On Sandwich Results of Meromorphic Univalent Functions Defined by New Hadamard Product Operator

Waggas Galib Atshan* a, Youssef Wali Abbas b

aDepartment of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq. Email: waggas.galib@qu.edu.iq

bDepartment of Mathematics, College of Computer Science and Mathematics, University of Mosul, Ninawa, Iraq. Email: yousif.21csp31@student.uomosul.edu.iq

ARTICLE INFO

Article history:
Received: 05/02/2023
Revised form: 13/13/2023
Accepted: 16/03/2023
Available online: 31/03/2023

Keywords:
superordination, subordination, convolution, sandwich theorems.

ABSTRACT

In the present paper, we obtain differential subordination and superordination results for meromorphic univalent functions defined by a new Hadamard product operator in a punctured open unit disk. We get a number of sandwich-type results.

MSC: 30C45

https://doi.org/10.29304/jqcm.2023.15.1.1180

Introduction

Let E denote the class of functions of the form:

$$f(z) = z^{-1} + \sum_{k=1}^{\infty} a_k z^k,$$ \hspace{1cm} (1.1)

which are meromorphic univalent in the punctured open unit disk $U^* = \{z; z \in \mathbb{C}, 0 < |z| < 1\}$. Several authors studied meromorphic functions for another classes and conditions see[7,9,19].

Let H be the linear space of all analytic functions in U. For a positive integer number n and $\alpha \in \mathbb{C}$, we let

*Corresponding author

Email addresses:

Communicated by ‘sub editor’
For \(f \) and \(g \) analytic functions in \(H \), we say that \(f \) is subordinate to \(g \) in \(U \) and write \(f(z) < g(z) \), if there exists a Schwarz function \(\omega \), which is analytic in \(U \) with \(\omega(0) = 0 \) and \(|\omega(z)| < 1(z \in U) \), such that \(f(z) = g(\omega(z)), (z \in U) \).

Furthermore, if the function \(g \) is univalent in \(U \), we have the following equivalence relationship (cf., e.g,[10,11,15,16]):

\[
f(z) < g(z) \iff f(0) = g(0) \text{ and } f(U) \subset g(U), z \in U.
\]

Definition1: ([15], also see [19]) Let \(Y: \mathbb{C}^3 \times U \rightarrow \mathbb{C} \) and let \(h(z) \) be analytic in \(U \). If \(p \) and \(Y(p(z), zp'(z), z^2p''(z); z) \) are univalent in \(U \) and if \(p \) needs to satisfy the second-order differential superordination,

\[
h(z) < Y(p(z), zp'(z), z^2p''(z); z),
\]

then \(p \) is called a solution of the differential superordination (1.2). An analytic function \(q(z) \) which is called a subordinant of the solutions of differential superordination (1.2) or more simply a subordinant if \(q < p \) for all \(p \) fulfill (1.2). A univalent subordinant \(\tilde{q}(z) \) that fulfills \(q < \tilde{q} \) for all subordinants \(q \) of (1.2), is said to be the best subordinant.

Definition2: [15] Let \(Y: \mathbb{C}^3 \times U \rightarrow \mathbb{C} \) and let \(h \) be univalent in \(U \). If \(p \) is analytic in \(U \) and satisfies the second-order differential subordination

\[
Y(p(z), zp'(z), z^2p''(z); z) < h(z),
\]

then \(p \) is called a solution of the differential subordination (1.3). The univalent function \(q \) is called a dominant of the solution of the differential subordination (1.3), or more simply a dominant if \(p < q \) for all \(p \) satisfying (1.3). A univalent dominant \(\tilde{q}(z) \) that satisfies \(\tilde{q} < q \) for all dominant \(q \) of (1.3) is said to be the best dominant.

