𝑅. In the same section showed the 

relation between Hopfian module, semi-Hopfian (see [10]) and 𝑒-gH. We also showed the 𝑒-gH property of 𝑀[𝑥] as 

an 𝑅[𝑥] module. Finally, we investigate the behavior of e-gH module under localization.  
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2. 𝒆-gH modules and adjacent concepts  

Start with these results. 

 

Proposition 2.1. Every generalized hollow module is e-gH. 

Proof: Let 𝑀 be a generalized hollow module and 𝜑: 𝑀 → 𝑀 an epimorphism. So we have that 𝑘𝑒𝑟𝜑 ≪𝑒 𝑀 and 

hence 𝑀 is an e-gH module.  
 

Remark 2.2. The reverse of Proposition 2.1, is not necessary, in general, as the following example shows: From [8, 

Remarks and Examples 2.2(6)], the ℤ-module ℤ is e-gH, but it is not generalized hollow, since (0) is the only e-small 

submodule of  ℤ as a ℤ-module.  
     

   In following, we will give a case that make the concepts e-gH and gH modules are identical.   
 

Proposition 2.3. Let  𝑀 be an indecomposable module, then 𝑀 is gH if and only if it is e-gH. 

Proof: The necessity is follows by [8, Remarks and Examples 2.2(1)]. Conversely, let  𝑀 be an e-gH module and 

𝜑: 𝑀 → 𝑀 an epimorphism. Therefore, 𝑘𝑒𝑟𝜑 ≪𝒆 𝑀. It follows that 𝑘𝑒𝑟𝜑 ≠ 𝑀, since if, 𝑘𝑒𝑟𝜑 = 𝑀 then 𝜑 = 0 which 

implies 𝜑 is not an epimorphism, a contradiction. By [3, Proposition 3.7],  𝑘𝑒𝑟𝜑 ≪ 𝑀 and hence 𝑀 is gH.  
 

Corollary 2.4. If 𝑀 is a uniform module, then 𝑀 is gH if and only if it is 𝑒-gH. 

Proof: By [7, Examples 3.51(1)], since any uniform module is indecomposable.     
 

Proposition 2.5. If 𝑀 is a semisimple module, then 𝑀 is e-gH. 

Proof: Let 𝑀 be a semisimple module and let 𝑓 ∈ 𝐸𝑛𝑑(𝑀) be an epimorphism. To prove 𝑘𝑒𝑟𝑓 ≪𝑒 𝑀, let 𝐿 ⊴ 𝑀 such 

that 𝑘𝑒𝑟𝑓 + 𝐿 = 𝑀. Since 𝑀 is semisimple, so the only essential submodule of 𝑀 is itself, that is 𝐿 = 𝑀. Thus, 

𝑘𝑒𝑟𝜑 ≪𝑒 𝑀 and hence 𝑀 is e-gH.  
 

   The reverse of Proposition 2.5, is generally incorrect, as the following example shows. 
 

Example 2.6. For all prime number 𝑝, it is well known that ℤ𝑝2 as a ℤ-module is Noetherian, thus it is e-gH by [8, 

Remarks and Examples 2.2(3)]. While ℤ𝑝2 is not semisimple as a ℤ-module, because < 𝑝 > is not a direct summand 

of ℤ𝑝2 for all prime 𝑝.   
 

Corollary 2.7. Every simple module is e-gH. 

Proof: It follows directly by Proposition 2.5.  
 

Remark 2.8. The reverse of Corollary 2.7,  is generally incorrect, as example shows: by [8, Remarks and Examples 

2.2(6)] the ℤ-module ℤ is e-gH and  it is not simple.  
 

Theorem 2.9. Let 𝑀 be an e-gH module. If 𝑔: 𝑀 → 𝑀⨁�́� is an epimorphism for some module �́�, then �́� is 

semisimple.     

