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A B S T R A C T 

           In this paper, Veita-Pell polynomials (VPPs) are first presented with some interesting 
properties. These properties are utilized to construct a general explicit formula of their 
operational matrix of derivative. Then an appropriate direct technique is suggested for 
solving quadratic optimal control problems based on VPPs and the idea of state 
parameterization algorithm. The resulting performance index optimal value shows the 
proposed method is able to provide a good treatment with fast convergence. The 
effectiveness of the presented method is illustrated by solving three numerical examples. The 
obtained results show that as the number of basis functions VPPs increase the error in the 
solution by the present method will be decreased and it may exactly close with the analytical 
one. This is the main modification of the algorithm and this contribution in the using special 
basis functions in obtaining an approximate solution with minimum number of VPPs and 
satisfactory accuracy. 

 

MSC.. 

https://doi.org/ 10.29304/jqcm.2023.15.2.1246 

1. Introduction 

Optimal control problems (OCPs) can be found in many disciplines based on mathematical modeling physics, 
economy and chemistry [1, 2]. Because of the complexity in most applications, the OCPs are solved either 
approximately or numerically. An important type of basic functions named basis orthogonal polynomials and 
wavelets functions [3-5]. Many researchers applied orthogonal polynomials and wavelets functions along with the 
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direct techniques to solve OCPs approximately. The optimal solution can be found by directly minimization the cost 
function subject to constraints by approximating the dynamic optimal control problem by a finite dimensional 
nonlinear programming problem using either the parameterization technique or discretization technique [6-9].  

     Motivated by the above presentation, we are interested in applying Veita-Pell Polynomials (VPPs) to find the 
approximate solution for optimal control problems. As regards the properties of Veita-Pell family Functions, many 
authors had been applied them with their important results [10-16].A novel algorithm is suggested in the present 
work to solve OCPs approximately. The proposed method is utilized together with VPPs to parameterize the states 
functions. The proposed method is aimed to obtain the accuracy and efficiency simultaneously. Hence the first goal 
of this work is to use VPPs basis functions to perform a parameterization technique for the system state variables. 
Some specific numerical test examples are included.  

     Rest of the paper is constructed as follows: In Section 2, Veita-Pell polynomials and their important properties are 
presented. Section 3 deals with the suggested direct algorithm for approximate solution of optimal control problem. 
Then the convergence of the suggested VPPs method is illustrated in section 4 by the numerical results. The chapter 
ends with section5 by concluding the remarks. 

2. Veita-Pell Polynomials and Their Properties 

The Veita Pell Polynomials (VPPs) can be defined recursively as below: 

𝑉𝑃𝑛(𝜏) = 2𝜏𝑉𝑃𝑛−1(𝜏) − 𝑉𝑃𝑛−2(𝜏)                                                                                                         (1) 

with initial conditions  𝑉𝑃0(𝜏) = 0, 𝑉𝑃1(𝜏) = 1. 

In other words 

𝑉𝑃𝑛(𝜏) = {

0 𝑖𝑓 𝑛 = 0,
1 𝑖𝑓 𝑛 = 1,

2𝜏𝑉𝑃𝑛(𝜏) − 𝑉𝑃𝑛(𝜏) 𝑖𝑓 𝑛 > 1.
 

 In addition, the general term of the VPPs can be constructed in terms the sums and the product respectively as 

below 

𝑉𝑃𝑛(𝜏) = ∑ (−1)𝑖 (
𝑛 − 𝑖

𝑖
) 2𝑛−2𝑖𝜏𝑛−2𝑖

⌊
𝑛

2
⌋

𝑖=0
.                                                                                    (2) 

𝑉𝑃𝑛(𝜏) = 2𝑛 ∏ (𝜏 − 𝑐𝑜𝑠 (
𝑖𝜋

𝑛+1
)) .𝑛

𝑖=1                                                                                             (3) 

Note that the general matrix form of VPPs can be written as below 

𝑉𝑃(𝜏) = 𝐺𝑇(𝜏)𝑇                                                                                                                                         (4) 

where  𝑉𝑃(𝜏) = [𝑉𝑃1(𝜏)𝑉𝑃2(𝜏) ⋯𝑉𝑃𝑛(𝜏)],  𝑇(𝜏) = [1 𝜏 𝜏2 ⋯ 𝜏𝑛] 

and 𝐺 is the lower triangle matrix constructed as  

For odd 𝑛 

𝐺 =

(

 
 