Miller and Mocanu[16] and other authors [1,2,3,4,5,6,7,8,9,10,12] and also [13,14,17,18,19,22,23] discovered sufficient conditions for the functions \(h, p, \) and \(\Phi \) for which the following result:

\[
h(z) < Y(p(z), zp'(z), z^2p''(z); z) \Rightarrow q(z) < p(z)(z \in U).
\]

If \(f_1 \in E \) is given by (1.1) and \(f_2 \in E \) given by

\[
f_2(z) = z^{-1} + \sum_{k=1}^{\infty} b_kz^k.
\]

The Hadamard product (or convolution) of \(f_1 \) and \(f_2 \) is given by

\[
(f_1 \ast f_2)(z) = z^{-1} + \sum_{k=1}^{\infty} a_kb_kz^k = (f_2 \ast f_1)(z).
\]

Using the results (see [1,2,4,5,6,7,13,14,17,18,20,21,22,23]) to obtain adequate criteria for the satisfaction of normalized analytic functions

\[
q_1(z) \leq \frac{zf'(z)}{f(z)} < q_2(z),
\]

where \(q_1 \) and \(q_2 \) are given univalent functions in \(U \) with \(q_1(0) = q_2(0) = 1 \).

Shanmugam et al. [20][21], as well as Goyal et al. [12], sandwich results for analytic function classes were recently obtained. (See also [1,3,4,5,11]).
The new integral operator was introduced and investigated by Atshan et al. [7],

\[R^n(\beta, \alpha, \gamma, v, r) : E \to E, \]

which is defined as follows:

\[R^n f(z) = z^{-1} + \sum_{k=1}^{\infty} \left(\frac{\delta + v - 1}{\delta + v - 1 + (k + 1)(\alpha + \gamma + r)} \right)^n a_k z^k, \quad (1.5) \]

where \((\delta > 1, \alpha > 1, \gamma > 0, v > 0, 0 < r < 1, z \in U)\).

The Hurwitz–Lerch Zeta function

\[\phi(z, s, y) = \sum_{k=0}^{\infty} \frac{z^k}{(k + y)^s}, \quad (y \in \mathbb{C}\setminus\mathbb{Z}^\infty; s \in \mathbb{C}, \text{when } |z| < 1; R(s) > 1, \text{when } |z| = 1). \]

We define the new Hadamard product operator

\[D^n_{a, b, c} f(z) = \frac{1}{z} + \sum_{k=1}^{\infty} \frac{1}{(k + 2)^c} \left[\frac{a}{a + b(k + 1)} \right]^{m} a_k z^k, \quad (1.6) \]

where \(a = \delta + v - 1, b = \alpha + \gamma + r\) and \(c \in \mathbb{C}\).

we note that from (1.6), we have

\[z \left(D^n_{a, b, c} f(z) \right) = \left(\frac{a}{b} \right) D^{n-1}_{a, b, c} f(z) - \frac{(a + b)}{b} D^n_{a, b, c} f(z) \quad (1.7) \]

This concept’s major aim is to discover suitable conditions for specific normalized analytic functions \(f\) to satisfy:

\[q_1(z) \prec \left(\frac{1 - \sigma) z D^{m-1}_{a, b, c} f(z) + 2z \alpha D^m_{a, b, c} f(z)}{\sigma + 1} \right) \prec q_2(z), \]

where \(\rho \in \mathbb{C} \setminus \{0\}, \sigma \in \mathbb{R}^+\) and \(z \in U\),

and

\[q_1(z) \prec \left(z D^m_{a, b, c} f(z) \right) \prec q_2(z), \]

whenever univalent functions \(q_1(z)\) and \(q_2(z)\) are given in \(U\) with \(q_1(0) = q_2(0) = 1\).

2-Preliminaries

The definitions and lemmas given below will assist us in proving our basic results.