Proof. Let 𝑔: 𝑀 → 𝑀⨁�́� be an epimorphism for some module �́�. Consider the projection map 𝜌: 𝑀⨁�́� → 𝑀. Then 

𝜌𝑔 ∈ 𝐸𝑛𝑑(𝑀) and 𝑘𝑒𝑟 (𝜌𝑔) = 𝑔−1(𝑘𝑒𝑟𝜌) = 𝑔−1(0⨁�́�). Since 𝑀 is e-gH, then 𝑔−1(0⨁�́�) ≪𝑒 𝑀. By [13, Proposition 

2.5,(2)], we have that 0⨁�́� = 𝑔(𝑔−1(0⨁�́�)) ≪𝑒 𝑀⨁�́�. Thus, �́� ≪𝑒 �́� by [13, Proposition 2.5,(3)]. Therefore �́� is 

a semisimple module, by [11, Lemma 2.4].   
 

By compare between Proposition 2.5 and Theorem 2.9, we have:  
 

Corollary 2.10. Let 𝑀 be an e-gH module. If 𝑔: 𝑀 → 𝑀⨁�́� is an epimorphism for some module �́�, then �́� is e-gH. 
     

 Theorem 2.11. Let 𝑅 be a ring. Then the following are equivalent. 

(1) Each 𝑅-module is e-gH.  

(2) Each projective 𝑅-module is e-gH. 

(3) Each free 𝑅-module is e-gH. 

(4) 𝑅 is semisimple.  

Proof. (1) ⟹ (2) ⟹ (3) holds.  

(3) ⟹ (4) By [6, Lemma 4.4.3], 𝑅ℕ is a free 𝑅-module and so is e-gH, by (3). As 𝑅ℕ ≅ 𝑅ℕ⨁𝑅ℕ, Theorem 2.9, implies 

𝑅ℕ is semisimple. Therefore  𝑅 is semisimple.  

(4) ⟹ (1) Suppose that 𝑅 be a semisimple ring. From [6, Corollary 8.2.2], any 𝑅-module 𝑀 is semisimple, and hence 

by Proposition 2.5, 𝑀 is e-gH.   
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Theorem 2.12. Consider the following for an 𝑅-module 𝑀: 

(1) 𝑀 is Hopfian. 

(2) 𝑀 is e-gH. 

(3) 𝑀 is Dedekind finite. 

Then (1) ⟹ (2) ⟹ (3). If 𝑀 is quasi-projective, then (3) ⟹ (1).  

Proof. (1) ⟹ (2) [8, Remarks and Examples 2.2(2)].  

(2) ⟹ (3) Assume 𝑓, 𝑔 ∈ 𝐸𝑛𝑑(𝑀) such that 𝑓𝑔 = 1. It follows that 𝑔 is injective and 𝑓 is surjective. Thus, 𝑀 =

𝑓𝑔(𝑀) = 𝑓(𝑔(𝑀)). By [8, Theorem 2.3], we have that 𝑀 = 𝑔(𝑀), that means 𝑔 is invertible. Hence 𝑔𝑓 = 1. 

Therefore 𝐸𝑛𝑑(𝑀) is   a Dedekind finite ring. So (3), holds. 

(3) ⟹ (1) Let 𝑔 ∈ 𝐸𝑛𝑑(𝑀) be a surjective. As 𝑀 is quasi-projective, then there is an ℎ ∈ 𝐸𝑛𝑑(𝑀) such that 𝑔ℎ = 1. 

By (3), ℎ𝑔 = 1. Thus 𝑔 is an injective and this complete the proof.   
 

 

Proposition 2.13. Every nonzero e-small quasi-Dedekind module is e-gH.  

Proof. Let 𝑀 ≠ 0 be an e-small quasi-Dedekind module, and let 𝑓 ∈ 𝐸𝑛𝑑(𝑀) be  a surjective. Then 𝑓 ≠ 0. By 

assumption, 𝑘𝑒𝑟𝑓 ≪𝑒 𝑀 and hence 𝑀 is e-gH.    
 

Example 2.14. The convers of Proposition 2.13, is generally incorrect. Consider ℤ12 as ℤ-module. Then the set of all 

surjective endomorphisms of ℤ12 are 𝑓1(�̅�) = �̅�, 𝑓2(�̅�) = 5�̅�, 𝑓3(�̅�) = 7�̅� and 𝑓4(�̅�) = 11�̅� which has zero kernel (i.e., 

𝑘𝑒𝑟𝑓𝑖 = 0 ≪𝑒 ℤ12 for all 𝑖 = 1,2,3,4). Therefore ℤ-module ℤ12 is e-gH. Now, let 𝑔: ℤ12 → ℤ12 defined by 𝑓(�̅�) = 4�̅� for 

all �̅� ∈  ℤ12. Then 0 ≠ 𝑔 ∈ 𝐸𝑛𝑑(ℤ12), but 𝑘𝑒𝑟𝑔 = 3ℤ12 is not e-small in ℤ12 (in fact 3ℤ12 + 2ℤ12 = ℤ12 while 2ℤ12 is   a 

proper essential in ℤ12). This mean ℤ12 is not e-small quasi-Dedekind ℤ-module.  
 

