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A B S T R A C T 

Analyzing data need detecting some outliers; therefore many important methods appeared 
and introduced to detect these outliers. In this paper, we consider the distinguished methods 
employed to detect the outliers. Our main purpose, shed light the classical methods for 
detecting outliers and fixing disadvantage of these methods. 

MSC.. 

1. Introduction 

There are many methods for detecting outliers in multivariate data. For example, leverage value, Mahalanobis 
distance. The classical Mahalanobis distance is a common method for detecting outliers. However, it is a method based 
on sample mean vector and sample covariance matrix. Since the classical mean vector and covariance matrix algorithms 
are sensitive to outliers, the classical Mahalanobis distance is also sensitive to outliers. Many authors have proposed 
robust estimation methods for mean vector and covariance matrix, such as MVE estimator, MCD estimator, etc. 

The Mahalanobis distance was examined as a multivariate distance in this work, and its advantages over the Euclidean 
distance were discussed. It became clear that when dealing with correlated multivariate data, the Mahalanobis distance, 
which takes correlation into account, is preferable to the Euclidean distance. It was also shown that multivariate outliers 
can be detected using the Mahalanobis distances. To calculate the Mahalanobis distances, one must first estimate the 
theoretical mean vector and covariance matrix. Since outliers have a large impact on these estimators, estimating these 
parameters using their conventional empirical equivalents, especially when the data contain outliers, yields erroneous 
findings. One sensible solution is to use trustworthy statistical techniques. 

   A robust Mahalanobis distance can be calculated for each point using distance-based techniques like MCD, which are 
based on robust estimates of the mean and covariance matrix despite the existence of 593 different robust estimations. 
The aforementioned methods have been applied in this work to find multivariate outliers in a real data set using the 
statistical computing software environment R. 
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In contemporary statistics, linear regression models represent a large and highly developed field. One of the most 
widely applied models in this field is the multiple linear regression model. The most common method used in 
multiple linear regression models is to establish a functional relationship between two or more quantitative 
variables so that one or more explanatory variables can predict a response variable. The significant topics in this 
chapter's literature reviews relate to robust diagnostic methods and robust estimation techniques for multiple 
linear regression models with outliers.  

2. Depth Function and half space depth 

Liu (1990) introduced an important new variety of depth function, the “simplicial depth”, and emphasized the general role 

of a depth function as providing a center-outward ranking of data points. The one-dimensional case the spatial depth is 

equivalent to the halfspace depth, as seen from [30] as follow as: 

 𝐷s(x, F) = 1 − |2𝐹(𝑥) − 1| = 2 min{ 𝐹(𝑥), 1 − 𝐹(𝑥)}. 

Regina Y. Liu (1990) introduced a new notion of data depth. This notion emerges naturally out of a fundamental concept 

underlying affine geometry, namely that of a simplex, and it satisfies the requirements one would expect from a notion of 

data depth. Thus it leads to an affine invariant, center-outward ranking of the data points. [32] 

Donoho and Gasko (1992) explored the properties of the location depth and of the deepest location for finite data set, where 

the deepest location is a point with maximal ldepth which it the center of gravity the center of gravity of the innermost 

ldepth region. [9]. 

Rousseeuw and Ruts (1996) were the first to use the concept of a circular sequence to precisely calculate the half-space 

depth for bivariate data clouds and generate their outlines, where computed the depth of a point with complexity O(n log n), 

and a single depth region is constructed with complexity O(n2log n), both essentially determined by the complexity of the 

QUICK-SORT procedure. [34] 

Johnson et al. (1998) proposed accounting for only a small fraction of points while creating the first l depth contours, which 

results in a lower complexity for small l. (algorithm FDC). A data cloud is described by a finite number of depth contours 

in halfspace depth. [23]  

Rousseeuw and Struyf (1998) introduce an algorithm to compute the halfspace depth for d = 3 with complexity O(n2 log n). 

They use the Rousseeuw and Ruts (1999) procedure to determine the halfspace depth in these planes by projecting points 

onto planes orthogonal to the lines linking each of the points from X with z.[37].  

