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A B S T R A C T 

   In this paper, statistical convergence will be investigated. Then it sheds light on the 
study of some important concepts, characteristics and results of the previous study.  In 
addition, we introduced a definition in limit and continuity which is the statistical limit 
and statistical continuous functions. 
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1- Introduction:  

In general, it is known that the idea of   statistical convergence for sequences of real numbers was 
introduced by H. Fast [2] and H. Steinhaus [11] and based on the asymptotic density of the AN group and the idea 
was presented independently in the same year 1951. The generalizations and general applications of this idea were 
investigated by various authors. Within this generalizations the convergence was generalized statistic on sequences 
in metric spaces (see, for example,[11]). Kosinak introduced and studied statistical convergence in Unitary Spaces 
Some applications were made to the theory of selection principles, and function spaces.excess spaces.  After 
introducing Fast [2], it was a very fast investigation of [6,5], the concept of statistics convergence has been studied 
in probabilistic standard space and in intuitive fuzziness Normative areas, respectively, and also Maddox [8] 
presented the statistical convergence in locally convex areas. 

The natural density of a set 𝐊 of positive integers is defined by [2]: 
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𝛅(𝐊) = 𝐥𝐢𝐦
𝐧→∞

 
𝟏

𝐧
|{𝐤 ≤ 𝐧: 𝐤𝛜𝐊}|, 

where |{𝐤 ≤ 𝐧: 𝐤𝛜𝐊}| denotes the number of elements of 𝐊 not exceeding 
𝐧. It is clear that for a finite set K, we have 𝛅(𝐊) = 𝟎 

If {𝓪𝐤} is a sequence such that 𝓪𝐤 Satisfies property 𝓟 for all 𝐤 except a set of natural density zero, then we say that 
𝓪𝐤 satisfies 𝓟 for "almost all 𝐤 ", and we abbreviate this by "a.a. k."  

If 𝛅 is any density, we define �̅�, the upper density associated with δ, by: 

�̅�(𝓐) = 𝟏 − 𝛅(ℕ ∖𝓐). 

For any set of natural numbers 𝓐 [3] 

2-Preliminaries 

We will recall some definitions, theorems, and properties from previous studies in statistical convergence. 

2.1 Definition [2]: The sequence {𝓪𝐤} 𝐨𝐟 𝐫𝐞𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫 is statistically convergent to the number 𝓳 provided that for 

each𝓔 > 𝟎, 

𝐥𝐢𝐦
𝐧→∞

 
𝟏

𝐧
|{𝐤 ≤ 𝐧: |𝓪𝐤 − 𝓳| ≥ 𝓔}| = 𝟎, 

(i.e.) |𝓪𝐤 − 𝓳| < 𝛜  a. a. 𝐤. 

In this case, we write  𝓪𝐤  
𝐬.𝐜.
→ 𝓳 

2.2 Theorem [10]: If     𝓪𝐤  
𝐬.𝐜.
→ 𝓳𝟏 , 𝛍𝐤  

𝐬.𝐜.
→ 𝓳𝟐, then 

  (i) {𝓪𝐤 + 𝛍𝐤}
𝐬.𝐜.
→ 𝓳𝟏 + 𝓳𝟐. 

 (ii) {𝛍𝐤 ⋅ 𝓪𝐤}
𝐬.𝐜.
→ 𝓳𝟏 𝓳𝟐. 

2.3 Theorem [10]:   𝓪𝐤  
𝐬.𝐜.
→ 𝓳 if and only if there exists a set 

𝐊 = {𝐤𝟏 < 𝐤𝟐 < ⋯ < 𝐤𝐧 < ⋯ } ⊂ ℕ, 

such that, 𝛅(𝐊) = 𝟏 and  𝓪𝐤𝐧   → 𝓳  as 𝐧 → ∞. 

