Journal of AL-Qadisiyah for computer science and mathematics
Vol.6 No.2 Year 2014

Page 186-200 Layla.M

A comparison among methods for estimation of the parameter of the
Maxwell- Boltzmann distribution using simulation
Dr.Layla Matter Nassir
Electric Eng. Dept. College of Eng.
AL-Mustansiriyah University,

Recived :5\8\2014 Revised : 16\9\2014 Accepted :28\9\2014

Key words: Maxwelldistribution, Bayes method, Prior distributions
Bayes estimator; Maximum likelihood estimator; moment estimator; Mean squared error,
Mean Absolute Percentage Error.

Abstract

The Maxwell or Maxwell- Boltzmann distribution was invented to solve problems related to
physics, chemistry and plays an important role in and other allied sciences. So in this paper
Bayesian using special priorinformation for estimating the scale parameter of Maxwell
distribution, the maximum likelihood estimation andthree different types of moments are
presented for this. The simulation by matlab program is used to compare these estimators
with respect to the Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE),
the results of comparison showed that for all the varying sample size, the estimators of Bayes
method with special prior distribution is followed by the Maximum likelihood estimatorhas
smaller MSE and MAPE compared to others, and in all cases the statistical hypotheses had
been satisfied for both methods the MSEand MAPE decrease as sample size increases.
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1- Introduction

The Maxwell distribution isa continuous probability distribution with application in physics
and chemistry. The most frequentapplication is in the field of statistical mechanics.to
determine the speeds of moleculesThe Maxwell distribution gives the distribution of the
speeds of molecules as it is given by statistical mechanics in thermal equilibrium when the
temperature is high enough under some conditions as defined in statistical mechanics. For
example, this distribution explains many fundamental gas properties in kinetic theory of
gasesThe temperature of any (massive) physical system is the result of the motions of the
molecules and atoms which make up the system. These particles have a range of different
velocities, and the velocity of any single particle constantly changes due to collisions with
other particles. However, the fraction of a large number of particles within a particular
velocity range is nearly constant. Then Maxwell distribution of velocities specifies this
fraction, for any velocity range as a function of the temperature of the systemThe Maxwell
distribution was first introduced in the literature by J.C. Maxwell (1860) and again described
by Boltzman (1870) with a few Assumptions.Tyagi and Bhattacharya (a) [8], Tyagi and
Bhattacharya(b) [9] considered Maxwell distribution as a lifetime modelfor the first time.
They obtained Bayes estimates and minimumvariance unbiased estimators of the parameter
and reliabilityfunction for the Maxwell distribution. Chaturvedi andRani [10] generalized
Maxwell distribution and they obtainedClassical and Bayesian estimators for
generalizeddistribution. Bekker and Roux [11] studied Empirical Bayesestimation for
Maxwell distribution. These studies givemathematical handling to Maxwell distribution but
ignorethe application aspect of the Maxwell distribution. In (2005) Bekker and Roux[1],
studied empirical Bayes estimation for Maxwell distribution, and we have assumed that
complete sample information is available, SankuDey[6] (2011) studies on Bayes estimators
of the parameter of a Maxwell distribution and obtain associated based on conjugate prior
under scale invariant symmetric and a symmetric loss functions.

187



Journal of AL-Qadisiyah for computer science and mathematics
Vol.6 No.2 Year 2014

Layla.M

2-Model properties

The Maxwell (or Maxwell — Boltzmann) distribution gives the distribution of speeds of
molecules in thermal equilibrium as given by statistical mechanics.
Defining a =KT/M , where K is the Maxwell constant, T is temperature, m is the mass of «

molecule. The probability density function of Maxwell distribution over the rangZ € [0; )is
given by:

f(x;a) =i3\/zx2.e_Mz

To prove it’s a p.d.f we take the integration as the following :

]Eis\/zxzehzdx
0 (01 7T (2)
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3-Methods of estimation:

3.1 Method of moments

The method of moments is a method of estimation of population parameters of interest.
So a sample is drawn and the population moments are estimated from the sample. using the
sample moments in place of the (unknown) population moments. This results in estimates of
those parameters. The method of moments was introduced by Karl Pearson in 1894[7].
Suppose that the problem is to estimate k unknown parameters o,,o,,.....,0
characterizing the distribution f(x, o) of the random variable X. Suppose the first kK moments
of the true distribution (the "population moments") can be expressed as functions of the o.s:
u, =E[X*]=0, (o), @) .. 3)

Suppose a sample of size k is drawn, resulting in the values x; .