Definition 2.1[15]: The set of all analytic and injective functions on \(U \setminus \mathbb{E}(f)\), where \(U = \overline{U} \cup \{z \in \partial U\}\), is denoted by \(Q\), and

\[E(f) = \{\omega \in \partial U : f(\omega) = \infty\}, \quad (2.1) \]

and are such that \(f'(\omega) \neq 0\) for \(\omega \in \partial U \setminus E(f)\). Furthermore, let \(Q(a), Q(0) = Q_0\) and \(Q(1) = Q_1\), be the subclass of \(Q\) for which \(f(0) = a\).
Lemma 2.1: [16] Let \(q(z) \) be convex univalent function in \(U \), let \(\alpha \in \mathbb{C}, \beta \in \mathbb{C} \setminus \{0\} \) and suppose that
\[
\Re \left(1 + \frac{zq''(z)}{q'(z)} \right) > \max \left\{ 0, -\Re \left(\frac{a}{\beta} \right) \right\}.
\]
If \(p(z) \) is analytic in \(U \) and
\[
ap(z) + \beta zp'(z) < ap(z) + \beta zq'(z), \text{ then } p(z) < q(z) \text{ and } q \text{ is the best dominant.}
\]

Lemma 2.2: [11] Let \(q \) be univalent in \(U \) and let \(\phi \) and \(\theta \) be analytic in the domain \(D \) containing \(q(U) \) with \(\phi(\omega) \neq 0 \), when \(\omega \in q(U) \). Set \(Q(z) = q'(z)\phi(q(z)) \) and \(h(z) = \theta(q(z)) + Q(z) \), suppose that

1) \(Q \) is starlike univalent in \(U \),
2) \(\Re \left(\frac{\theta(q(z))}{\phi(q(z))} \right) > 0, z \in U \).

If \(p \) is analytic in \(U \) with \(p(0) = q(0), p(U) \subseteq D \) and
\[
\theta(p(z)) + zp'(z)\phi(p(z)) < \theta(q(z)) + zq'(z)\phi(q(z)),
\]
then \(q < p \), and \(q \) is the best subordinant.

Lemma 2.3: [16] Let \(q(z) \) be convex univalent in the unit disk \(U \) and let \(\theta \) and \(\phi \) be analytic in a domain \(D \) containing \(q(U) \). Suppose that

1) \(\Re \left(\frac{\theta(q(z))}{\phi(q(z))} \right) > 0 \text{ for } z \in U \),
2) \(zq'(z)\phi(q(z)) \) is starlike univalent in \(z \in U \).

If \(p \in H[q(0), 1] \cap Q \), with \(p(U) \subseteq D \), and \(\theta(p(z)) + zp'(z)\phi(p(z)) \) is univalent in \(U \), and
\[
\theta(q(z)) + zq'(z)\phi(q(z)) < \theta(p(z)) + zp'(z)\phi(p(z)),
\]
then \(q < p \), and \(q \) is the best subordinant.

Lemma 2.4: [16] Let \(q(z) \) be convex univalent in \(U \) and \(q(0) = 1 \). Let \(\beta \in \mathbb{C} \), that \(\Re(\beta) > 0 \). If \(p(z) \in H[q(0), 1] \cap Q \) and \(p(z) + \beta zp'(z) \) is univalent in \(U \), then
\[
q(z) + \beta zq'(z) < p(z) + \beta zp'(z), \text{ which implies that } q(z) < p(z) \text{ and } q(z) \text{ is the best subordinant.}
\]

3- Results of Differential Subordinations

Now, we discuss some differential subordination results using a new Hadamard product operator \(D_{a,b,c}^m \).

Theorem 3.1 : Let \(q(z) \) be a convex univalent function in the open unit disk \(U \), with \(q(0) = 1 \), and \(q'(z) \neq 0 \), for all \(z \in U \). Let \(\tau, \rho \in \mathbb{C} \setminus \{0\}, \sigma \in \mathbb{R}^+ \). Suppose that
\[
\Re \left(1 + \frac{zq''(z)}{q'(z)} \right) > \max \left\{ 0, -\Re \left(\frac{a}{\rho} \right) \right\},
\]
If \(f \in E \) is satisfies the subordination condition:
\[
H(z) < q(z) + \frac{\tau}{\rho} zq'(z),
\]
where
\[
H(z) = \left(\frac{1-\sigma}{\beta} D_{a,b,c}^{m-1} f(z) + \frac{2\sigma}{\beta} D_{a,b,c}^m f(z) \right)^{\frac{1}{\sigma+1}} + \frac{\tau}{\rho} \left[\left(\frac{a}{\beta} \right)^{\frac{1}{\sigma}} D_{a,b,c}^{m-1} f(z) + \left(\frac{1-\sigma}{\beta} D_{a,b,c}^{m-1} f(z) + 2\sigma D_{a,b,c}^m f(z) \right) \right].
\]
then
\[
\left(\frac{(1 - \sigma)zD^{m-1}_{a,b,c} f(z) + 2\sigma zD^m_{a,b,c} f(z)}{\sigma + 1}\right)^\rho < q(z),
\]
(3.4)

