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A B S T R A C T 

We introduce and investigate SAS-injective modules as a generalization of  small injectivity. A right 

module 𝑀 over a ring 𝑅 is said to be SAS-𝑁-injective (where 𝑁 is a right   𝑅-module) if every right                   

𝑅-homomorphism from a semiartinian small right submodule of 𝑁 into 𝑀 extends to 𝑁. A module 𝑀 is 

said to be SAS-injective, if 𝑀 is SAS-𝑅-injective. Some characterizations and properties of SAS-injective 

modules are given. Some results on small injectivity are extended to SAS-injectivity. 
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1. Introduction 

        Throughout 𝑅 is an associative ring with identity and all modules are unitary 𝑅-modules. If not otherwise 

specified, by a module (resp. homomorphism) we will mean a right 𝑅-module (resp. right    𝑅-homomorphism). For 

a submodule 𝑁  of a module 𝑀 , the notations 𝑁 ≤ 𝑀,  𝑁 ≪ 𝑀, 𝑁 ≤𝑒𝑠𝑠 𝑀, 𝑁 ≤𝑚𝑎𝑥 𝑀,  and  𝑁 ≤⨁ 𝑀  mean, 

respectively, that 𝑁 is a submodule, a small submodule, an essential submodule, a maximal submodule, and a direct 

summand of 𝑀, respectively. If a is an element of right  𝑅-module 𝑀, then we use r(a) to denote the right annihilator 

of 𝑎 in 𝑅.  Also, we use the symbols J(𝑀), soc(𝑀) and Z(𝑀) to denote the Jacobson radical, the socle and  singular 

submodule of 𝑀𝑅 , respectively. A module 𝑀 is called semiartinian, if soc(𝑀/𝑁) ≠ 0, for any proper submodule 𝑁 of 

M. For a right 𝑅-module 𝑀𝑅 , we denote by Sa(𝑀) to the sum of all semiartinian submodules of 𝑀. We refer the 

reader to [1,3,4,6,12], for general background materials. 

      Injective modules have been studied extensively, and several generalizations for these modules are given by 

many authors (see, for example, [2,10,9,7,8]).  



2 Heba Hadi Chyad, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL. 15(2) 2023 , PP  MATH.   31–40

 

      A module  𝑀 is called small-injective if every homomorphism from a small right ideal of 𝑅 into 𝑀 can be extended 

to a homomorphism from 𝑅𝑅 into 𝑀 [10]. 

        In this article,  a proper generalization of  small-injectivity is introduced and investigated, namely SAS-injective 

modules. Let 𝑁 be a right 𝑅-module. A right 𝑅-module 𝑀 is said to be  SAS-𝑁-injective if every 𝑅-homomorphism 

from a semiartinian small right submodule of 𝑁 into 𝑀 extends to 𝑁. If 𝑀 is SAS-𝑅-injective, then we say that 𝑀 is 

SAS-injective. Firstly, we give an example to show that SAS-injective modules need not be small-injective. Several 

properties of the class of SAS-injective modules are given. For example, we show that the class of SAS-𝑁-injective 

modules is closed under isomorphic copies, direct products, finite direct sums and summands. Some 

characterizations of SAS-injective modules are given. We prove the equivalence of the following statements: (1) 

Every right 𝑅-module is SAS-injective; (2) Every simple right 𝑅-module is SAS-injective (3) Every semiartinian small 

submodule of any right 𝑅-module SAS-injective; (4) Every semiartinian small right ideal of 𝑅 is SAS-injective; (5) 

Every semiartinian small right ideal of 𝑅 is a summand of 𝑅;  (6) Sa(𝑅𝑅) ∩J(𝑅) = 0.  Conditions under which 

quotient of SAS-injective right   𝑅-modules is SAS-injective are given. For instance, we prove that the equivalence of 

the following: (1) The class of SAS-injective right 𝑅-modules is closed under quotient; (2) For any right                            

𝑅-module 𝑀, the sum of any two SAS-injective submodules of 𝑀 is SAS-injective; (3) All semiartinian small 

submodules of 𝑅𝑅 are projective. Finally, we give conditions such that the class of SAS-injective right 𝑅-modules is 

closed under direct sums. For instance, we prove that the equivalence of the following conditions: (1) Sa(𝑅𝑅) ∩ J(𝑅) 

is  Noetherian ; (2) All direct sums of injective modules are SAS-injective; (3) The class of  SAS-injective modules is 

closed under direct sums. 

2. SAS-Injective Modules 

         As a generalization of small injective modules, we introduce the concept of SAS-injective modules. 

