Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 15(1) 2023, pp Math. 121-126 1

57 & Available online at www.qu.edu.ig/journalcm

$ H

£ JOCM g JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS
ISSN:2521-3504(online) ISSN:2074-0204(print)

University Of AL-Qadisiyah

About e-gH modules

Osama Basim Mohammed®?, Thaar Younis Ghawi?

aDepartment of Mathematics, College of Education, University of Al-Qadisiyah, Iraq, E-mail: edu-math.post26 @qu.edu.iq

bDepartment of Mathematics, College of Education, University of Al-Qadisiyah, Iraq, E-mail: thar.younis@qu.edu.iq

ARTICLEINFO ABSTRACT
Article history: This article introduced and explored the concept of the e-gH module and its relation to many
Received: 03/02/2023 other module types.

Rrevised form: 25/03/2023
Accepted : 30/03/2023

Keywords:

Hopfian modules
e-gH modules
Right e-domin ring

https://doi.org/10.29304/jqcm.2023.15.1.1174

1. Introduction

Throughout this paper, all modules are unitary left R-modules and R is an associative ring with identity. A nonzero
submodule S < M is said to be essential in M denoted by S 2@ M, if N n S # 0 for every nonzero submodule N of M [2]. A
submodule E of M is called small (e-small) denoted by E < M (resp. E <, M) if for every (essential) submodule N of M
with the property M = E + N implies N = M [13]. A module M = 0 is called uniform if for every submodule E of M
with E # 0, then E is essential [2]. M is called generalized hollow if any proper submodule of M is e-small in M [4]. The
endomorphisms of modules it has been studied in many authors. V.A. Hiremath introduced the concept of Hopfian module,
defined as a module M is called Hopfian if for every surjective R-endomorphism of M is an isomorphism [5]. In [1]
Gorbani and Haghany introduced generalized for Hopfian called generalized Hopfian (gH), a module, is said to be gH if it
has a small kernel for every surjective R-endomorphism of M. K. Varadarajan in 1992 introduced the concept of co-
Hopfian module, defined as a module M is called Hopfian if for every injective R-endomorphism of M is an isomorphism
[12]. In [8] introduced a proper generalized for Hopfian called e-gH module. A module is said to be e-gH if for every
surjective R-endomorphism of M has an e-small kernel. In section 2. We proved some relation between e-gH module
and some other concepts. We show that every semisimple module is e-gH, we give a case that make the concepts e-gH
and gH modules are identical. Theorem 2.12 showed the equivalent between Hopfian and e-gH. Also introduced a new
definition in section 2 called it right e-domin ring defined as, a nonzero ring R is called a right e-domain if, 75 (x) <. Rg
for any nonzero element x € R where r;(x) denote the right annihilator of x in R. In the same section showed the
relation between Hopfian module, semi-Hopfian (see [10]) and e-gH. We also showed the e-gH property of M[x] as
an R[x] module. Finally, we investigate the behavior of e-gH module under localization.
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2. e-gH modules and adjacent concepts

Start with these results.

Proposition 2.1. Every generalized hollow module is e-gH.

Proof: Let M be a generalized hollow module and ¢: M - M an epimorphism. So we have that kerg <, M and
hence M is an e-gH module.

Remark 2.2. The reverse of Proposition 2.1, is not necessary, in general, as the following example shows: From [8,
Remarks and Examples 2.2(6)], the Z-module Z is e-gH, but it is not generalized hollow, since (0) is the only e-small
submodule of Z as a Z-module.

In following, we will give a case that make the concepts e-gH and gH modules are identical.

Proposition 2.3. Let M be an indecomposable module, then M is gH if and only if it is e-gH.

Proof: The necessity is follows by [8, Remarks and Examples 2.2(1)]. Conversely, let M be an e-gH module and
¢@:M — M an epimorphism. Therefore, kergp <, M. It follows that ker¢ # M, since if, ker¢ = M then ¢ = 0 which
implies ¢ is not an epimorphism, a contradiction. By [3, Proposition 3.7], ker¢ <« M and hence M is gH.

Corollary 2.4. If M is a uniform module, then M is gH if and only if it is e-gH.
Proof: By [7, Examples 3.51(1)], since any uniform module is indecomposable. O

Proposition 2.5. If M is a semisimple module, then M is e-gH.

Proof: Let M be a semisimple module and let f € End(M) be an epimorphism. To prove kerf <, M, let L 2 M such
that kerf + L = M. Since M is semisimple, so the only essential submodule of M is itself, that is L = M. Thus,
kerp <, M and hence M is e-gH.

The reverse of Proposition 2.5, is generally incorrect, as the following example shows.