2.1 Regression depth 

Rousseeuw, Peter & Hubert, Mia (1999) propose the notion of regression depth. They view depth as a property of a fit 

(typically determined by a vector  of coefficients), rather than a property of an observation. In general, they define the 

depth of a (candidate) fit  to a given dataset Zn of size n (, Zn) to be the smallest number of observations of Zn that would 

need to be removed to make  a nonfat [35].  To compute the regression depth (rdepth) in O(n) operations using the 

following formula: 

rdepth(θ, 𝑍𝑛) = min
1≤𝑖≤𝑛

(min{𝐿+(𝑥𝑖) + 𝑅−(𝑥𝑖), 𝑅+(𝑥𝑖) + 𝐿−(𝑥𝑖)}) , 

where 𝐿+(𝑣) =⋕ {j; 𝑥𝑗 ≤ 𝑣 𝑎𝑛𝑑 𝑟𝑗 ≥ 0}, 𝑅−(𝑣) =⋕ {j; 𝑥𝑗 > 𝑣 𝑎𝑛𝑑 𝑟𝑗 ≤ 0},  and 𝐿−  and 𝑅+  are defined 

accordingly. 

2.2 The contaminants 

!Geoff Robson (2003) mention that the contaminants are outliers caused by human error or the presence of a separate 

generation mechanism and a different distribution. Outlying observations are typically not contaminants except in the case 

of heavy-tailed distributions such as Student's t. The contamination of samples drawn from the normal distribution, which 

is not prone to outliers, was addressed. It is also assumed that nothing about the distribution's parameters is known a priori, 

which is usually the case.[33]. 
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Miller et al. (2003) compute halfspace depth for bivariate data clouds, and the halfspace depth describes a data cloud by a 

finite number of depth contours with complexity O(n2), and the depth of a single point may then be computed with 

complexity (log2 n)[29]. Bremner et al. (2006) use a primal-dual technique to determine the halfspace depth by 

incrementally updating the upper and lower boundaries using a heuristic until they coincide [3].  

In [10], functional depths—a measure of a curve's centrality inside a collection of trajectories that provides center outward 

orderings of the set of curves—are used to assess outlier detection for functional data. They offer some explanations 

regarding the value of searching for outliers in functional datasets and suggest an in-depth strategy for functional outlier 

detection. Numerous Monte Carlo trials are used to examine the performance of the suggested approach. We conclude by 

locating outliers in a dataset of NOx (nitrogen oxides) emissions obtained from a control station close to an industrial 

region to demonstrate the approach. 

 Moreover, Bremner et al. (2008) design an output-sensitive depth-calculating algorithm that represents the task as two 

maximum subsystem problems for d > 2 [4]. In order to visualize functional data and spot functional outliers, the 

researchers in [21] suggest some new tools. The suggested tools leverage high-density regions, deep data, and robust 

principal component analysis. We demonstrate that our approaches outperform the existing "functional depth" method in 

identifying outliers in French male age-specific mortality data by comparing the proposed outlier detection methods with it. 

Kernelized spatial depth (KSD) (2009), a statistical depth function, and an outlier identification technique were presented 

by Yixin Chen [9]. The spatial depth has been generalized by the KSD where the form of KSD can be explain as 

D𝜅(𝑥, 𝜒) = 1 −
1

|𝜒 − {𝑥}| − 1
× ( ∑

𝜅(𝑥, 𝑥) + 𝜅(𝑦, 𝑧) − 𝜅(𝑥, 𝑦) − 𝜅(𝑥, 𝑧)

𝛿𝜅(𝑥, 𝑦) 𝛿𝜅(𝑥, 𝑧)
𝑦,𝑧 ∈𝜒

)

1 2⁄

, 

where 𝛿𝜅(𝑥, 𝑦) = √𝜅(𝑥, 𝑥) + 𝜅(𝑦, 𝑦) − 2𝜅(𝑥, 𝑧). 

In a feature space caused by a positive definite kernel, it defines a depth function. Any observation's KSD can be assessed 

using a specific set of samples. In a feature space caused by a positive definite kernel, it defines a depth function. Any 

observation's KSD can be assessed using a specific set of samples. As a data point moves further from the center, or the 

spatial median, of the data cloud, the depth value, which is always within the interval  [0, 1]. This inspires a straightforward 

algorithm for detecting outliers, which labels an observation as one if its KSD value is below a predetermined threshold. 

We arrived at the probabilistic inequality for the likelihood that an outlier detector will generate false alarms. The threshold 

of an outlier detector can be selected to regulate the upper bound on the probability of false alarms under a specific level 

using these inequalities. They tested the suggested technique for outlier detection on both simulated and real-world data 

sets. On all test data sets, the KSD based outlier detection performs competitively. 