and \(q(z)\) is the best dominant.

Proof: Define the \(g(z)\) function as follows:
\[
g(z) = \left(\frac{(1 - \sigma)zD^{m-1}_{a,b,c} f(z) + 2\sigma zD^m_{a,b,c} f(z)}{\sigma + 1}\right)^\rho,
\]
(3.5)

then the function \(g(z)\) is analytic in \(U\) and \(g(0) = 1\) as a result of differentiating (3.5) with respect to \(z\) and then using the identity (1.7) in the resultant equation.

Thus the subordination (3.2) is equivalent to
\[
g(z) + \frac{z}{\rho}g'(z) < q(z) + \frac{z}{\rho}q'(z).
\]

An application of Lemma(2.1) with \(\beta = \frac{\tau}{\rho}, \alpha = 1\), we obtain (3.4).

Corollary 3.1: Let \(\tau, \rho \in \mathbb{C} \setminus \{0\}, \sigma \in \mathbb{R}^+\) and \((-1 \leq B < A \leq 1)\). Suppose that
\[
\text{Re}\left(\frac{1 - Bz}{1 + Bz}\right) > \max\left\{0, -\text{Re}\left(\frac{\rho}{\tau}\right)\right\}.
\]

If \(f \in E\) is satisfy the following subordination condition:
\[
H(z) < \frac{1 + Az}{1 + Bz} + \frac{\tau (A - B)z}{\rho (1 + Bz)^2}
\]
when \(H(z)\) given by (3.3), then
\[
\left(\frac{(1 - \sigma)zD^{m-1}_{a,b,c} f(z) + 2\sigma zD^m_{a,b,c} f(z)}{\sigma + 1}\right)^\rho < \frac{1 + Az}{1 + Bz}
\]

where the best dominating is \(\frac{1 + Az}{1 + Bz}\).

In Corollary(3.1), we can get following result with \(A = 1\) and \(B = -1\).

Corollary 3.2: Let \(\tau, \rho \in \mathbb{C} \setminus \{0\}, \sigma \in \mathbb{R}^+\) and suppose that
\[
\text{Re}\left(\frac{1 + z}{1 - z}\right) > \max\left\{0, -\text{Re}\left(\frac{\rho}{\tau}\right)\right\}.
\]

If \(f \in E\) fulfill the following subordination necessity:
\[H(z) < \frac{1 + z}{1 - z} + \frac{\tau}{\rho} \frac{2z}{(1 - z)^2} \]

when \(H(z) \) given by (3.3), then

\[
\left(\frac{1 - \sigma z D_{\alpha,\beta,\gamma}^{m-1} f(z) + 2\sigma z D_{\alpha,\beta,\gamma}^m f(z)}{\sigma + 1} \right)^\rho < \frac{1 + z}{1 - z}.
\]

Theorem 3.2: In unit disk \(U \), let \(q(z) \) be convex univalent function in the open unit disk \(U \) with \(q(0) = 1, q'(z) \neq 0 \) and \(\frac{q(z)}{q'(z)} \) is starlike univalent in \(U \). Let \(\eta, \tau, \rho \in \mathbb{C} \setminus \{0\}, \zeta, n, \lambda, \mu \in \mathbb{C}, f \in \mathbb{E} \), and suppose that \(q \) satisfy the following conditions

\[
Re \left(\frac{\lambda}{\eta} q(z) + \frac{2\eta q}{\zeta} q^2(z) + 1 + z \frac{q''(z)}{q'(z)} - z \frac{q'(z)}{q(z)} \right) > 0,
\]

and if \(f \in \mathbb{E} \) satisfies:

\[
z D_{\alpha,\beta,\gamma}^m f(z) \neq 0.
\]