2.4 Lemma: If 𝓪𝐧
𝐬.𝐜.
→ 𝓪𝟎, 𝓪𝐧 ≠ 𝟎 ∀𝐧, 𝓪𝟎 ≠ 𝟎 then 

𝟏

𝓪𝐧

𝐬.𝐜.
→ 

𝟏

𝓪𝟎
 

Proof :𝐒𝐢𝐧𝐜𝐞  𝓪𝐧
𝐬.𝐜.
→ 𝓪𝟎 ⇒ ∃𝐊 ⊆  ℕ  𝛅(𝐊) = 𝟏 and 𝓪𝐤𝐧 → 𝓪𝟎

 
  
 as 𝐧 → ∞ 

𝐒𝐨𝐭𝐡𝐚𝐭 {
𝟏

𝓪𝐤𝐧
} →

𝟏

𝓪𝟎
  as 𝐧 → ∞ 

𝐓𝐡𝐞𝐫𝐟𝐨𝐫𝐞 {
𝟏

𝓪𝐤𝐧
}
𝐧=𝟏

∞

 is sub sequence of {
𝟏

𝓪𝐧
} and {

𝟏

𝓪𝐤𝐧
} →

𝟏

𝓪𝟎
 𝐓𝐡𝐮𝐬 {

𝟏

𝓪𝐧
}
𝐬.𝐜.
→ 

𝟏

𝓪𝟎
 by (theorem(𝟐. 𝟓)) 

2.5 Lemma: I f 𝓪𝐧
𝐬.𝐜.
→ 𝓪𝐨 , 𝓲𝐧

𝐬.𝐜.
→ 𝓲𝐨, 𝓲𝐧 ≠ 𝟎 ∀𝐧, 𝓲𝐨 ≠0, then  

𝓪𝐧

𝓲𝐧

𝐬.𝐜.
→ 

𝓪𝐨

𝓲𝐨
. 

   Proof :   𝐒𝐢𝐧𝐜𝐞  𝓪𝐧
𝐬.𝐜.
→ 𝓪𝟎𝐭𝐡𝐞𝐧

𝟏

𝓪𝐧

𝐬.𝐜.
→ 

𝟏

𝓪𝟎
 by Lemma(𝟐. 𝟒)              

 

                  𝐓𝐡𝐮𝐬 𝓲𝐧 ⋅
𝟏

𝓪𝐧
 =  

 𝓲𝐧

𝓪𝐧
    
𝐬.𝐜.
→ 𝓲𝟎 ⋅

𝟏

𝓪𝟎
=
𝓲𝟎

𝓪𝟎
.

  

2.6 Lemma [4]: If { 𝓪𝐤} is a sequence such that  𝓪𝐤  
𝐬.𝐜.
→ 𝓳 , then 𝓪 has a subsequence {𝓪𝐤𝐧} such that { 𝓪𝐤𝐧}  ⟶ 𝓳. 

2.7 Theorem [12]: If a sequence { 𝓪𝐤} is statistically convergent, then the convergence limit point is unique. 

2.8 Theorem [12]:  If  𝓪𝐤  → 𝓳  then 𝓪𝐤  
𝐬.𝐜.
→ 𝓳. The converse need not be true in general. 

2.9 Theorem [9]:  Let (𝓪𝐧), (𝓲𝐧) and (𝓼𝐧) be real sequences such that 𝓪𝐧 ⩽ 𝓲𝐧 ⩽ 𝓼𝐧 for all 𝐧 ∈ 𝓚 ⊆ ℕ, with 𝛅(𝓚) = 𝟏 

and 𝓪𝐧
𝐬.𝐜.
→ 𝓳, 𝓼𝐧

𝐬.𝐜.
→ 𝓳Then 𝓲𝐧. 

𝐬.𝐜.
→ 𝓳. 
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3- Main Results 

We introduced the definitions of statistical limit and continuous statistical functions And we generalized and 

proved some theorems and properties in our new definition, and we added some new theorems, properties and 

terms within this new definition. 

3.1 Theorem [1]: Let ℱ:𝒳 → 𝒴 , 𝒰O ∈ 𝒳 Then lim
𝒰→𝒰O

ℱ(𝒰) = 𝒿 if and only if for every sequence {𝒰n}→𝒰O the 

sequence  {ℱ(𝒰n)} → 𝒿.  

 

In the following we define the statistically limit of a function ℱ. 