Example 2.6. For all prime number p, it is well known that Z,2 as a Z-module is Noetherian, thus it is e-gH by [8,
Remarks and Examples 2.2(3)]. While Z,2 is not semisimple as a Z-module, because < p > is not a direct summand
of Z,2 for all prime p.

Corollary 2.7. Every simple module is e-gH.
Proof: 1t follows directly by Proposition 2.5.

Remark 2.8. The reverse of Corollary 2.7, is generally incorrect, as example shows: by [8, Remarks and Examples
2.2(6)] the Z-module Z is e-gH and it is not simple. O

Theorem 2.9. Let M be an e-gH module. If g:M - M@®M is an epimorphism for some module M, then M is
semisimple.

Proof. Let g: M — M@®M be an epimorphism for some module M. Consider the projection map p: M@®M — M. Then
pg € End(M) and ker (pg) = g~*(kerp) = g~*(0®M). Since M is e-gH, then g~ (0®M) «, M. By [13, Proposition
2.5,(2)], we have that 0&M = g(g~*(0®M)) K, M®M. Thus, M <, M by [13, Proposition 2.5,(3)]. Therefore M is
a semisimple module, by [11, Lemma 2.4]. O

By compare between Proposition 2.5 and Theorem 2.9, we have:
Corollary 2.10. Let M be an e-gH module. If g: M — M@®M is an epimorphism for some module M, then M is e-gH.

Theorem 2.11. Let R be a ring. Then the following are equivalent.
(1) Each R-module is e-gH.
(2) Each projective R-module is e-gH.
(3) Each free R-module is e-gH.
(4) R is semisimple.
Proof. (1) = (2) = (3) holds.
(3) = (4) By [6, Lemma 4.4.3], RN is a free R-module and so is e-gH, by (3). As RN = RN®RY, Theorem 2.9, implies
RN is semisimple. Therefore R is semisimple.
(4) = (1) Suppose that R be a semisimple ring. From [6, Corollary 8.2.2], any R-module M is semisimple, and hence
by Proposition 2.5, M is e-gH. O
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Theorem 2.12. Consider the following for an R-module M:

(1) M is Hopfian.

(2) M is e-gH.

(3) M is Dedekind finite.

Then (1) = (2) = (3).If M is quasi-projective, then (3) = (1).

Proof. (1) = (2) [8, Remarks and Examples 2.2(2)].

(2) = (3) Assume f,g € End(M) such that fg = 1. It follows that g is injective and f is surjective. Thus, M =
fgM) = f(g(M)). By [8, Theorem 2.3], we have that M = g(M), that means g is invertible. Hence gf = 1.
Therefore End(M) is a Dedekind finite ring. So (3), holds.

(3) = (1) Let g € End(M) be a surjective. As M is quasi-projective, then there is an h € End(M) such that gh = 1.
By (3), hg = 1. Thus g is an injective and this complete the proof. O

Proposition 2.13. Every nonzero e-small quasi-Dedekind module is e-gH.
Proof. Let M # 0 be an e-small quasi-Dedekind module, and let f € End(M) be a surjective. Then f # 0. By
assumption, kerf «, M and hence M is e-gH. O

Example 2.14. The convers of Proposition 2.13, is generally incorrect. Consider Z,, as Z-module. Then the set of all
surjective endomorphisms of Z;, are f;(X) = &, f,(¥) = 5%, f3(X) = 7% and f,(X) = 11X which has zero kernel (i.e,,
kerf; = 0 <, Z,, forall i = 1,2,3,4). Therefore Z-module Z,, is e-gH. Now, let g: Z,, — Z,, defined by f(X) = 4x for
allx € Z;,. Then 0 # g € End(Z,,), but kerg = 3Z,, is not e-small in Z,, (in fact 3Z,, + 2Z,, = Z,, while 2Z,, is a
proper essential in Z,,). This mean Z, is not e-small quasi-Dedekind Z-module.

Recall that an R-module M is anti-Hopfian if M is non-simple and all nonzero factor modules
of M are isomorphic to M

Proposition 2.15. Let M be an anti-Hopfian module. Then M is e-gH if and only if M is generalized Hollow.

Proof. Assume that M is an e-gH module and N any proper submodule of M. If N = 0, then N is e-small in M. Let
N # 0. We have M/N # N, so by assumption M/N = M. By [8, Theorem 2.19], N is an e-small submodule of M.
Therefore M is generalized Hopfian. The converse is proved in Proposition 2.1. O

Proposition 2.16. Let M be a quasi-projective module. If M is co-Hopfian then it is Hopfian, and so e-gH.