3. Multivariate Functional and halfspace depth  

The zonoid depth was pioneered by Mosler et al. (2009). They took advantage of the notion to divide Rd into 
direction cones, and later techniques for determining depth and depth regions, including the halfspace depth, did 
the same [30].  Mosler consider the definition of zonoid regions as 𝑫𝟎(𝑭) = 𝑹𝒅 and for 𝜶 ∈ [𝟎, 𝟏] 

𝑫𝜶(𝑭) = {∫ 𝒙𝒈(𝒙)𝒅𝑭(𝒙): 𝟎
𝑹𝒅 

≤ 𝒈 ≤
𝟏

𝜶
 , ∫ 𝒈(𝒙)𝒅𝑭(𝒙) = 𝟏

𝑹𝒅 

}. 

A direct link between multivariate quantile areas and halfspace depth trimmed regions is shown by Hallin et al. 
(2010). [17]  

When bivariate depth and depth lines continually add points to the data set, updating depth becomes a fascinating 
problem, which Burr et al. (2011) explores. [6] 

W. S. Lok & Stephen M.S. Lee (2011) proposed a new statistical depth function based on interpoint distances, which 
has the distinct property of respecting multimodality in data configurations, which it proves to be especially 
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relevant to many inference problems including confidence region construction, classification, tests for equality of 
populations, p-value computation, etc. With specification of an appropriate interpoint distance, our depth function 
also applies to infinite-dimensional data. Where the conventional centre-outward ordering depth functions are 
found to be inadequate. [26] 

In order to demonstrate that their envelope coincides with the appropriate halfspace depth trimmed region, Kong 
and Mizera (2012) use direction quantiles, which are halfspaces that correspond to quantiles on univariate 
projections. For d > 2, the areas of depth are precisely computed [24]. 

Ieva and Paganoni (2013) used Multivariate Functional Principal Component Analysis to reduce the dimensionality 
of their data. It entails multiplying the respective scores by the information contained in the covariance operators of 
the signals and their first derivatives. Projecting data and derivatives onto the relevant Karhunen-Loève bases yields 
scores. [4] 

Liu and Zuo (2014) use a breadth-first search technique to cover Rd and QHULL to define the direction cones in 
order to precisely determine the halfspace depth. For the precise computation of the halfspace depth, he offers two 
more, seemingly quick procedures. This algorithm is one of them; it is called a refined combinatorial algorithm [25]. 

Sara López-Pintado et al. (2014) proposed Simple depth-of-range concepts for multivariate functional data that 
extend univariate functional depth of range, providing simple and natural criteria for measuring path centrality 
within a sample of curves. 

Recall that the standard simplicial depth 𝑺𝑫(𝒚; 𝑷𝒀) of a multivariate vector y in Rd  with respect to the multivariate 
distribution 𝑷𝒀 is defined as 

𝑺𝑫(𝒚; 𝑷𝒀) = 𝑷{𝒚 ∈ 𝒔𝒊𝒎𝒑𝒍𝒆𝒙{𝒀𝟏, … , 𝒀𝒑+𝟏}. 
Based on these depths, a sample of multivariate curves can be ordered from the center out and system statistics can 
be determined. The proposed depths have characteristics, such as stability and consistency [27]. 

Ieva, Francesca et al. (2015) developed statistical methods to compare two independent samples of multivariate 
functional data that differ in terms of covariance factors. The concept of depth measurement has been generalized to 
this type of data, taking advantage of the role of contrast factors in weighting the components that determine depth. 
It was applied to electrocardiogram (ECG) signals aimed at comparing physiological subjects and affected patients 
with left bundle branch block. Also, the proposed depth scales calculated on the data were used to perform a non-
parametric comparison test between these two groups. They are also presented in a generalized regression model 
that aims to classify ECG signals.[22] 

4. Clustering and Tukey depth 

Katie Evans et al. (2015) devised a method to identify outlying observations in model-based clustering based on 
normal mixture models that influence cluster structure and number, without identifying clusters amid a wide range 
of noisy observations. The outliers are those with a minimum membership proportion or for which the cluster-
specific variance with and without the observation is very different. The method demonstrated its ability to detect 
true outliers without incorrectly identifying many non-outliers and improves performance compared to other 
approaches [13]. 