If

\[
e(z) < n + \lambda q(z) + \eta q^2(z) + \nu z q'(z) q(z),
\]

where

\[
e(z) = \left(z D_{\alpha,\beta,\gamma}^m f(z) \right)^\rho \left[\lambda + \eta q \left(z D_{\alpha,\beta,\gamma}^m f(z) \right)^2 + \nu q \left(\frac{a}{b} D_{\alpha,\beta,\gamma}^{m-1} f(z) - 1 \right) \right]^
ho
\]

then \(\left(z D_{\alpha,\beta,\gamma}^{m+1} f(z) \right)^\rho < q(z) \), where the best dominating is \(q(z) \).

Proof: As follows, define the analytic function \(g(z) \):

\[
g(z) = \left(z D_{\alpha,\beta,\gamma}^m f(z) \right)^\rho,
\]

then the function \(g(z) \) is analytic in \(U \) and \(g(0) = 1 \). By differentiating (3.10) with respect to \(z \), and using identity (1.7) in the resulting equation, we get

\[
\frac{z g'(z)}{g(z)} = \rho \left(\frac{q}{b} \right) \left[D_{\alpha,\beta,\gamma}^{m-1} f(z) - 1 \right].
\]

Setting \(\theta(\omega) = n + \lambda \omega + \eta q \omega^2 \) and \(\phi(\omega) = \zeta \omega, \omega \neq 0 \) reveals the \(\theta(\omega) \) is analytic function in \(\mathbb{C} \), and \(\phi(\omega) \) is analytic in \(\mathbb{C} \setminus \{0\} \) and \(\phi(\omega) \neq 0, \omega \in \mathbb{C} \setminus \{0\} \).

If, we let

\[Q(z) = z q'(z) q(z) = \frac{z q'(z)}{q(z)} \text{ and } h(z) = \theta(q(z)) + Q(z) = n + \lambda q'(z) + \nu q^2(z) + \frac{z q'(z)}{q(z)}, \]

we find that \(Q(z) \) is starlike univalent in \(U \), we have

\[
h'(z) = \lambda q'(z) + 2\mu \xi q(z) q'(z) + \frac{q'(z)}{q(z)} + q z \frac{q''(z)}{q'(z)} - q z \left(\frac{q'(z)}{q(z)} \right)^2,
\]
and

\[\frac{zh'(z)}{Q(z)} = \frac{\lambda}{\xi} q(z) + 2u\xi q^2(z) + 1 + z \frac{q''(z)}{q'(z)} - z \frac{q'(z)}{q(z)}, \]

hence that

\[\text{Re} \left(\frac{zh'(z)}{Q(z)} \right) = \text{Re} \left(\frac{\lambda}{\xi} q(z) + 2u\xi q^2(z) + 1 + z \frac{q''(z)}{q'(z)} - z \frac{q'(z)}{q(z)} \right) > 0. \]

By using (3.11), we obtain

\[\lambda g(z) + u\eta g^2(z) + \epsilon \frac{z g'(z)}{g(z)} = \left(zD_{\infty, r; z}^\eta f(z)\right)^\rho \left[\lambda + \mu \epsilon \left(zD_{a,b,c}^n f(z) \right)^2 \right] + \epsilon \rho \left(a \right), \]

By using (3.8), we have

\[\lambda g(z) + \mu \epsilon g^2(z) + \epsilon \frac{z g'(z)}{g(z)} \lambda q(z) + \mu \epsilon q^2(z) + \epsilon \frac{z q'(z)}{q(z)} , \]

We can infer that subordination(3.8) implies that \(g(z) < q(z) \), and that the function \(q(z) \) is the best domain by using Lemma 2.2.