 
 

1 0 0 0 ⋯ 0
0 21 0 0 ⋯ 0

−1 𝑔2,1 22 0 ⋯ 0

0 𝑔3,1 𝑔3,2 23 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ 0

𝑐𝑜𝑠
𝑛

2
𝜋 𝑔𝑛,1 𝑔𝑛,2 𝑔𝑛,3 ⋯ 2𝑛

)

 
 
 
 

 

For even 𝑛, the last row in matrix 𝐺 can be defined as (0 𝑔𝑛,1 𝑔𝑛,2 𝑔𝑛,3 ⋯ 𝑔𝑛,𝑛−1 2𝑛). 

The entries 𝑔𝑖𝑗 in matrix 𝐺 can be constructed as 
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     𝑔𝑖,𝑗 = {
2(𝑔𝑖−1,𝑗−1 − 𝑔𝑖−2,𝑗) 𝑗 < 𝑖,

0 otherwise.
 

 

3. The VPPs Derivatives 

     The formulation of the derivative matrix of VPPs is discussed throughout this section.  

Suppose that 𝑥(𝜏) has an approximate solution in the truncated VPPs series form as 

𝑥(𝜏) = ∑ 𝑎𝑖𝑉𝑃𝑖(𝜏)
𝑛
𝑖=0                                                                                                                    (5) 

Eq. 5 can be converted into a matrix form as 

𝑥(𝜏) = 𝑉𝑃(𝜏)𝐴   where 𝐴 = [𝑎0 𝑎1  𝑎2  … 𝑎𝑛]𝑇 ,  

or   𝑥(𝜏) = 𝐺𝑇(𝜏)𝑇𝐴                                                                                                                     (6) 

The first derivative of   𝑥(𝜏) is defined as  

�̇�(𝜏) = 𝐺�̇�(𝜏)𝑇𝐴 = 𝐺𝐵𝑇(𝜏)𝑇𝐴                                                                                                  (7) 

where �̇�(𝜏) = [0 1 2𝜏 ⋯ 𝑛𝜏𝑛−1] 

and 𝐵𝑇 =

[
 
 
 
 
0 1 0 … 0
0 0 2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑛
0 0 0 … 0]

 
 
 
 

 

 

4. The VPPs Algorithm for Solving Optimal Control Problems  

Suppose that the process described by the system of nonlinear differential equations on [−1,1] 

   𝑢(𝑡) = 𝑓(𝑥(𝑡), �̇�(𝑡))                                                                                                                 (8) 

with initial conditions 

𝑥(−1) =  𝛼, 𝑥(1) = 𝛽                                                                                                                 (9) 

where: 𝑥(∙): [−1,1] → ℜ is the state variable, 

𝑢(∙): [−1,1] → ℜ, is the control variable and  𝑓 is a real-valued continuously differentiable function yielding the 

performance index 𝐽 which is given by  

𝐽[𝑥(𝜏), 𝑢(𝜏)] = ∫ 𝐹(𝑥2(𝜏), 𝑢2(𝜏))𝑑𝜏
1

−1
                                                                                   (10) 

Approximating the state variable 𝑥(𝜏) using VPPs, gives 

𝑥(𝜏) = 𝑎𝑇𝑉𝑃(𝜏),                                                                                                                         (11) 

where  𝑎 = [𝑎1, 𝑎2, … , 𝑎𝑁]𝑇 , is (𝑁 + 1) × 1  vector of unknown parameters, then �̇�(𝜏) can be expressed as 

�̇�(𝜏) = 𝑎𝑇𝑉�̇�(𝜏)                                                                                                                         (12) 
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where  𝑉�̇�(𝜏) is the derivative vector of  𝑉𝑃(𝜏). Then obtain the approximation for the control variable by 

substituting Eq. 11 and Eq. 12 into Eq. 8 to obtain 

𝑢(𝜏) = 𝑓 (𝑎𝑇𝑉𝑃(𝜏), 𝑎𝑇𝑉�̇�(𝜏))                                                                                              (13) 

Then obtain 𝐽 as a function of the unknown 𝑎1, 𝑎2, … , 𝑎𝑛 by calculating  

𝐽(𝑎1, 𝑎2, … , 𝑎𝑛) = ∫ 𝐹(𝑎𝑇𝑉𝑃(𝜏)𝑉𝑃(𝜏)𝑇𝑎, 𝑎𝑇𝑉�̇�(𝜏)𝑉�̇�(𝜏)𝑇𝑎)
1

−1

𝑑𝜏 

    The functional 𝐽 represents a nonlinear mathematical programming problem of unknown parameters 

𝑎1, 𝑎2, … , 𝑎𝑁 . 