Definition 2.1. A right 𝑅-module 𝑀 is said to be SAS-𝑁-injective (where 𝑁 is a right 𝑅-module), if any right                       

𝑅-homomorphism 𝑓: 𝐾 → 𝑀 extends to 𝑁, where 𝐾 is any semiartinian small submodule of  𝑁. If  𝑀 is SAS-𝑅-

injective, then 𝑀 is said to be SAS-injective.  

Examples 2.2.  

(1) All small-injective modules are SAS-injective, but the converse is not true in general, for example: let 𝑅 be the 

localization ring of ℤ at the prime 𝑝,  that is 𝑅 = ℤ(𝑝) = { 
𝑚

𝑛
:    𝑝 does not divide n}. Then 𝑅 is not small injective with 

soc(𝑅𝑅) = 0 (see [13, Example 4]). Since soc(𝑅𝑅) = 0, we have that Sa(𝑅𝑅) = 0 and hence the zero ideal is the only 

semiartinian small right ideal in 𝑅𝑅. Thus 𝑅𝑅 is SAS-injective and hence SAS-injectivity is a proper generalization of 

small injectivity. 

(2) Clearly, if soc(𝑁𝑅) =  0, then 0 is the only semiartinian small submodule of 𝑁 and hence every module is SAS-𝑁-

injective. Particularly, all ℤ-modules are SAS-injective.  

       Some properties of SAS-𝑁-injective modules are given in the following theorem. 

Theorem 2.3. Let 𝑀,𝑁 and 𝐾 be right 𝑅-modules. Then the following statements hold: 

(1) Let }  𝑀𝑖:𝑖 ∈ 𝐼}  be a class of modules. Then the direct product ∏𝑖∈𝐼𝑀𝑖 is SAS-𝑁-injective if and only if all 𝑀𝑖 are 
SAS-𝑁-injective. 

(2) If 𝐾 ⊆ 𝑁 and 𝑀 is SAS-𝑁-injective, then 𝑀 is SAS-𝐾-injective.  

(3) If 𝑀 is SAS-𝐾-injective and 𝑀 ≅ 𝑁, then  𝑁 is SAS-𝐾-injective .    

(4) If 𝑀 is SAS-𝐾-injective and  𝐾 ≅ 𝑁, then 𝑀 is SAS-𝑁-injective.         
(5) Any  summand of an SAS-𝐾-injective module is SAS-𝐾-injective. 

Proof.  Obvious.       □ 
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Corollary 2.4. The next  statements hold:  

(1) A finite direct sum of SAS-𝑁-injective modules is SAS-𝑁-injective, for any module 𝑁. Moreover, a finite direct 

sum of SAS-injective modules is SAS-injective.  

(2) A summand of an SAS-injective module is again SAS-injective. 

Proof. (1) By applying Theorem 2.3 (1), when index 𝐼 is taken to be a finite set. 

(2) This directly by using Theorem 2.3 (5).          □   

       If for any submodule 𝑁 of a right 𝑅-module 𝑀, there exists an ideal 𝐼 of 𝑅 such that 𝑁 = 𝑀𝐼, then 𝑀 is called a 

multiplication module [11, p. 3839]. 

Proposition 2.5. Let {𝑁𝑖 ∶ 𝑖 ∈ 𝐼}  be a family of right 𝑅-modules and 𝑀 be a right  𝑅-module. If  ⨁𝑖∈𝐼𝑁𝑖 is a 

multiplication module, then 𝑀 is SAS-⨁𝑖∈𝐼𝑁𝑖-injective if and only if 𝑀 is SAS-𝑁𝑖-injective, for all  𝑖 ∈ 𝐼. 

Proof. (⇒) By Theorem 2.3 ((2), (4)). 

(⇐) Let 𝐾 be  a semiartinian small submodule of  ⨁𝑖∈𝐼𝑁𝑖 . Since ⨁𝑖∈𝐼𝑁𝑖  is a multiplication module (by hypothesis), 

we have from [11, Theorem 2.2, p. 3844] that  𝐾 = ⨁𝑖∈𝐼𝐾𝑖  with 𝐾𝑖  is a submodule of 𝑁𝑖 , for all i ∈ I. By [4, Lemma 

5.1.3(c), p. 108], 𝐾𝑖 ≪ 𝑁𝑖 . Since 𝐾 is a semiartinian  module, we have from [4, Exercises (7)(8), p. 238] that  𝐾𝑖  is a 

semiartinian module and hence 𝐾𝑖  is a semiartinian submodule of 𝑁𝑖 . For 𝑖 ∈ 𝐼, consider the following diagram: 

 

 

 

 

 