3.2 Definition:Let ℱ:𝒳 → 𝒴 , 𝒰O ∈ 𝒳, then the statistically limit of ℱ at 𝒰o is equal to  𝒿 if For every sequence 

{𝒰n} in 𝒳 converge statistically to 𝒰o, the sequence {ℱ(𝒰n) } converge statistically to 𝒿. In this case, we write 

S. lim
𝒰→𝒰O

ℱ(𝒰) = 𝒿.    

3.3 Example: Let S. lim
𝒰→2

1

1−𝒰
= −1. 

Proof:  Suppose 𝒰n
𝐬.𝐜.
→ 2 then{1 − 𝒰n}  is statistically convergent to (−1) 

 Hence 
1

1−𝒰n

s.c
→− 1, by theorem(2.5). 

3.4 Theorem: If ℱ, 𝒢:𝒳 → ℜ are functions such that  S. lim
𝒰→𝒰O

ℱ(𝒰) = 𝒿1 and S. lim
𝒰→𝒰O

𝒢(𝒰) = 𝒿2, then  

1. S. lim
𝒰→𝒰O

(ℱ ± 𝒢)(𝒰) = 𝒿1 ± 𝒿2. 

2   S. lim
𝒰→𝒰O

(ℱ. 𝒢)(𝒰) = 𝒿1. 𝒿2.     

3   If 𝒢(𝒰) ≠ 0 ∀𝒰 and𝒿2 ≠ 0, then S. lim
𝒰→𝒰O

ℱ(𝒰)

𝒢(𝒰)
=
𝒿1

𝒿2
 . 

 

Proof : (1)We prove S. lim
𝒰→𝒰O

(ℱ + 𝒢)(𝒰) = 𝒿1 + 𝒿2 and similarly we can prove S. lim
𝒰→𝒰O

(ℱ − 𝒢)(𝒰) = 𝒿1 − 𝒿2 

Let  𝒰n
𝐬.𝐜.
→ 𝒰 . 

   Since S. lim
𝒰→𝒰O

ℱ(𝒰) =  𝒿1and S. lim
𝒰→𝒰O

𝒢(𝒰) =  𝒿2. Then  {ℱ(𝒰n)}
𝐬.𝐜.
→  𝒿1and {𝒢(𝒰n)}

𝐬.𝐜.
→ 𝒿2. 

So that {ℱ(𝒰n) +  𝒢(𝒰n)}
s.t
→𝒿1 + 𝒿2 , by theorem(2.2),part(i). 

Thus S. lim
𝒰→𝒰O

[ ℱ(𝒰) + 𝒢(𝒰)] =𝒿1 + 𝒿2.  

(2) We prove  S. lim
𝒰→𝒰O

(ℱ. 𝒢)(𝒰) = 𝒿1. 𝒿2. 

 Let 𝒰n
s.t
→𝒰. Since S. lim

𝒰→𝒰O
ℱ(𝒰) =  𝒿1and S. lim

𝒰→𝒰O
𝒢(𝒰) =  𝒿2. Then  {ℱ(𝒰n)}

𝐬.𝐜.
→ 𝒿1and {𝒢(𝒰n)}

𝐬.𝐜.
→ 𝒿2. 

 So that {ℱ(𝒰n). 𝒢(𝒰n)}
𝐬.𝐜.
→ 𝒿1. 𝒿2, by theorem(2.2),part(ii). Thus S. lim

𝒰→𝒰O
{ ℱ(𝒰). 𝒢(𝒰)} = 𝒿1. 𝒿2.     

(3) Let 𝒰n
𝐬.𝐜.
→ 𝒰, so that ℱ(𝒰n)

𝐬.𝐜.
→ 𝒿1 and 𝒢(𝒰n)

𝐬.𝐜.
→ 𝒿2,  

(
ℱ

𝒢
) (𝒰n) =

ℱ(𝒰n)

𝒢(𝒰n)
  
𝐬.𝐜.
→ 

𝒿1

𝒿2
 , by Lemma (2.5). 

S. lim
𝒰→𝒰O

ℱ(𝒰n)

𝒢(𝒰n)
=
𝒿1

𝒿2
.    