Taking the function \(q(z) = \frac{1 + Az}{1 + Bz} \) \((-1 \leq B < A \leq 1)\, , in \, Theorem\, 3.2, \, the \, condition \,(3.6) \, becomes

\[\text{Re} \left(\frac{\lambda}{\xi} \frac{1 + Az}{1 + Bz} \right)^\rho \left[\lambda + \mu \epsilon \left(\frac{1 + Az}{1 + Bz} \right)^2 \right] + \epsilon \rho \left(\frac{A - B)z}{1 + Bz} \right) > 0 \, (\xi \in \mathbb{C} \setminus \{0\}), \]

(3.12)
as a result, we may deduce the following conclusion.

Corollary 3.3: Let \((-1 \leq B < A \leq 1)\, , \xi, \rho, \alpha, \beta \in \mathbb{C} \setminus \{0\} \, , \xi, \alpha, \lambda, \mu \in \mathbb{C} \, assume \, that \,(3.12) \, holds \, . \, If \, f \in E \, and

\[e(z) < a + \lambda \left(\frac{1 + Az}{1 + Bz} \right) + \mu \epsilon \left(\frac{1 + Az}{1 + Bz} \right)^2 + \epsilon \rho \left(\frac{(A - B)z}{1 + Bz} \right) , \]

where \(e(z) \) is defined in (3.9), then

\[\left(zD_{a,b,c}^n f(z) \right)^\rho < \frac{1 + Az}{1 + Bz} , \, and \, \frac{1 + Az}{1 + Bz} \, is \, the \, best \, dominant. \]

Taking the function \(q(z) = \left(\frac{1 + z}{1 - z} \right)^i \) \((0 < i \leq 1)\, , in \, Theorem\,(3.2), \, the \, condition \,(3.6) \, becomes

\[\text{Re} \left(\frac{\lambda}{\xi} \frac{1 + z}{1 - z} \right)^i + \frac{2u\xi}{\xi} \left(\frac{1 + z}{1 - z} \right)^2i + \frac{2z^2}{1 - z^2} > 0 , \, (\nu \in \mathbb{C} \setminus \{0\}). \]

(3.13)

As a result, we may deduce the following conclusion.

Corollary 3.4: Let \(0 < i \leq 1, \xi, \rho, \alpha, \beta \in \mathbb{C} \setminus \{0\} \, , \xi, \eta, \nu, \lambda, \mu \in \mathbb{C} \, Assume \, that \,(3.13) \, holds \, . \, If \, f \in E \, and

\[e(z) < \nu + \lambda \left(\frac{1 + z}{1 - z} \right)^i + \mu \epsilon \left(\frac{1 + z}{1 - z} \right)^2i + \epsilon \rho \left(\frac{2iz}{1 - z^2} \right) , \]

where \(e(z) \) is defined in (3.9), then \(\left(zD_{a,b,c}^m f(z) \right)^\rho < \left(\frac{1 + z}{1 - z} \right)^i, \) and \(\left(\frac{1 + z}{1 - z} \right)^i \) is the best dominant.

4- Results of Differential Superordinations:
Theorem 4.1: Assume that the function $q(z)$ is a convex univalent in U with $q(0) = 1, \rho \in \mathbb{C} \setminus \{0\}, \text{Re}(\tau) > 0$, $\sigma \in \mathbb{R}^+$, if $f \in E$, such that
\[
\frac{(1 - \sigma)zD_{a,b,c}^{m-1} f(z) + 2\sigma zD_{a,b,c}^m f(z)}{\sigma + 1} \neq 0, \quad \text{and}
\]
\[
\left(\frac{(1 - \sigma)zD_{a,b,c}^{m-1} f(z) + 2\sigma zD_{a,b,c}^m f(z)}{\sigma + 1}\right)^\rho \in H[q(0), 1] \cap Q. \tag{4.1}
\]

If the function $H(z)$ in (3.3) is univalent and the superordination criterion is fulfilled:
\[
q(z) + \frac{\tau}{\rho} q'(z) < H(z), \tag{4.2}
\]
holds, then
\[
q(z) \prec \left(\frac{(1 - \sigma)zD_{a,b,c}^{m-1} f(z) + 2\sigma zD_{a,b,c}^m f(z)}{\sigma + 1}\right)^\rho, \tag{4.3}
\]
where the best subordinant is $q(z)$.