Proof. Assume g € End(M) is an epimorphism. As M is a quasi-projective module, then there exists an h € End (M)
such that gh = 1, then gh is an injective and so is h. As M is co-Hopfian, so h is automorphism, i.e., h is a surjective.
Now, if x € kerg, then x € M and g(x) = 0. As h: M - M is a surjective, then h(a) = x for some a € M. Then 0 =
gx) = g(h(a)) = gh(a), so a € kergh = 0 implies x = h(0) = 0. Hence kerg = 0, i.e., g is an injective and hence
M is Hopfian. By [8, Remarks and Examples 2.2(2)], M is e-gH. O

Theorem 2.17. Let M be a module, consider the following cases:
(1) if g € End(M) is a surjective, then kerg is semisimple.

(2) if g € End(M) has aright inverse, then kerg is semisimple.
(3) if g € End(M) has a right inverse, then kerg <, M.

(4) M is e-gH.

Then (1) = (2) = (3).If M is quasi-projective, then (3) = (4) = (1).

Proof. (1) = (2) Let g € End(M) has a right inverse. Thus gf = 1 for some f € End(M). Therefore g € End(M) is
a surjective, and so kerg is semisimple, by (1).

(2) = (3) Let g € End(M) has a right inverse. By (2), kerg is semisimple. To show that kerg <, M. Letkerg + L =
M for some L < M. As kerg N L < kerg, then (kerg N L)®T = kerg for some T < kerg. Then M =T + L. Also, T n
LS kergnLand TNLCST implies TNL S (kergNL)NT =0. Then T®OL = M. Thus, L <® M and M/L =T is
semisimple, and hence kerg <, M, by [13, Proposition 2.3].

(3) = (4) Assume g € End(M) is a surjective. Since M is quasi-projective, then there is an h € End(M) such that
gh =1,ie, g € End(M) has arightinverse. By (3), kerg <, M and hence M is e-gH.
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(4) = (1) Assume g € End(M) is a surjective. So by (4), kerg <, M. Since M is quasi-projective, then g has a right
inverse h € End(M), i.e., gh = 1. Thus, we have that kerg = (1 — hg)(M), to see this; if x € kerg then g(x) = 0 and
henec hg(x) =0. So, x =x —hg(x) € M — hg(M) = (1 — hg)(M), therefore kerg < (1 —hg)(M). Now, let y €
(1 - hg)(M) then y = m — hg(m) for some m € M. So, g(¥) = g(m) — gh(g(m)) = g(m) — g(m) =0, then y €
kerg. This means (1 — hg)(M) C€ kerg and then kerg = (1 — hg)(M). Then kerg + hg(M) = M. Also, if x €
kerg N hg(M) then g(x) =0 and x = hg(m) for some m € M. So 0= g(x) = gh(g(m)) = g(m), thus x =
h(g(m)) = h(0) = 0. It follows that kerg®hg(M) = M. By [13, Proposition 2.3], kerg is semisimple. [

Corollary 2.18. Let M be a projective module. Then the following are equivalent.
(1) if g € End(M) is a surjective, then kerg is semisimple.

(2) if g € End(M) has a right inverse, then kerg is semisimple.

(3)if g € End(M) has aright inverse, then kerg <, M.

(4) M is e-gH.

Now, we present the following definition.

Definition 2.19. A nonzero ring R is called a right e-domain if, 7, (x) <, Rg for any nonzero element x € R.

Proposition 2.20. Let R be a nonzero right e-domain ring. Then every nonzero principal right ideal I of R is
e-small quasi-Dedekind.

Proof. let 0 #a€R. Put [ =aR, Y :1 — [ is a nonzero R-homomorphism and x = (a). Hence kery =
{ar € I: f(ar) =0} ={ar € I: xr = 0} = a.1zx(x). We have 0 # x (since if x = 0, then for all at € I, Y(at) = xt =
0.t = 0, then at € kery and so kerp = I. Thus, Y(I) = Y(kery) = 0, a contradiction). Since x # 0 and R a right e-
domain, so 77 (x) <, Rg.If f:R — I is given by left multiplication by a, i.e, f(r) = ar forall r € R. Then f (13 (x)) =
a.1p(x) <, I, by [13, Proposition 2.5(2)], and hence kery <, I. Thus I is e-small quasi-Dedekind. O

Corollary 2.21. In a nonzero right e-domain ring, every nonzero principal right ideal is e-gH.
Proof. 1t follows directly by Propositions 2.20 and 2.13. 0

Corollary 2.22. Every nonzero right e-domain ring is e-gH.
Proof. Let R = (1) be a nonzero right e-domain ring. By Corollary 2.21, R is an e-gH. [

Proposition 2.23. Let M be an R-module. If for all regular f € End(M) has an e-small kernel, then M is e-gH.
Proof. Let f € End(M) be a surjective. Then fff(M) = ff(f(M)) = f(f(M)) = f(M), i.e,, f is regular, so by
assumption kerf «, M, and hence M is e-gH. O

The converse of Proposition 2.23, is generally incorrect, as the following example shows.