3.5Theorem: If  ℱ:𝒳 → 𝒴 , 𝒢: 𝒴 → 𝒵 such that  S. lim
𝒰→𝒰O

ℱ(𝒰) = 𝒿 and 𝒢 continuous at 𝒿 then S. lim
𝒰→𝒰O

(𝒢 ∘ ℱ) (𝒰) =

𝒢(𝒿)  

Proof: Let  𝒰n
𝐬.𝐜.
→  𝒰O 

  Since S. lim
𝒰→𝒰O

ℱ(𝒰) =  𝒿 then  {ℱ(𝒰n)}
𝐬.𝐜.
→  𝒿 

There exist K = {k1 < k2 < ⋯ < kn < ⋯} such that δ(K) = 1  and {ℱ(𝒰kn)}  →  𝒿 as n → ∞ by  ( theorem(2.3))     

 Since 𝒢 continuous at 𝒿then 𝒢  (ℱ(𝒰kn))  →  𝒢(𝒿) 
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Therefore 𝒢  (ℱ(𝒰n)) 
𝐬.𝐜.
→  𝒢(𝒿) as n → ∞, by  theorem(2.3). 

Thus S. lim
𝒰→𝒰O

𝒢 ∘ ℱ(𝒰) = 𝒢(𝒿). 

3.6 Theorem:  If  S. lim
𝒰→𝒰O

ℱ(𝒰)  exist then it is unique  

  Proof: Assume    S. lim
𝒰→𝒰O

ℱ(𝒰) = 𝒿1 , S. lim
𝒰→𝒰O

ℱ(𝒰) = 𝒿2     

   If  𝒰n
𝐬.𝐜.
→ 𝒰O  

  Then  {ℱ(𝒰n)}
𝐬.𝐜.
→ 𝒿1and {ℱ(𝒰n)}

𝐬.𝐜.
→ 𝒿2 

 Since the convergent point of statistically convergent sequence is unique. Then 𝒿1 = 𝒿2. 

3.7 Theorem: let ℱ, 𝒢 and ℋ are functions from 𝒜 ⊆ 𝔑 into 𝔑 such that ℱ(𝒰) ≤   𝒢(𝒰) ≤ ℋ(𝒰) for all 𝒰 ∈

𝒜 and 𝒰O ∈ 𝒜 

 If S. lim
𝒰→𝒰O

ℱ(𝒰) =  S. lim
         𝒰→𝒰O

ℋ(𝒰) = 𝒿 Then S. lim
         𝒰→𝒰O

𝒢(𝒰) exists and equal to  𝒿  

Proof: Let 𝒰n be a sequence in 𝒜 such that   𝒰n
𝐬.𝐜.
→  𝒰O  

Since    S. lim
𝒰→𝒰O

ℱ(𝒰) = 𝒿  

And S. lim
       𝒰→𝒰O

ℋ(𝒰) = 𝒿 then  ℱ(𝒰n)
𝐬.𝐜.
→  𝒿 and ℋ(𝒰n)

𝐬.𝐜.
→  𝒿 

 

Since  ℱ(𝒰n) ≤ 𝒢(𝒰n) ≤ ℋ(𝒰n)   ∀ n Then  𝒢(𝒰n)
𝐬.𝐜.
→  𝒿 

   So that   S. lim
        𝒰→𝒰O

𝒢(𝒰)  = 𝒿. 

3.8 Definition [1]:   Let  ℱ:𝒳 → 𝒴 , 𝒰O ∈ 𝒳. The function  ℱ is continuous 𝒰O at if for every sequence 

{𝒰n} converg to 𝒰O then{ℱ(𝒰n)} → ℱ(𝒰o). We say that ℱ  is continuous if is continuous at every point. 

 In this case, we write  C(ℜ) = {ℱ:ℜ → ℜ\ℱis continuous }.  

In the following we define the statistically continuous of a function ℱ. 