    Recall that an 𝑅-module 𝑀 is anti-Hopfian if 𝑀 is non-simple and all nonzero factor modules 

of 𝑀 are isomorphic to 𝑀 
 

Proposition 2.15.  Let 𝑀 be an anti-Hopfian module. Then 𝑀 is e-gH if and only if 𝑀 is generalized Hollow.  

Proof. Assume that 𝑀 is an e-gH module and 𝑁 any proper submodule of 𝑀. If 𝑁 = 0, then 𝑁 is e-small in 𝑀. Let 

𝑁 ≠ 0. We have 𝑀 𝑁⁄ ≠ 𝑁, so by assumption 𝑀 𝑁⁄ ≅ 𝑀. By [8, Theorem 2.19], 𝑁 is an e-small submodule of 𝑀. 

Therefore 𝑀 is generalized Hopfian. The converse is proved in Proposition 2.1.   
 

Proposition 2.16.  Let 𝑀 be a quasi-projective module. If 𝑀 is co-Hopfian then it is Hopfian, and so e-gH. 

Proof. Assume 𝑔 ∈ 𝐸𝑛𝑑(𝑀) is an epimorphism. As 𝑀 is a quasi-projective module, then there exists an ℎ ∈ 𝐸𝑛𝑑(𝑀) 

such that 𝑔ℎ = 1, then 𝑔ℎ is an injective and so is ℎ. As 𝑀 is co-Hopfian, so ℎ is automorphism, i.e., ℎ is a surjective. 

Now, if 𝑥 ∈ 𝑘𝑒𝑟𝑔, then 𝑥 ∈ 𝑀 and 𝑔(𝑥) = 0. As ℎ: 𝑀 → 𝑀 is a surjective, then ℎ(𝑎) = 𝑥 for some 𝑎 ∈ 𝑀. Then 0 =

𝑔(𝑥) = 𝑔(ℎ(𝑎)) = 𝑔ℎ(𝑎), so 𝑎 ∈ 𝑘𝑒𝑟𝑔ℎ = 0 implies 𝑥 = ℎ(0) = 0. Hence 𝑘𝑒𝑟𝑔 = 0, i.e., 𝑔 is an injective and hence 

𝑀 is Hopfian. By [8, Remarks and Examples 2.2(2)], 𝑀 is e-gH.    
 

Theorem 2.17. Let 𝑀 be a module, consider the following cases: 

(1) if 𝑔 ∈ 𝐸𝑛𝑑(𝑀) is a surjective, then 𝑘𝑒𝑟𝑔 is semisimple. 

(2) if 𝑔 ∈ 𝐸𝑛𝑑(𝑀) has a right inverse, then 𝑘𝑒𝑟𝑔 is semisimple. 

(3) if 𝑔 ∈ 𝐸𝑛𝑑(𝑀) has a right inverse, then 𝑘𝑒𝑟𝑔 ≪𝑒 𝑀. 

(4) 𝑀 is e-gH.   
 

Then (1) ⟹ (2) ⟹ (3). If 𝑀 is quasi-projective, then (3) ⟹ (4) ⟹ (1).   
 

Proof. (1) ⟹ (2) Let 𝑔 ∈ 𝐸𝑛𝑑(𝑀) has a right inverse. Thus 𝑔𝑓 = 1 for some 𝑓 ∈ 𝐸𝑛𝑑(𝑀). Therefore 𝑔 ∈ 𝐸𝑛𝑑(𝑀) is 

a surjective, and so 𝑘𝑒𝑟𝑔 is semisimple, by (1).   