!Reyes, Alicia & Cuesta-Albertos, Juan (2015) proposed a modification of the first procedure in Hubert et al. (2015) 
consisting in basing it on the random Tukey depth, where the random Tukey depth is a statistical depth that 
approximates the Tukey depth. It needs of a very low number of projections to obtain equivalent results to those of 
the Tukey depth. So, the random Tukey depth is very fast to compute, making it the depth to go for, not only when 
the dimension of the space is moderate or high, but also when it is low due to its computationally effectiveness. 
Additionally, the random Tukey depth inherits from the Tukey depth the nice properties that made it well known. 
Also he proposed a simpler and more usual measure of variation [19]. 

Rainer Dyckerhoff, Pavlo Mozharovskyi (2016) proposed a theoretical framework for computing the halfspace 
depth, which yields a whole class of algorithms. The data for each of these tuple is projected onto the corresponding 
orthogonal complement, and the halfspace depth was computed as the sum of the depth in these two orthogonal 
subspaces and all proposed algorithms are capable of dealing with data that is not in general mode and even with 
ties.[31] 
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5. Mahalanobis distances  

According to Olusola Samuel (2017), is an alternative to several parametric methodologies in evaluating large amounts of 

multivariate data. A nonparametric classification strategy based on several data depth function conceptions is addressed, 

and certain features of these approaches are investigated. The performance of various depth functions in maximum depth 

classifiers is explored using simulation and real data in the agriculture business. [28] 

!Dutta, Subhajit & Genton, Marc (2017) Use depth-based estimates to construct regression estimates, and 
investigate their performance with respect to existing estimators. To increase the efficiency of this estimator, a re-
weighted estimator based on strong Mahalanobis distances from the remaining vectors has been proposed. The 
method is more stable than current methods that are generated using subsamples of data from an empirical point of 
view. The resulting multivariate regression technique is computationally feasible, and has been shown to perform 
better than many popular robust multivariate regression methods when applied to diverse simulation data as well 
as a real reference dataset. When the dimension of the data is too high compared to the sample size, meaningful 
concepts of data depth can still be used along with corresponding depth values to create a robust estimator in a 
sparse environment.[17] 

Mia Hubert et al. (2017) created classifications of multivariate and functional data in order to combine novel 
stability, robustness, and computational feasibility. On the basis of the halfspace depth, the bag distance (BD) has 
been proposed. It meets the majority of the features of a norm and can also represent asymmetry. Instead of delving 
into the facts. In addition, a DistSpace transformation based on bd or an outlyingness metric is proposed, followed 
by k-nearest neighbor (kNN) categorization of the changed data points. This combines kNN's wide applicability and 
endurance with its stability and simplicity. The concept was tested against other approaches using actual and 
simulated data.[20] 

!Taban Baghfalaki and Mojtaba Ganjali (2017) proposed a robust generalized estimating equations (RGEE) that 
based on statistical depth and extend the approach to robust weighted generalized estimating equations (RWGEE), 
which express centrality of points with respect to the whole sample with a smaller depth (larger depth) for the point 
far from the center (for the point near the center)[2] . Harsh, Archit et al. (2018) present and implement a modified 
onion peeling algorithm to detect top-k outliers in a Gaussian 2-D data set. The idea of onion peeling, or peeling in 
short, is to construct a convex hull around all the points in the dataset and then find the points that are on the edge 
of the convex hull.  These points form the first “peel‟ and are removed from the dataset. Repeating the same process 
gives more and more peels, each containing a number of points. We modified this basic  idea  to  detect the k largest  
outliers  in a  given  2-D  Gaussian data-set. The choice of k is influenced by the spatial geometry of the data-set and 
is user-defined. The convex hull is the smallest convex set that contains all of the points in the set.[18] 

5.1 MAHALANOBIS DISTANCE AND ITS APPLICATION FOR DETECTING MULTIVARIATE OUTLIERS 

The paper [15] reviewed the Mahalanobis distance as a multivariate distance and discussed its benefits over the 
Euclidean distance. It was made obvious that the Mahalanobis distance, which accounts for correlation, is preferable 
to the Euclidean distance when working with correlated multivariate data. Additionally, it was demonstrated how 
the Mahalanobis distances can be used to spot multivariate outliers.  The researcher consider the Mahalanobis 
distance definition as : 

𝐷(𝑋, 𝜇) = √(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇) . 

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean distanceThe theoretical 
mean vector and covariance matrix must be estimated in order to compute the Mahalanobis distances. Since 
outliers, estimating these parameters using their typical empirical counterparts, significantly impact these 
estimators particularly when data contain outliers, produces false results. Using reliable statistical methods is one 
sensible solution. Although there are 593 various robust estimates, distance-based techniques like MCD are based 
on robust estimates of the mean and covariance matrix, allowing for the computation of a robust Mahalanobis 
distance for each point. With the help of the R software environment for statistical computing, the aforementioned 
techniques have been used in this study to identify multivariate outliers in a real data set. 
 