Proof: Define a function $g(z)$ by
\[
g(z) = \left(\frac{(1 - \sigma)zD_{a,b,c}^{m-1} f(z) + 2\sigma zD_{a,b,c}^m f(z)}{\sigma + 1}\right)^\rho. \tag{4.4}
\]
Differentiating (4.4) with respect to z, we get
\[
\frac{z g'(z)}{g(z)} = \rho \left[\frac{(1 - \sigma)z\left(D_{a,b,c}^{m-1} f(z)\right)' + 2\sigma z\left(D_{a,b,c}^m f(z)\right)'}{(1 - \sigma)D_{a,b,c}^{m-1} f(z) + 2\sigma D_{a,b,c}^m f(z)} + 1\right]. \tag{4.5}
\]
A simple computation and using (1.7), from (4.5), we will get
\[
H(z) = \left(\frac{(1 - \sigma)zD_{a,b,c}^{m-1} f(z) + 2\sigma zD_{a,b,c}^m f(z)}{\sigma + 1}\right)^\rho + \tau \left[\left(\frac{a}{b}\right)^{1 - \sigma - 1} \left(D_{a,b,c}^{m-1} f(z) + (3\sigma - 1)D_{a,b,c}^{m-1} f(z) - \sigma D_{a,b,c}^m f(z)\right)\right] = g(z) + \frac{\tau}{\rho} z g'(z).
\]
Now, by using Lemma 2.4, we get the desired result.

Taking $q(z) = \frac{1 + Az}{1 + Bz}, (-1 \leq B < A \leq 1)$, we obtain the following conclusion from Theorem 4.1.

Corollary 4.1: Let $\text{Re}(\tau) > 0, \rho \in \mathbb{C} \setminus \{0\}, \sigma \in \mathbb{R}^+$ and $(-1 \leq B < A \leq 1)$, such that
\[
\left(\frac{(1 - \sigma)zD_{a,b,c}^{m-1} f(z) + 2\sigma zD_{a,b,c}^m f(z)}{\sigma + 1}\right)^\rho \in H[q(0), 1] \cap Q.
\]
If $H(z)$ in (3.3) is univalent in U, and $f \in E$ fulfills the superordination condition,
\[
\frac{1 + Az}{1 + Bz} + \frac{\tau (A - B)z}{\rho (1 + Bz)^2} < F(z),
\]
then
the best subordinant is the function $\frac{1 + Aq}{1 + Bz}$.

Theorem 4.2: Let $q(z)$ be a convex univalent function in the open unit disk U with $q(z) = 1$, $q'(z) \neq 0$ and $\frac{zq'(z)}{q(z)}$ is starlike univalent in U. Let $q, p \in \mathbb{C} \setminus \{0\}$, $\xi, \alpha, \lambda, \mu \in \mathbb{C}$. Suppose that q satisfy the condition $\Re\left\{\frac{q(z)}{q(z)}\right\}(2\mu \xi + \lambda)q'(z) > 0$. Let $f \in E$ satisfies the next conditions:

$$\left(zD_{a,b,c}^m f(z)\right)^\theta \in H[q(0), 1] \cap Q, \tag{4.6}$$

and

$$zD_{a,b,c}^m f(z) \neq 0. \text{ If the function } e(z) \text{ is given by (3.9), is univalent in } U,$n$$

$$a + \lambda q(z) + \mu \xi q^2(z) + q \frac{zq'(z)}{q(z)} < e(z), \tag{4.7}$$

implies

$$q(z) < \left(zD_{a,b,c}^m f(z)\right)^\theta,$$

where the best subordinant is $q(z)$.

Proof: Allow $g(z)$ to be defined on U by (3.10).