The resulting nonlinear mathematical programming problem can be simplified as below 

𝐽(𝑎1, 𝑎2, … , 𝑎𝑛) =
1

2
𝑎𝑇𝐻𝑎 

where 𝐻 = 2∫ 𝐹 (𝑉𝑃(𝜏)𝑉𝑃𝑇(𝜏), 𝑉�̇�(𝜏)𝑉�̇�𝑇(𝜏))
1

−1
𝑑𝜏, 

The boundary conditions in Eq. (9) can be rewritten as 

𝑥(−1) = 𝑎𝑇𝑉𝑃(−1) = 𝛼,   𝑥(1) = 𝑎𝑇𝑉𝑃(1) = 𝛽. 

Finally, the obtained quadratic programming problem can be rewritten as follows 

                        𝐽 =
1

2
𝑎𝑇𝐻𝑎 

subject to 𝐹𝑎 − 𝑏 = 0 

where 𝐹 = [
𝑉𝑃𝑇(−1)

𝑉𝑃𝑇(1)
] ,   𝑏 = [

𝛼
𝛽] 

Using Lagrange multiplier technique, one can obtain the optimal values of the unknown parameters 𝑎∗, 

             𝑎∗ = 𝐻−1𝐹𝑇(𝐹𝐻−1𝐹𝑇)−1𝑏. 

 

5. Numerical Results  

     The suggested modification in the state direct parameterization algorithm based on VPPs is applied to solve 

optimal control problems. This algorithm starts with an approximation to the state variable in terms of VPPs which 

satisfy the given boundary conditions. The modification in the assumption has succeeded to give an approximate 

solution with less number of VPPs terms. Numerical test examples are solved and the obtained results show that the 

suggested method is efficient and only small numbers of terms are used to reach the convergence.                         

     All problems considered in this paper have analytical solution to allow the validation of the algorithm comparing 

with exact solution results. 

 

Example 1: This problem is concerned with minimization of 

𝐽 =
1

2
∫(𝑢(𝜏)2 + 𝑥(𝜏)2)𝑑𝜏,

1

−1

                  𝜏𝜖[−1,1], 

subject to 𝑢(𝜏) = 2 �̇�(𝜏), 

with the conditions 𝑥(−1) = 0, 𝑥(1) = 0.5, 
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and the exact solution  𝑥(𝜏) =
𝑒 𝑠𝑖𝑛ℎ(𝜏)

(𝑒2−1)
,  𝑢(𝜏) =

𝑒 𝑐𝑜𝑠ℎ(𝜏)

(𝑒2−1)
.  

     Table1 presents the approximate optimal values of the performance index at different values of 𝑛. In this table, 

we have computed the absolute error between the exact performance index value and the approximate values. In 

Figures 1 and 2, the exact and approximate solutions for 𝑥(𝜏) and 𝑢(𝜏) respectively for various values of  𝑛. 

 

Table1: The approximate values of  𝐽 and absolute error for Example1. 

           n 𝑱𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆  Absolute Errors 

          2 0.3333333333333 0.0050745119580 

          3 0.3285984848485   3.3966347365e-04 

          4 

          5 

          6 

0.3282593375616 

0.3282588307090 

0.3282588213798 

5.1618682400e-07 

9.3341760432e-09 

5.039024753e-012 
 

 

 

Fig.1  The behaviour of 𝑥(𝜏) for Example1 at 𝑚 = 3, 4, 5, 6 and exact solution. 