5.2 Mahalanobis Distance and Multivariate Outlier Detection in R 
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A useful distance metric for determining the separation between a point and a distribution is the Mahalanobis 
distance (MD) see [8]. On data with multiple variables, it works fairly well. MD leverages covariance across variables 
to determine the separation between two locations, which is why it is successful on multivariate data. In other 
words, Mahalanobis determines the separation between points ‘’P1’’ and ‘’P2’’ by taking standard deviation into 
account (how many standard deviation P1 far from P2). Even when outliers are treated as multivariate data, MD still 
produces trustworthy results. Every point’s distance from the center in N- dimensional data is determined in order 
to locate outliers via MD, and taking these distances into account discovers outliers. 

5.3 Multivariate Outlier Detection by Using Two- Dimensional Correlation 

This study's application of the two-dimensional correlation approach to identify outliers in precipitation data with 
just 12 observed values was successful (months in a year) [10]. The pairwise approach employed in comparisons of 
the observations rather than taking into account the distributions as a whole makes it possible for the method to 
have this attribute. This benefit might make it possible for researchers to find outliers that are missed by more 
traditional techniques. The suggested approach can be used to identify outliers in a variety of other research fields 
because it has a generic application that extends beyond hydrology. Future research may focus on adapting the 
concept to areas where outliers are important, where the outliers have a big impact where more "regular" data 
don't. By comparing seasonal series, such as yearly comparisons of records from a hydrologic station, the approach 
may also be used to identify univariate outliers. The 2DCorrel software created to apply the methodology is publicly 
offered as an addition to make it simple for researchers to reimplement the strategy. 

5.4 Outlier detection in multivariate functional data through a contaminated mixture model 

The activity of sensors is frequently monitored in an industrial setting. Automatically detecting anomalous 
measurement behavior is difficult [1]. The issue can be stated as the identification of outliers in a multivariate 
functional data set by treating the sensor measurements as functional data. The suggested contaminated mixture 
model detects outliers and clusters the multivariate functional data into homogenous groups as a result of the 
heterogeneity of the data set. The key benefit of this method over others is that the percentage of outliers is not have 
to be specified. The BIC is used to choose the number of clusters, and the Expectation-Conditional Maximization 
technique is utilized to accomplish model inference. Numerical tests using simulated data show the inference 
technique to have a high level of performance. Particularly, the proposed model performs better than the rivals. Its 
use with the real data that drove this study makes it possible to accurately identify anomalous behavior. 

 

5.5 Robust Mahalanobis distances 

!Elisa Cabana, Rosa E. Lillo and Henry Laniado (2021) proposed a set of robust Mahalanobis distances based on the 
concept of shrinking to detect multivariate outliers. Shrinkage is best determined by estimating robust intensities 
and scaling factors. And some properties were investigated, including equation value and hash. When we deviate 
from the common assumption of normality, the behavior in a simulation and a real data set shows the 
appropriateness of the method. The advantages of our proposal have been demonstrated by the resulting high 
correct detection rates and low false detection rates in a large number of cases, as well as significantly shorter 
computation time.[7] 

González-De La Fuente et al. (2022) studied a statistical data depth with respect to compact convex random sets, 
which is consistent with the multivariate Tukey depth and the Tukey depth for fuzzy sets. In addition, it provides a 
different perspective to the existing halfspace depth with respect to compact convex random sets. They provided a 
series of properties for the statistical data depth with respect to compact convex random sets. These properties are 
an adaptation of properties that constitute the axiomatic notions of multivariate, functional, and fuzzy depth-
functions and other well-known properties of depth. [16] 

6. Conclusion  

In order to the role of the methods to detect the outliers with different formula wither was related to the halfspace depth 
or Mahalanobis distance, we consider in this work some of the methods related with. The Mahalanobis distance was 
examined as a multivariate distance in this work, and its advantages over the Euclidean distance were discussed. It 
became clear that when dealing with correlated multivariate data, the Mahalanobis distance, which takes correlation into 



Hadeel Kamil Habeeb, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 14(4) 2022 , pp  Stat.. 28–36          7 

 

account, is preferable to the Euclidean distance. It was also shown that multivariate outliers can be detected using the 
Mahalanobis distances. 
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