(2) ⟹ (3) Let 𝑔 ∈ 𝐸𝑛𝑑(𝑀) has a right inverse. By (2), 𝑘𝑒𝑟𝑔 is semisimple. To show that 𝑘𝑒𝑟𝑔 ≪𝑒 𝑀. Let 𝑘𝑒𝑟𝑔 + 𝐿 =

𝑀 for some 𝐿 ≤ 𝑀. As 𝑘𝑒𝑟𝑔 ∩ 𝐿 ≤ 𝑘𝑒𝑟𝑔, then (𝑘𝑒𝑟𝑔 ∩ 𝐿)⨁𝑇 = 𝑘𝑒𝑟𝑔 for some 𝑇 ≤ 𝑘𝑒𝑟𝑔. Then 𝑀 = 𝑇 + 𝐿. Also, 𝑇 ∩

𝐿 ⊆ 𝑘𝑒𝑟𝑔 ∩ 𝐿 and 𝑇 ∩ 𝐿 ⊆ 𝑇 implies 𝑇 ∩ 𝐿 ⊆ (𝑘𝑒𝑟𝑔 ∩ 𝐿) ∩ 𝑇 = 0. Then 𝑇⨁𝐿 = 𝑀. Thus, 𝐿 ≤⨁ 𝑀 and 𝑀 𝐿⁄ ≅ 𝑇 is 

semisimple, and hence 𝑘𝑒𝑟𝑔 ≪𝑒 𝑀, by [13, Proposition 2.3].  

(3) ⟹ (4) Assume 𝑔 ∈ 𝐸𝑛𝑑(𝑀) is a surjective. Since 𝑀 is quasi-projective, then there is an ℎ ∈ 𝐸𝑛𝑑(𝑀) such that 

𝑔ℎ = 1, i.e., 𝑔 ∈ 𝐸𝑛𝑑(𝑀) has a right inverse.  By (3), 𝑘𝑒𝑟𝑔 ≪𝑒 𝑀 and hence 𝑀 is e-gH. 
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 (4) ⟹ (1) Assume 𝑔 ∈ 𝐸𝑛𝑑(𝑀) is a surjective. So by (4), 𝑘𝑒𝑟𝑔 ≪𝑒 𝑀. Since 𝑀 is quasi-projective, then 𝑔 has a right 

inverse ℎ ∈ 𝐸𝑛𝑑(𝑀), i.e., 𝑔ℎ = 1. Thus, we have that 𝑘𝑒𝑟𝑔 = (1 − ℎ𝑔)(𝑀), to see this; if 𝑥 ∈ 𝑘𝑒𝑟𝑔 then 𝑔(𝑥) = 0 and 

henec ℎ𝑔(𝑥) = 0. So, 𝑥 = 𝑥 − ℎ𝑔(𝑥) ∈ 𝑀 − ℎ𝑔(𝑀) = (1 − ℎ𝑔)(𝑀), therefore 𝑘𝑒𝑟𝑔 ⊆ (1 − ℎ𝑔)(𝑀). Now, let 𝑦 ∈

(1 − ℎ𝑔)(𝑀) then 𝑦 = 𝑚 − ℎ𝑔(𝑚) for some 𝑚 ∈ 𝑀. So, 𝑔(𝑦) = 𝑔(𝑚) − 𝑔ℎ(𝑔(𝑚)) = 𝑔(𝑚) − 𝑔(𝑚) = 0, then 𝑦 ∈

𝑘𝑒𝑟𝑔. This means   (1 − ℎ𝑔)(𝑀) ⊆ 𝑘𝑒𝑟𝑔 and then 𝑘𝑒𝑟𝑔 = (1 − ℎ𝑔)(𝑀). Then 𝑘𝑒𝑟𝑔 + ℎ𝑔(𝑀) = 𝑀.   Also, if 𝑥 ∈

𝑘𝑒𝑟𝑔 ∩ ℎ𝑔(𝑀) then 𝑔(𝑥) = 0 and 𝑥 = ℎ𝑔(𝑚) for some 𝑚 ∈ 𝑀. So 0 = 𝑔(𝑥) = 𝑔ℎ(𝑔(𝑚)) = 𝑔(𝑚), thus 𝑥 =

ℎ(𝑔(𝑚)) = ℎ(0) = 0. It follows that    𝑘𝑒𝑟𝑔⨁ℎ𝑔(𝑀) = 𝑀. By [13, Proposition 2.3], 𝑘𝑒𝑟𝑔 is semisimple.  
 