Forj=1, ...,k let

be the j-th sample moment, an estimate of ;. The method of moment’s estimator for
04, 0y,...., o, denoted by &,,a,,....,a, is defined as the solution (if there is one) to the

equations:

0 =0,(0,0,, ., 0) e (5)
We estimate here three ways of estimation:

a. Momentestimator depend on the mean:

f(x;oc):é\/gxz.e'm2

E() =] i3 \Ex?*e_zf.dx .............. (6)
0 a T

2

let 2);2 =y = x> =20y

For the p.d.f:

X —\Zay
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022 a2?)2 2

Hence the moment mean estimator fora is:

X

A

a =—
mon mean
2

T

b- Moment depend on the variance:

v(x) = E(x*) - (E(x))’
T%\/zx“e_;“zdx
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Hence the moment variance estimator for @ is:

~ (@)

Oonvar = e
=)
T, (10)

c- Moment depend on thecoefficient of variation (C.V):

we know that :
o’
X

CV=

So by substituting we get :

)
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X
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Hence the moment C.V estimator for « is:
2
GT c22 g
Smnoy =75y = 5 (12)
o) )
T T
5 |2
T
3.2Method of maximum Likelihood estimation
The maximum-likelihood estimation (MILE) is a method of estimating the

parameters of a statistical model, maximume-likelihood estimation provides estimates for the
model's parameters.

In general, for a fixed set of data and underlying statistical model, the method of
maximum likelihood selects the set of values of the model parameters that maximizes the
likelihood function. Intuitively, this maximizes the agreement of the selected model with the
observed data, and for discrete random variables it indeed maximizes the probability of the
observed data under the resulting distribution. Maximume-likelihood estimation gives a
unified approach to estimation,

Suppose there is a sample xi, X2, ...,X, of n independent and identically distributed
observations, coming from a distribution with an unknown probability density function f,(.).
It is however surmised that the function f, belongs to a certain family of distributions {f(.|a),
ac®} (where a is a vector of parameters for this family), called the parametric model, so that
fo =f(.|ap). It is desirable to find an estimator which would be as close to the true value x; as
possible. Both the observed variables x, and the parameter a can be vectors.

To use the method of maximum likelihood, one first specifies the joint density function
for all observations. For an independent and identically distributed sample, this joint density
function is by considering the observed values X, X, ..., Xy, to be fixed "parameters” of this
function, whereas G will be the function's variable and allowed to vary freely; this function
will be called the likelihood:

n
L(e; Xy Xy )= F (X0 X X, [) =T F (X ) ooonn(13)
i=1
Denotes a separation between the two input arguments: « and the vector- valued input

X]_, . ...Xn,
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In practice it is often more convenient to work with the logarithm of the likelihood

function, called the log-likelihood{10}:

or the average log-likelihood:

7= eeeenn(15)
n

The method of maximum likelihood estimates o, by finding a value of o that

maximizes /(o.|x)this method of estimation defines a maximum-likelihood estimator
(MILE) of

{6, Y fargmax 7(c; Xy X )} eieen (16)

0e®

So for our distribution Let, .. .. be arandom sample of size in have the p.d.f. maxwell
1, 2, ee n
distribution:
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Hence the MLLE estimator for « is:

G = | ZXC
Ve (18)
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3.3Bayes Estimator

In estimation and decision theory, a Bayes estimator or a Bayes action is an estimator
or decision rule that minimizes the posterior expected value of a loss function (i.e., the
posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility
function. An alternative way of formulating an estimator within Bayesian statistics is

Maximum a posteriori estimation.

Suppose an unknown parameter o is known to have a prior distribution 7 Let & = a.(X)
be an estimator of & (based on some measurements x, and let L(a,&) be a loss function,
such as squared error: The Bayes risk of o is defined as Eﬂ{L(a,d)}, where the expectation

is taken over the probability distribution of « : this defines the risk function as a function of

a . An estimator ¢ . is said to be a Bayes estimatorif it minimizes the Bayes risk among all
estimators. Equivalently, the estimator which minimizes the posterior expected loss

E,,{L(a,o?) | x}for each x also minimizes the Bayes risk and therefore is a Bayes estimator[5]

If the prior is improper then an estimator which minimizes the posterior expected loss
for each xis called a generalized Bayes estimator, the prior may be informative or non-
informative,

so for our informative priordistribution :
g@=a (19)

N——
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1 2 2)2

Then the posterior distribution for agiven X,,X,....X, is:

2Y 2
& P XiZ a—3n+1 e 202
T

h(a/ X\)=—m—r-~——-—"—-—+ (21)

n 2n+l
2
2 T X’ 2X] 130
T 2 2)2

>3n—1
2

By using the squared error loss function the expected posterior is:

3n-2 2
[ 2
2a—3n+2[ sziz J o 207

E(a/x)=] de (22)
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Hence the bayes estimator for « is:

XX \8. 3
2 |2 2
e (23)

>3n—1
2

A

abay

5-The simulation:

After we estimate the parameter a by the preceding methods we use the matlab to simulate
the methods to study the difference between them by comparing the results using the mean
squared errors (MSE) once and mean absolutepercentage errors (MAPE) once as:

a- Mean squared error (MSE) which is defined by the formula:

Z(O‘i _aa)z

MSE(a)==+—+—— (24)
n
b- Mean absolute percentage error (MAPE)which is defined by the formula:

S e-a)el

MAPHa) = 'ﬂT ............. (25)
We use the cumulative distribution putting
Fx)=¢=
S0

3 X
Pl —, ==
(2 aazJ d
After simplifying we get :

X=a 2P‘1[g,§j ................ (26)

For generating the values of X, where P(«, p), as above, denotes the value x where
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So for the estimated « from the last methods for equations 7,10,12,18,23we simulate

the program and calculate the estimated errors for every combination,

The number of replications used was 1000 samples of different sizes , small samples with
sizes10,15 and medium samples with sizes 25, 50 and large samples of the size 100 within
different values of @ which they are 0.5, 1, 1.5, 2, 5, 7 the results for the two methods MSE
and MAPE were summarized and tabulated in tables (1) and (2) as the following:

Table(1): Results for the different estimators using (MSE)

ethod MLE | Mom mem | Mam Mom Bay | Best method
var CcVv
Error
n=10 | 0.0075 0.0087 0.0129 | 0.0577 | 0.0079 MLE
n=15 | 0.0042 0.0055 0.0148 | 0.1124 | 0.0047 MLE
4= 05 n=25 | 0.0027 0.0030 0.0091 | 0.0425 | 0.0029 MLE
' n=50 | 0.0014 0.0014 0.0069 | 0.0312 | 0.0014 | MLE,MOM
MEAN,BAY
n=100 | 0.0005 0.0010 0.0084 | 0.0526 | 0.0005 | MLE,BAY
n=10 | 0.0235 0.0177 0.1415 | 0.6745 | 0.0335 MOM
MEAN
N n=15 | 0.0284 0.0331 0.0765 | 0.4652 | 0.0284 | MLE,BAY
a=1 n=25 | 0.0124 0.0166 0.0426 | 0.3021 | 0.0104 BAY
n=50 | 0.0022 0.0051 0.0232 | 0.17101 | 0.0019 BAY
n=100 | 0.0013 0.0056 0.0357 | 0.2917 | 0.0011 BAY
n=10 | 0.0433 0.0509 0.0559 | 0.2298 | 0.0587 MLE
n=15 | 0.0294 0.0366 0.1293 | 0.8612 | 0.0301 MLE
a=1.5 n=25 | 0.0336 0.0476 0.0959 | 0.7325 | 0.0303 BAY
n=50 | 0.0086 0.0110 0.669 0.3781 | 0.0079 BAY
n=100 | 0.0059 0.0118 0.0506 | 0.3529 | 0.0055 BAY
n=10 | 0.0782 0.0733 0.3708 | 1.5286 | 0.0890 MOM
MEAN
n=15 | 0.0282 0.0361 0.1879 | 1.0910 | 0.0369 MLE
a=2 n=25 | 0.0463 0.0650 0.1077 | 0.6989 | 0.0392 BAY
n=50 | 0.0227 0.0321 0.2157 | 1.3379 | 0.0231 MLE
n=100 | 0.0088 0.0067 0.1612 | 0.8299 | 0.0102 MOM
MEAN
n=10 | 0.3639 0.4590 15038 | 0.9515 | 0.5221 MLE
n=15 0.2540 0.3749 1.6313 | 13.4677 | 0.2754 MLE
a=5 n=25 | 0.1912 0.2430 0.9612 | 59134 | 0.1813 BAY
n=50 0.1517 0.1919 1.3183 7.9647 0.1483 BAY
n=100 | 0.0559 0.1825 0.8226 | 0.8117 | 0.0475 BAY
n=10 | 1.3603 1.7149 1.4782 | 9.4008 | 1.5406 MLE
n=15 | 0.4867 0.5933 1.9889 | 11.8219 | 0.4408 BAY
a=7 n=25 | 0.5936 0.6583 1.7973 | 8.8107 | 0.5821 BAY
n=50 | 0.3212 0.5151 15973 | 11.3904 | 0.3079 BAY
n=100 | 0.1204 0.2173 1.0747 | 6.9718 | 0.1089 BAY
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Table(2): Results for the different estimators using (MAPE)
Parameter ethod | MLE | Mom mem | Mam Mom Bay Best
value var CV method
Error
n=10 0.1356 0.1500 0.1844 | 0.3939 | 0.1392 MLE
n=15 0.1064 0.1194 0.2063 | 0.4848 | 0.1171 MLE
a=0.5 n=25 | 0.0810 0.0818 0.1695 | 0.3729 | 0.0878 MLE
n=50 0.0530 0.0571 0.1424 | 0.3153 | 0.0518 BAY
n=100 | 0.0408 0.0509 0.1679 | 0.4238 | 0.0411 MLE
n=10 0.1218 0.1117 0.2890 | 0.6436 | 0.1255 MOM
MEAN
a n=15 0.1531 0.1632 0.2017 | 05172 | 0.1478 BAY
a=1 n=25 0.0874 0.1029 0.1611 | 0.4058 | 0.0799 BAY
n=50 0.0419 0.0615 0.1368 | 0.3730 | 0.0384 BAY
n=100 | 0.0320 0.0646 0.1727 | 0.4829 | 0.0287 BAY
n=10 0.1078 0.1211 0.1235 | 0.2552 0.1277 MLE
n=15 0.0957 0.1121 0.2080 | 0.4626 | 0.0982 MLE
oa=15 n=25 0.1035 0.1188 0.1634 | 0.4542 | 0.1004 BAY
n=50 0.0473 0.0562 0.1518 | 0.3581 | 0.0503 MLE
n=100 | 0.0402 0.0595 0.1364 | 0.3654 | 0.0387 BAY
n=10 0.1149 0.1130 0.2621 | 0.5118 | 0.1270 MOM
MEAN
n=15 | 0.0691 0.0749 0.1840 | 0.4360 | 0.0880 MLE
o=2 n=25 0.0909 0.1109 0.1301 | 0.3589 | 0.0830 BAY
n=50 | 0.0597 0.0734 0.2044 | 0.5320 | 0.0588 BAY
n=100 | 0.0407 0.0316 0.1877 | 0.4242 | 0.0433 MOM
MEAN
n=10 0.1043 0.1193 0.2014 | 0.4665 | 0.1238 MLE
n=15 0.0842 0.1054 0.1684 | 0.4855 | 0.0851 MLE
a=5 n=25 | 0.0615 0.0721 0.1656 | 0.3951 | 0.0648 MLE
n=50 0.0714 0.0797 0.1880 | 0.4836 | 0.0675 BAY
n=100 | 0.0386 0.0743 0.1714 | 0.4910 | 0.0349 BAY
n=10 0.1322 0.1550 0.1476 | 0.3311 | 0.1288 BAY
n=15 0.0816 0.0774 0.1726 | 0.4028 | 0.0796 MOM
_ MEAN
=7 n=25 | 0.0894 0.0881 0.1616 | 0.3340 | 0.0820 BAY
n=50 0.0619 0.0785 0.1421 | 0.3967 | 0.0622 MLE
n=100 | 0.0609 0.0568 0.1315 | 0.3378 | 0.0400 BAY
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6-Conclusion:

1. Weconclude that when he sample size increase the MSE and MAPE decrease and that is
apply the statistical hypotheses.

2. We found that for small samples for both MSE and MAPE the M.L.E is the best.
3. For medium sample for both MSE and MAPE the bayesestimator is the best.

4. For large sample for both MSE and MAPE the bayesestimator is the best.

5. We recommend to use M.LE for small samples.

6. We recommend to use bayes estimator for medium and large samples.

7. We recommend toTest anothermethods to estimate the parameter.
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Apendex
Matlab program

%9%%%%%% Maxwell Distribution%%%%%%

clc

clearall

n=10;

elpha=4;
%%%%%%%%%%% %% %%%%%%% %%

for g=1:10

x=elpha.**((2.*gamrnd(1,1.5,1,n)).”(0.5))
elpha_mle(q)=sgrt(sum(x.”2)/(3*n));
elpha_mommean(qg)=mean(x)/(2*sqrt(2/pi));
elpha_momvar(q)=sqgrt(var(x))/sqrt(3-8/pi);
elpha_cv(q)=(2*var(x)*sqrt(2/pi))/(mean(x)*(3-8/pi));
elpha_bay(q)=(sgrt(sum(x.~2)/2)*gamma(1.5*n-1.5))/gamma(1.5*n-1)

end

elphahat=[mean(elpha_mle) mean(elpha_mommean) mean(elpha_momvar) mean(elpha_cv)
mean(elpha_bay)]

mse=[mean((elpha-elpha_mle).~2) mean((elpha-elpha_mommean).”2) mean((elpha-
elpha_momvar).”2) mean((elpha-elpha_cv).”*2) mean((elpha-elpha_bay).*2)]
mape=[mean(abs((elpha-elpha_mle)./elpha)) mean(abs((elpha-elpha_mommean)./elpha))
mean(abs((elpha-elpha_momvar)./elpha)) mean(abs((elpha-elpha_cv)./elpha))
mean(abs((elpha-elpha_bay)./elpha))]
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