 

 

Fig.2  The behaviour of 𝑢(𝜏) for Example1 at 𝑚 = 3, 4, 5, 6 and exact solution. 
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Example 2: Consider the following optimal control problem  

𝑚𝑖𝑛 𝐽 =
1

4
∫ (𝑢2

1

−1

(𝜏) + 𝑥2(𝜏))𝑑𝜏, 𝜏 ∈ [−1,1], 

when 𝑢(𝜏) = 2�̇�(𝜏) + 𝑥(𝜏), 

and 𝑥(−1) = 1, 𝑥(1) = 0.2819695348, 

are satisfied. We have obtained the analytical solution  

𝑥(𝜏) = 𝐴𝑒√2𝜏 + (1 − 𝐴)𝑒−√2 𝜏 

𝑢(𝜏) = 𝐴(√2 + 1)𝑒√2𝜏 − (1 − 𝐴)𝑒−√2𝜏  

𝐽 =
𝑒−2√2

2
((√2 + 1)(𝑒4√2 − 1))𝐴2 +

𝑒−2√2

2
(√2 − 1)(𝑒2√2 − 1)(1 − 𝐴2) 

where𝐴 =
2√2−3

2√2−3−(𝑒√2)
2. 

   Table 2 shows the approximate optimal values of the performance index at different values of 𝑛. In this table, we 

have computed the absolute error between the exact performance index value and the approximate values. In 

Figures 3 and 4, the exact and approximate solutions for 𝑥(𝜏) and 𝑢(𝜏) respectively for various values of  𝑛. 

 

Table2: The approximate values of  𝐽 and absolute error for Example2. 

 

           n 𝑱𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆  Absolute Errors 

          2 0.192909298093  0.058453436781 

          3 0.194298641535     0.001389342577 

          4 

          5 

          6 

0.192909298093 

0.192909445024 

0.192909280931 

2.230774388e-05 

1.469309399e-07 

8.645119897e-10 

 

 

Fig.3 The behaviour of  𝑥(𝜏) for Example 2 at 𝑚 = 3, 4, 5, 6 and exact solution. 

𝜏 
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Fig. 4 The behaviour of 𝑢(𝜏) for Example 2 at 𝑚 = 3, 4, 5, 6 and exact solution. 

 

Example 3: Consider the following optimal control problem  

𝑚𝑖𝑛 𝐽 =
1

2
∫ (

1

2
𝑢2

1

−1

(𝜏) +
5

8
𝑥2(𝜏) +

1

2
𝑥(𝜏)𝑢(𝜏))𝑑𝜏, 𝜏 ∈ [−1,1], 

where  𝑢(𝜏) = −2�̇�(𝜏) +
1

2
𝑥(𝜏), 

and  𝑥(−1) = 1, 𝑥(1) = 0.2819695348, 

are satisfied. We have obtained the analytical solution  

𝑥(𝜏) =
cosh(1 − 𝜏)

cosh 1
, 𝑢(𝜏) =

−(𝑡𝑎𝑛ℎ(1 − 𝜏) + 0.5  )cosh(1 − 𝜏)

cosh 1
 

and  𝐽 = 0.387970779. 

     Table3 shows the approximate optimal values of the performance index at different values of n. In this table, we 
have computed the absolute error between the exact performance index value and the approximate values. In 
Figures 5 and 6, the exact and approximate solutions for x(τ) and u(τ) respectively for various values of  n. 

 

Table 3: The approximate values of  𝐽  and absolute error for Example3. 

           n 𝑱𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 Absolute Errors 

          3 0.38088385111    8.677314204e-05 

          4 

          5 

          6 

0.380799833623 

0.380797080316 

0.380797078005 

   2.75564915e-06 

   2.33830569e-09 

   2.71849675e-011 

 

 

 

 

𝜏 
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Fig. 5 The behaviour of  𝑥(𝜏) for Example3 at 𝑚 = 3, 4, 5, 6 and exact solution. 

 

 

Fig. 6  The behaviour of 𝑢(𝜏) for Example3 at 𝑚 = 3, 4, 5, 6 and exact solution. 

 

6. Conclusion  

     An efficient numerical method based on Veita-Pell polynomials for solving continuous optimal control problem 

are considered in this paper. In the proposed method, a power series solution in terms of VPPs has been chosen 

such that it satisfies the given boundary conditions. Plugging this series solution into the given optimal control 

problem and using appropriate a special technique, an optimization problem with unknown Veita-Pell coefficients is 

obtained. These are the two main modifications and novelty of the procedure and this small contribution in the 

assumption of power series solution in terms of VPPs results in obtaining the approximate solution with less 

number of terms with good accuracy. Three numerical examples are provided to confirm the reliability and 

effectiveness of the suggested method. 

 

 

𝜏 

𝜏 
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