Corollary 2.18. Let 𝑀 be a projective module. Then the following are equivalent. 

(1) if 𝑔 ∈ 𝐸𝑛𝑑(𝑀) is a surjective, then 𝑘𝑒𝑟𝑔 is semisimple. 

(2) if 𝑔 ∈ 𝐸𝑛𝑑(𝑀) has a right inverse, then 𝑘𝑒𝑟𝑔 is semisimple. 

(3) if 𝑔 ∈ 𝐸𝑛𝑑(𝑀) has a right inverse, then 𝑘𝑒𝑟𝑔 ≪𝑒 𝑀. 

(4) 𝑀 is e-gH.      

 

Now, we present the following definition.  
 

Definition 2.19. A nonzero ring 𝑅 is called a right 𝑒-domain if, 𝑟𝑅(𝑥) ≪𝑒 𝑅𝑅 for any nonzero element 𝑥 ∈ 𝑅. 
 

Proposition 2.20. Let 𝑅 be a nonzero right e-domain ring. Then every nonzero principal right ideal 𝐼 of 𝑅 is           

e-small quasi-Dedekind. 

Proof. Let 0 ≠ 𝑎 ∈ 𝑅. Put 𝐼 = 𝑎𝑅, 𝜓 ∶ 𝐼 ⟶ 𝐼 is a nonzero 𝑅-homomorphism and 𝑥 =  𝜓(𝑎). Hence 𝑘𝑒𝑟𝜓 =

{𝑎𝑟 ∈ 𝐼:  𝑓(𝑎𝑟) = 0} = {𝑎𝑟 ∈ 𝐼:  𝑥𝑟 = 0} = 𝑎. 𝑟𝑅(𝑥). We have 0 ≠ 𝑥 (since if 𝑥 = 0, then for all 𝑎𝑡 ∈ 𝐼, 𝜓(𝑎𝑡) = 𝑥𝑡 =

0. 𝑡 = 0, then  𝑎𝑡 ∈ 𝑘𝑒𝑟𝜓 and so 𝑘𝑒𝑟𝜓 = 𝐼. Thus, 𝜓(𝐼) = 𝜓(𝑘𝑒𝑟𝜓) = 0, a contradiction). Since 𝑥 ≠ 0  and 𝑅 a right 𝑒-

domain, so 𝑟𝑅(𝑥) ≪𝑒 𝑅𝑅 . If 𝑓: 𝑅 ⟶ 𝐼 is given by left multiplication by 𝑎, i.e., 𝑓(𝑟) = 𝑎𝑟 for all 𝑟 ∈ 𝑅. Then 𝑓(𝑟𝑅(𝑥)) =

𝑎. 𝑟𝑅(𝑥) ≪𝑒 𝐼, by [13, Proposition 2.5(2)], and hence 𝑘𝑒𝑟𝜓 ≪𝑒 𝐼. Thus 𝐼 is e-small quasi-Dedekind.   
 

Corollary 2.21. In a nonzero right e-domain ring, every nonzero principal right ideal is e-gH. 

Proof. It follows directly by Propositions 2.20 and 2.13.   
 

Corollary 2.22. Every nonzero right e-domain ring is e-gH. 

Proof. Let 𝑅 = 〈1〉 be a nonzero right e-domain ring. By Corollary 2.21, 𝑅 is an e-gH.  
 

Proposition 2.23. Let 𝑀 be an 𝑅-module. If for all regular 𝑓 ∈ 𝐸𝑛𝑑(𝑀) has an 𝑒-small kernel, then 𝑀 is e-gH. 

Proof. Let 𝑓 ∈ 𝐸𝑛𝑑(𝑀) be a surjective. Then 𝑓𝑓𝑓(𝑀) = 𝑓𝑓(𝑓(𝑀)) = 𝑓(𝑓(𝑀)) = 𝑓(𝑀), i.e., 𝑓 is regular, so by 

assumption 𝑘𝑒𝑟𝑓 ≪𝑒 𝑀, and hence 𝑀 is e-gH.    
 

   The converse of Proposition 2.23, is generally incorrect, as the following example shows. 
 