3.9 Definition: Let ℱ:ℜ → ℜ , be a function and 𝒰O ∈ ℜ . Then ℱ is statistically continuous at 𝒰O  if  ∀ {𝒰n }
s.c.
→ 𝒰O 

then {ℱ(𝒰n) }  
s.c.
→ ℱ(𝒰o). We say that ℱ  is statistically continuous if is statistically continuous at every point     

   in ℜ.                                                                                                                        

 3.10 Example: Let ℱ:ℜ → ℜ defined by ℱ(𝒰) = 𝒰2  ∀ 𝒰 ∈ ℜ then ℱ  is statistically continuous 

   Proof: Let 𝒰O ∈ ℜ To proof ℱ is statistically continuous at 𝒰o. 

   Let 𝒰n be a sequence in ℜ  such that 𝒰n 
𝐬.𝐜.
→ 𝒰O then 𝒰n

2 
𝐬.𝐜.
→ 𝒰O

2 

  Thus ℱ(𝒰n) 
𝐬.𝐜.
→ ℱ(𝒰o). 

 ∴  ℱ Is statistically continuous at 𝒰o. 

  𝟑. 𝟏𝟏 𝑬𝒙𝒂𝒎𝒑𝒍𝒆   Let ℱ:ℜ →     ℜ , be a function defin as   

                    ℱ(𝒰) = {
1  if 𝒰 ∈ ℚ
5  if 𝒰 ∈ ℚ′

  

Then ℱ is is not statistically continuous at every point . 

Proof: Let 𝒰o∙ ∈ ℜ      

1- If  𝒰0 ∈ ℚ  then     ℱ(𝒰0) = 1 , So there exist a 𝒰n ∈   ℚ′such that{𝒰n} → 𝒰0     

∴ {𝒰n}
𝐬.𝐜.
→ 𝒰0  

Since {ℱ(𝒰n)} = {5} ↛
𝐬.𝐜.
1 = ℱ(𝒰0)             

∴ ℱ is not statistically continuous function at 𝒰0       

 2- If  𝒰0 ∈ ℚ
′then ℱ(𝒰0) = 5, So there exist a 𝒰n ∈  ℚsuch that {𝒰n} → 𝒰0 

∴ {𝒰n}
𝐬.𝐜.
→ 𝒰0  

Since{ℱ(𝒰n)} = {1} ↛
s.c.
5 = ℱ(𝒰0) 

∴ ℱ is not statistically continuous Function at 𝒰0    
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3.  1 2 Theorem:  every continuous function is statistically continuous 

Proof: Let ℱ:ℜ → ℜ be a continuous function, at 𝒰o ∈ ℜ   

To proof  ℱ  is statistically continuous at 𝒰o   

Suppose {𝒰n}
𝐬.𝐜.
→ 𝒰o  

Then there exist K = {k1 < k2 < ⋯ < kn < ⋯} such that δ(K) = 1  and {
1

𝒶kn
}
n=1

∞

 → 𝒰o    by   ( theorem(2.3))     

∴ {ℱ(𝒰kn)} Is sub sequence of {ℱ(𝒰n)} converge to  ℱ(𝒰o) and S(K) = 1 

∴ {ℱ(𝒰n) }  
𝐬.𝐜.
→ ℱ(𝒰o) as n → ∞ 

∴ ℱ Is statistically continuous 

3.13 Theorem: if  ℱ:𝒳 → 𝒴   is statistically continuous and  𝒢:𝒴 → 𝒵   is statistically continuous at   ℱ(𝒰o) then 

𝒢 ∘  ℱ  is statistically continuous at 𝒰o  

Proof: Let {𝒰n} be a sequence in 𝒳 statistically convergent to 𝒰O 

Since ℱ  is statistically continuous at 𝒰O  then{ℱ(𝒰n)}
𝐬.𝐜.
→ {ℱ(𝒰o) } in (𝒴) 

Since 𝒢  is statistically continuous at  ℱ(𝒰o) 

Then {𝒢( ℱ(𝒰n))}  
𝐬.𝐜.
→  {𝒢( ℱ(𝒰o)) } 

∴ {(𝒢 ∘  ℱ)(𝒰n)}
𝐬.𝐜.
→  (𝒢 ∘  ℱ)(𝒰o) 

∴ (𝒢 ∘  ℱ) Is statistically continuous at 𝒰o, ∀ 𝒰o ∈ 𝒰 

 

The prove of the next Corollary is consequence from the fact every continuous function is statistically continuous 