 

where 𝑖𝐾𝑖  , 𝑖𝑁𝑖  are injection maps and 𝑖1, 𝑖2  are inclusion maps. The hypothesis implies that there exists a 

homomorphism ℎ𝑖: 𝑁𝑖 ⟶𝑀  such that ℎ𝑖 ∘ 𝑖2 =  𝑓 ∘ 𝑖𝐾𝑖 . By [4, Theorem 4.1.6(2)], there exists exactly one 

homomorphism ℎ:⨁𝑖∈𝐼𝑁𝑖 ⟶𝑀 satisfying ℎ𝑖 =  ℎ ∘ 𝑖𝑁𝑖 . Thus  𝑓 ∘ 𝑖𝐾𝑖 = ℎ𝑖 ∘ 𝑖2 = ℎ ∘ 𝑖𝑁𝑖  ∘ 𝑖2 =  ℎ ∘ 𝑖1 ∘  𝑖𝐾𝑖  for all 𝑖 ∈

𝐼. Let (𝑎𝑖)𝑖∈𝐼 ∈ ⨁𝑖∈𝐼𝐾𝑖 , thus 𝑎𝑖 ∈ 𝐾𝑖 , for all 𝑖 ∈ 𝐼 and 𝑓 ((𝑎𝑖)𝑖∈𝐼) = 𝑓 (∑𝑖∈𝐼𝑖𝐾𝑖((𝑎𝑖)𝑖∈𝐼)) = (ℎ ∘ 𝑖1)((𝑎𝑖)𝑖∈𝐼) and hence 

𝑓 =  ℎ ∘ 𝑖1.    □      

          If all right ideals of a ring 𝑅 are ideals in  𝑅, then 𝑅 is called  right invariant [11, p.3839]. 

Corollary 2.6. Let 𝑅 be a right invariant ring and let  1 = 𝑠1 + 𝑠2…+ 𝑠𝑛  in  𝑅, where the  𝑠𝑖   are orthogonal 

idempotent, then a right 𝑅-module 𝑀 is SAS-injective if and only if  𝑀 is SAS-𝑠𝑖𝑅-injective for every  𝑖 = 1,2, …… , 𝑛. 

Proof. By [1, Corollary 7.3, p. 96], we have  𝑅 = ⨁𝑖=1
𝑛 𝑠𝑖𝑅. Since 𝑅 is a right invariant ring, we get from [11, 

Proposition 3.1, p. 3855] that 𝑅 is a multiplication module and hence Proposition 2.5 implies that 𝑀 is SAS-injective 

if and only if 𝑀 is  SAS-𝑠𝑖𝑅-injective.     □ 

      The following proposition gives characterizations of SAS-injective modules.  

Proposition  2.7. The next conditions are equivalent for a right  𝑅-module 𝑀: 

𝑖1 

 

𝑓 

i𝑁𝑖  

⨁𝑖∈𝐼𝑁𝑖  

𝑀 

𝐾 = ⨁𝑖∈𝐼𝐾𝑖  

i𝐾𝑖  

𝑁𝑖  𝐾𝑖 
𝑖2 

ℎ 
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(1) 𝑀 is  SAS-injective. 

(2) The sequence    0⟶Hom𝑅(𝑅 𝑁⁄ ,𝑀)
  𝜋∗  
→  Hom𝑅(𝑅,𝑀)

  𝑖∗  
→ Hom𝑅(𝑁,𝑀) ⟶ 0    is exact,  for all submodule 𝑁 of  

𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅), where  𝑖 and  𝜋 are  the  inclusion and  canonical maps,  respectively. 

(3) Ext1(𝑅/𝑁,𝑀) = 0,    for all submodule 𝑁 ⊆ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅). 

(4) For each semiartinian small right ideal 𝑁 of  𝑅 and for any 𝑅-homomorphism 𝑓:𝑁 ⟶ 𝑀, there exists an 
element 𝑚 ∈ 𝑀 such that 𝑓(𝑟) = 𝑚𝑟  for all  𝑟 ∈ 𝑁. 

Proof.  (𝟏) ⇒ (𝟐)  Let  𝑁 be a submodule of Sa(𝑅𝑅) ∩ 𝐽(𝑅). It is clear that the sequence  

0⟶Hom𝑅(𝑅 𝑁⁄ ,𝑀)
  π∗  
→  Hom𝑅(𝑅,𝑀)

  𝑖∗  
→ Hom𝑅(𝑁,𝑀)  is exact. Let 𝑔 ∈ Hom𝑅(𝑁,𝑀). Since 𝑀 is SAS-injective, there 

exists a  right  𝑅-homomorphism  𝑓: 𝑅 ⟶ 𝑀  such that   𝑓𝑖 = 𝑔  and  hence  𝑖∗(𝑓) = 𝑔. Thus  𝑖∗ is an 𝑅-epimorphism  

and hence  the sequence     0⟶ Hom𝑅(𝑅 𝑁⁄ ,𝑀)
  𝜋∗  
→  Hom𝑅(𝑅,𝑀)

  𝑖∗  
→ Hom𝑅(𝑁,𝑀) ⟶ 0     is exact. 