Example 2.24. Suppose that ℤ12 as ℤ-module. By Example 2.14, ℤ12 is e-gH ℤ-module. Now, let 𝑔 ∈ 𝐸𝑛𝑑(ℤ12) defined 

by 𝑔(�̅�) = 4�̅� for all �̅� ∈ ℤ12. Thus 𝑔(ℤ12) = {0̅, 4̅, 8̅}, so 𝑔𝑔(ℤ12) = 𝑔({0̅, 4̅, 8̅}) = {0̅, 4̅, 8̅}, and hence 𝑔𝑔𝑔(ℤ12) =

𝑔(𝑔𝑔(ℤ12)) = 𝑔({0̅, 4̅, 8̅}) = {0̅, 4̅, 8̅}. Therefore 𝑔 is regular. But 𝑘𝑒𝑟𝑔 = 3ℤ12 is not 𝑒-small in ℤ12. 
 

Proposition 2.25. Let 𝑀 be a uniform 𝑅-module. Then 𝑀 is Hopfian if and only if 𝑀 semi-Hopfian and e-gH. 

Proof. The necessity is clear. Assume 𝑀 is a semi-Hopfian and e-gH 𝑅-module. If 𝑓 ∈ 𝐸𝑛𝑑(𝑀) is a surjective. Then 

𝑘𝑒𝑟𝑓 ≤⨁ 𝑀 and 𝑘𝑒𝑟𝑓 ≪𝑒 𝑀. Thus, 𝑘𝑒𝑟𝑓⨁𝐿 = 𝑀, i.e., 𝑘𝑒𝑟𝑓 + 𝐿 = 𝑀 and 𝑘𝑒𝑟𝑓 ∩ 𝐿 = 0 for some 𝐿 ≤ 𝑀. Since 𝑀 

uniform, then 𝐿 ⊴ 𝑀 and hence 𝐿 = 𝑀, as 𝑘𝑒𝑟𝑓 ≪𝑒 𝑀. So 𝑘𝑒𝑟𝑓 = 𝑘𝑒𝑟𝑓 ∩ 𝑀 = 0, i.e., 𝑓 is an injective. Therefore 𝑀 is 

a Hopfian 𝑅-module.         

 

         Suppose 𝑀 is an 𝑅-module. The set {∑ 𝑚𝑖𝑥
𝑖 |𝑚𝑖 ∈ 𝑀, 𝑖 ∈ (𝐼 is any index set)} is denoted by 𝑀[𝑥]. Then 𝑀[𝑥] can 

be as a right 𝑅[𝑥]-module. This module is called polynomial module. 
     

    We now need to proof the following simple fact. 
 

Lemma 2.26. Let 𝑀 be an 𝑅-module. If 𝑁 ⊴ 𝑀 as 𝑅-module, then 𝑁[𝑥] ⊴ 𝑀[𝑥] as 𝑅[𝑥]-module. 

Proof. Let 0 ≠ 𝑓 = 𝑚° + 𝑚1𝑥 + 𝑚2𝑥2 + ⋯ + 𝑚𝑘𝑥𝑘 ∈ 𝑀[𝑥], where 𝑘 ∈ ℕ. If 𝑚∘ ≠ 0, there exists an 𝑟∘ ∈ 𝑅 such that 

0 ≠ 𝑚∘𝑟∘ ∈ 𝑁 (as 𝑁 ⊴ 𝑀). If 𝑚𝑖𝑟∘ = 0 for all 1 ≤ 𝑖 ≤ 𝑡, then 𝑓𝑟∘ = 𝑚∘𝑟∘, that is 0[𝑥] ≠ 𝑓𝑟∘ ∈ 𝑁[𝑥], and the proof is 

ends. Let 𝑚1𝑟∘ ≠ 0, then there exists an 𝑟1 ∈ 𝑅 such that 0 ≠ 𝑚1𝑟∘𝑟1 ∈ 𝑁 (as 𝑁 ⊴ 𝑀). Continuing with this argument, 

we get 𝑟 ∈ 𝑅 such that 0[𝑥] ≠ 𝑓𝑟 ∈ 𝑁[𝑥]. Hence 𝑁[𝑥] ⊴ 𝑀[𝑥].   
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Proposition 2.27. Let 𝑀 be an 𝑅-module. If 𝑀[𝑥] is e-gH as 𝑅[𝑥]-module, then 𝑀 is e-gH as 𝑅-module. 