3.14 Corollary:  If  ℱ:𝒳 → 𝒴   is statistically continuous and  𝒢:𝒴 → 𝒵   is continuous then 𝒢 ∘  ℱ  is statistically 

continuous 

3.15 Corollary: If  ℱ:𝒳 → ℜ   is statistically continuous and  ℱ(𝒰) ≠ 0, ∀𝒰 ∈ 𝒳  then 
1

ℱ
  is statistically continuous   

Proof: Define 𝒢:ℜ/{0} → ℜ by  𝒢(𝒰) =  
1

𝒰
, then 𝒢  is continuous     ∀ 𝒰 ∈ ℜ  /{0} 

  ∴ 𝒢 ∘  ℱ is statistically continuous by (Corollary 3.12) 

 

3.16 Theorem: If ℱ, 𝒢: 𝒳 → ℜ   are real valued statistically continuous mapping then  

1 ℱ + 𝒢 is statistically continuous where (ℱ + 𝒢)(𝒰) =  ℱ(𝒰) + 𝒢(𝒰)∀∈  𝒳 

2 ℱ. 𝒢 is statistically continuous where(ℱ. 𝒢)(𝒰) =  ℱ(𝒰). 𝒢(𝒰) ∀𝒰 ∈  𝒳 

3 If 𝒢(𝒰) ≠ 0 ∀ 𝒰 ∈ 𝒳 then 
ℱ

𝒢
 is statistically continuous where  (

ℱ

𝒢
)𝒰 =

ℱ(𝒰)

𝒢(𝒰)
 

4 |ℱ| is statistically continuous where|ℱ|(𝒰) =  |ℱ (𝒰)|  ∀∈  𝒳 

Proof 1: let 𝒰O ∈ 𝒳 and {𝒰n} be a sequence in 𝒰 such that 𝒰n
𝐬.𝐜.
→ 𝒰O 

 Since ℱ  Is statistically continuous then {ℱ(𝒰n)
𝐬.𝐜.
→ ℱ(𝒰o)  

Also  𝒢  Is statistically continuous then 𝒢(𝒰n)
𝐬.𝐜.
→ 𝒢(𝒰o) 

ℱ(𝒰n) +  𝒢(𝒰n) 
𝐬.𝐜.
→  ℱ(𝒰o)+ 𝒢(𝒰o) 

(ℱ + 𝒢 )(𝒰n)
𝐬.𝐜.
→  (ℱ + 𝒢)(𝒰o)  

∴  ℱ + 𝒢 Is statistically continuous at 𝒰O ∈ 𝒳  

Proof 2: suppose 𝒰n
𝐬.𝐜.
→ 𝒰O since  ℱ  is statistically continuous at 𝒰O we have {ℱ(𝒰n)}

𝐬.𝐜.
→ ℱ(𝒰o)  

𝒢  Is statistically continuous at 𝒰O we have 𝒢 (𝒰n)
𝐬.𝐜.
→ 𝒢(𝒰o) and therefore  

We have  ℱ. 𝒢(𝒰n) = ℱ(𝒰n). 𝒢(𝒰n) 
𝐬.𝐜.
→ ℱ(𝒰o). 𝒢(𝒰o) = ℱ. 𝒢(𝒰o) 

∴  ℱ. 𝒢 Is statistically continuous at 𝒰o 

Proof 3: Since 𝒢 is statistically continuous then   
1

𝒢
 is statistically continuous 

Then ℱ
1

𝒢
   is statistically continuous by (theorem (3.16),part2) 
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So that  
ℱ

𝒢
  is statistically continuous 

Proof 4: Define   𝒢:𝔑 → ℜ by 𝒢(𝒰) = |𝒰|.It clear that 𝒢 is continuous function 

Since ℱ  Is statistically continuous and is  𝒢 continuous   

then 𝒢 ∘ ℱ  Is statistically continuous by( corollary (3.14)) 

But (𝒢 ∘ ℱ)(𝒰) = 𝒢(ℱ(𝒰)) =  |ℱ(𝒰)| ∀ 𝒰 ∈ 𝒳  

∴ 𝒢 ∘  ℱ = |ℱ|  is statistically continuous function at u 
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