After that, a calculation reveals that

$$\frac{zg'(z)}{g(z)} = \rho \left(\frac{q}{\phi}\right) \left[D_{a,b,c}^{m-1} f(z)\right] \left[D_{a,b,c}^m f(z)\right] - 1. \tag{4.8}$$

By setting $\theta(\omega) = a + \lambda \omega + \mu \xi \omega^2$, and $\phi = \frac{q}{\phi}$, $\omega \neq 0$. It can be easily observed that $\theta(\omega)$ is analytic in \mathbb{C}, $\phi(\omega)$ is analytic in $\mathbb{C} \setminus \{0\}$, that $\phi(\omega) \neq 0$ ($\omega \in \mathbb{C} \setminus \{0\}$). Also, we get

$$Q(z) = zq'(z)\phi(q(z)) = q \frac{zq'(z)}{q(z)}.$$

It was discovered that $Q(z)$ is a starlike univalent in U.

Because $q(z)$ is convex, we may deduce that

$$\Re\left(\frac{z\theta'(q(z))}{\phi(q(z))}\right) = \Re\left(\frac{q(z)}{q(z)}(2\mu \xi q(z) + \lambda)q'(z) > 0.\right.$$

By making use (4.8) the hypothesis (4.7) can by equivalently

$$\theta(q(z)) + zq'(z)\phi(q(z)) < \theta(g(z)) + zg'(z)\phi(g(z)).$$

The proof is therefore completed by utilizing the Lemma 2.3.

5- Sandwich Results:

By combining Theorems 3.1 and 4.1, we have the following sandwich Theorem:

Theorem 5.1: Let q_1 and q_2 be convex univalent functions in U with $q_1(0) = q_2(0) = 1$ and q_2 satisfies (3.1). Suppose that $\Re(\tau) > 0$, $\tau, \rho \in \mathbb{C} \setminus \{0\}$, $\sigma \in \mathbb{R}^*$. If $f \in E$, such that
\[
\left(\frac{(1 - \sigma)D_{a,b,c}^{m-1}f(z) + 2\sigma D_{a,b,c}^mf(z)}{\sigma + 1} \right) ^\rho \in H[q(0), 1] \cap Q,
\]

and the univalent function \(H(z) \), defined by (3.3), satisfies

\[
q_1(z) + \frac{\tau}{\rho} z q_1'(z) < H(z) < q_2(z) + \frac{\tau}{\rho} z q_2'(z), \tag{5.1}
\]

then

\[
q_1(z) < \left(\frac{(1 - \sigma)D_{a,b,c}^{m-1}f(z) + 2\sigma D_{a,b,c}^mf(z)}{\sigma + 1} \right) ^\rho < q_2(z),
\]

where \(q_1 \) and \(q_2 \) are the best subordinant and dominant, respectively (5.1).

We obtain the following sandwich theorem by merging Theorems 3.2 and 4.2:

Theorem 5.2: Let \(q_j \) and be two univalent convex functions in \(U \), in condition for \(q_j(0) = 1, q'_j(z) \neq 0, (j = 1,2) \).
Assume that \(q_1 \) and \(q_2 \) satisfy the conditions (3.8) and (4.8), respectively.

If \(f \in E \), and suppose that \(f \) satisfies the next condition

\[
\left(zD_{a,b,c}^mf(z) \right) ^\rho \in H[q(0), 1] \cap Q,
\]

and \(zD_{a,b,c}^mf(z) \neq 0 \), and \(e(z) \) is univalent in \(U \), and given by (3.9), then

\[
a + \lambda q_1(z) + \mu z q_1'(z) + \frac{qzq_1'(z)}{q_1(z)} < e(z) < a + \lambda q_2(z) + \mu z q_2'(z) + \frac{qzq_2'(z)}{q_2(z)}, \tag{5.2}
\]

Implies

\[
q_1(z) < \left(zD_{a,b,c}^mf(z) \right) ^\rho < q_2(z),
\]

where the best subordinant and dominant are \(q_1 \) and \(q_2 \), respectively.

References