Proof. Assume that 𝜓: 𝑀 → 𝑀 is an 𝑅-epimorphism. Define the 𝑅-homomorphism  𝜓[𝑥]: 𝑀[𝑥] → 𝑀[𝑥] by 

𝜓[𝑥](∑ 𝑚𝑖𝑥
𝑖) = ∑ 𝜓(𝑚𝑖)𝑥𝑖 . Let ∑ 𝑚𝑖𝑥

𝑖 ∈ 𝑀[𝑥]. Since 𝜓is a surjective map, so for any 𝑚𝑖 ∈ 𝑀 there is 𝑛𝑖 ∈ 𝑀 such 

that 𝜓(𝑛𝑖) = 𝑚𝑖, then 𝜓[𝑥](∑ 𝑛𝑖𝑥
𝑖) = ∑ 𝜓(𝑛𝑖)𝑥𝑖 = ∑ 𝑚𝑖𝑥

𝑖 , that means 𝜓[𝑥] is a surjective. Therefore 𝑘𝑒𝑟 (𝜓[𝑥]) =

𝑘𝑒𝑟𝜓[𝑥] ≪𝑒 𝑀[𝑥]. To prove that 𝑘𝑒𝑟𝜓 ≪𝑒 𝑀. Let 𝐿 ⊴ 𝑀 such that 𝑘𝑒𝑟𝜓 + 𝐿 = 𝑀, then 𝑘𝑒𝑟 (𝜓[𝑥]) + 𝐿[𝑥] = (𝑘𝑒𝑟𝜓 +

𝐿)[𝑥] = 𝑀[𝑥]. From Lemma 2.26, 𝐿[𝑥] ⊴ 𝑀[𝑥], then 𝐿[𝑥] = 𝑀[𝑥] (as 𝑘𝑒𝑟 (𝜓[𝑥]) ≪𝑒 𝑀[𝑥]) so 𝐿 = 𝑀, thus 

𝑘𝑒𝑟𝜓 ≪𝑒 𝑀. Hence 𝑀 is e-gH as 𝑅-module.  
 

Now, we will investigate the behavior of e-gH module under localization.  
 

Proposition 2.28. Let 𝑀 be an 𝑅-module and 𝑆 is a multiplicative closed subset of 𝑅, such that ℒ(𝐿) ∩ 𝑆 = ∅ for 

any 𝐿 ≤ 𝑀. If 𝑆−1𝑀 is e-gH as 𝑆−1𝑅-module, then 𝑀 is e-gH as 𝑅-module. 

Proof. Suppose that 𝑓: 𝑀 → 𝑀 is an 𝑅-epimorphism. Define 𝑆−1𝑅-endomorphism 𝑆−1𝑓: 𝑆−1𝑀 → 𝑆−1𝑀 by 

𝑆−1𝑓 (
𝑚

𝑠
) =

𝑓(𝑚)

𝑠
 for all 𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆. Then we have 𝐼𝑚(𝑆−1𝑓) = 𝑆−1(𝐼𝑚𝑓) = 𝑆−1𝑀, then 𝑆−1𝑓 is an 𝑆−1𝑅-

epimorphism. As 𝑆−1𝑀 is e-gH, thus 𝑘𝑒𝑟(𝑆−1𝑓) = 𝑆−1(𝑘𝑒𝑟𝑓) ≪𝑒 𝑆−1𝑀 and so 𝑘𝑒𝑟𝑓 ≪𝑒 𝑀, by [9, Lemma 2.3.3(2)]. 

Hence 𝑀 is e-gH.   
 

Proposition 2.29. Let 𝑀 be an 𝑅-module and 𝑆 is a multiplicative closed subset of 𝑅, such that for all proper 
submodule 𝑁 of 𝑀, [𝑁:𝑀 𝑠] = 𝑁, for all 𝑠 ∈ 𝑆. If 𝑆−1𝑀 is e-gH as 𝑆−1𝑅-module, then 𝑀 is e-gH as 𝑅-module. 
Proof. By [9, Lemma 2.3.9(2)], the proof is analogues to proof Proposition 2.28.  

Conclusion 

There are many communication between the e-gH module and modules of other classes. Future desires have deeper 

outcomes for the questions posed in this work.  
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