Example 2.24. Suppose that Z,, as Z-module. By Example 2.14, Z,, is e-gH Z-module. Now, let g € End(Z,,) defined
by g(x_) = 4x for all X € ZIZ' Thus g(le) = {61 L_l.’ g}l SO gg(le) = g({ﬁ' Zl': g}) = {6' Zl'; g}! and hence ggg(ZIZ) =
9(g99(Z.,)) = g({0,4,8}) = {0, 4, 8}. Therefore g is regular. But kerg = 37Z,, is not e-small in Z,.

Proposition 2.25. Let M be a uniform R-module. Then M is Hopfian if and only if M semi-Hopfian and e-gH.
Proof. The necessity is clear. Assume M is a semi-Hopfian and e-gH R-module. If f € End(M) is a surjective. Then
kerf <® M and kerf &, M. Thus, kerf@®L =M, ie, kerf + L =M and kerf NnL =0 for some L < M. Since M
uniform, then L @ M and hence L = M, as kerf <, M.So kerf = kerf N M = 0, i.e,, f is an injective. Therefore M is
a Hopfian R-module. O

Suppose M is an R-module. The set {Y m;x‘|m; € M, i € (I is any index set)} is denoted by M[x]. Then M[x] can
be as a right R[x]-module. This module is called polynomial module.

We now need to proof the following simple fact.

Lemma 2.26. Let M be an R-module. If N < M as R-module, then N[x] 2 M[x] as R[x]-module.

Proof. Let 0 # f = m. + myx + myx? + --- + mx* € M[x], where k € N. If m, # 0, there exists an 7, € R such that
O+mmp, €N (as NaM).Ifmr,=0foral 1<i<t, then fr, =m.r, that is 0[x] # fr. € N[x], and the proof is
ends. Let my7, # 0, then there exists an r; € R such that 0 # m,7,r; € N (as N 2 M). Continuing with this argument,
we getr € R such that O[x] # fr € N[x]. Hence N[x] 2 M[x]. O
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Proposition 2.27. Let M be an R-module. If M[x] is e-gH as R[x]-module, then M is e-gH as R-module.

Proof. Assume that {:M —> M is an R-epimorphism. Define the R-homomorphism [x]: M[x] - M[x] by
Y[x](Emixt) = Y p(m;)xt. Let ¥ m;x' € M[x]. Since is a surjective map, so for any m; € M there is n; € M such
that ¥ (n;) = m;, then Y[x] (X n;x") = Y Pp(n;)x' =Y m;x!, that means Y[x] is a surjective. Therefore ker ([x]) =
ker[x] <, M[x]. To prove that kerip <, M.Let L 2 M such that kery + L = M, then ker (Y [x]) + L[x] = (kery +
L)[x] = M[x]. From Lemma 2.26, L[x] 2 M[x], then L[x] = M[x] (as ker (¥[x]) K, M[x]) so L =M, thus
kery <, M.Hence M is e-gH as R-module. O

Now, we will investigate the behavior of e-gH module under localization.

Proposition 2.28. Let M be an R-module and S is a multiplicative closed subset of R, such that L(L) N S = @ for
any L < M.If S™'M is e-gH as S™R-module, then M is e-gH as R-module.

Proof. Suppose that f:M - M is an R-epimorphism. Define S™'R-endomorphism S~'f:S7'M - S™'M by
ST (?) = @ for all m € M, s €S. Then we have Im(S71f) = S™1(Imf) = S™'M, then S~f is an S7IR-
epimorphism. As S™'M is e-gH, thus ker(S~1f) = S~'(kerf) <, S™*M and so kerf <, M, by [9, Lemma 2.3.3(2)].
Hence M is e-gH. U

Proposition 2.29. Let M be an R-module and S is a multiplicative closed subset of R, such that for all proper
submodule N of M, [N:y,s] = N, forall s € S.1f S™M is e-gH as S™R-module, then M is e-gH as R-module.
Proof. By [9, Lemma 2.3.9(2)], the proof is analogues to proof Proposition 2.28.0

Conclusion

There are many communication between the e-gH module and modules of other classes. Future desires have deeper

outcomes for the questions posed in this work.
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