(𝟐) ⇒ (𝟑)  By [5, Theorem 4.4(3),  p.491], there is an exact sequence 0⟶Hom𝑅(𝑅 𝑁⁄ ,𝑀)
  𝜋∗  
→  Hom𝑅(𝑅,𝑀)

  𝑖∗  
→  

Hom𝑅(𝑁,𝑀) ⟶ Ext1(𝑅 𝑁⁄ ,𝑀) ⟶ Ext1(𝑅,𝑀) ⟶ Ext1(𝑁,𝑀) ⟶ ⋯.  Since  𝑅𝑅 is projective, it is follows from [5, 

Theorem 4.4(1),  p.491]  that  Ext1(𝑅,𝑀) = 0  and  hence  the sequence  0

⟶ Hom𝑅(𝑅 𝑁⁄ ,𝑀)
  𝜋∗  
→  Hom𝑅(𝑅,𝑀)

  𝑖∗  
→ Hom𝑅(𝑁,𝑀) ⟶ Ext1(𝑅 𝑁⁄ ,𝑀) ⟶ 0  is exact. By hypothesis, the sequence 0

⟶ Hom𝑅(𝑅 𝑁⁄ ,𝑀)
  𝜋∗  
→     Hom𝑅(𝑅,𝑀)

  𝑖∗  
→ Hom𝑅(𝑁,𝑀) ⟶ 0   is exact and  hence Ext1(𝑅/𝑁,𝑀) = 0. 

(3) ⇒ (4)    Let 𝑓:𝑁 ⟶ 𝑀  be a 𝑅 -homomorphism where 𝑁  is a semiartinian small right ideal of 𝑅 . Thus                       

𝑁 ≤ Sa(𝑅𝑅) ∩ 𝐽(𝑅).   As the proof  of  (2)  ⇒ (3)  we have that the sequence 0

⟶ Hom𝑅(𝑅 𝑁⁄ ,𝑀)
  π∗  
→  Hom𝑅(𝑅,𝑀)

  𝑖∗  
→ Hom𝑅(𝑁,𝑀)  ⟶ Ext1(𝑅 𝑁⁄ ,𝑀) ⟶ 0   is exact. By hypothesis,                  

Ext1(𝑅/𝑁 ,𝑀) = 0 and hence the sequence    0⟶Hom𝑅(𝑅 𝑁⁄ ,𝑀)
  π∗  
→  Hom𝑅(𝑅,𝑀)

  𝑖∗  
→ Hom𝑅(𝑁,𝑀) ⟶ 0   is exact. 

Thus  there  is  a  right  𝑅-homomorphism 𝑔 ∈ Hom𝑅(𝑅,𝑀) with  𝑖∗(𝑔) = 𝑓, this means 𝑔𝑖 = 𝑓. Let 𝑟 ∈ 𝑁, thus 

𝑓(𝑟) = 𝑔(𝑟) = 𝑔(1)𝑟 = 𝑚𝑟, where 𝑚 = 𝑔(1). 

(4) ⇒ (1) It is clear.        □ 

Proposition  2.8. For a module M, the  next statements are equivalent: 

(1) All modules are SAS-𝑀-injective. 

(2) All semiartinian small  submodules of any module is SAS-𝑀-injective . 

(3) All semiartinian small  submodules of  𝑀  are  SAS-𝑀-injective. 

(4) Every semiartinian small  submodule of  𝑀 is a summand  of 𝑀. 

(5) 𝑆𝑎(𝑀) ∩  𝐽(𝑀) = 0. 

Proof. (1) ⇒ (𝟐) ⇒ (𝟑)  and (𝟓) ⇒ (𝟏) are clear.  

(3) ⇒ (4) Let 𝑊 be a semiartinian small submodule of  𝑀.  By hypothesis,  𝑊 is  SAS-𝑀-injective and hence 𝑔 ∘ 𝑖 =

 𝐼𝑊  for some a homomorphism  𝑔:𝑀 ⟶ 𝑊, where 𝑖 is the inclusion and 𝐼𝑊 is the identity homomorphism. Hence  𝑖 is 

split and this implies that 𝑊 is a summand of  𝑀.  

(4)⇒ (5) Let  𝑥 ∈  Sa(𝑀) ∩  J(𝑀), thus  𝑥 ∈ Sa(𝑀)  and  𝑥 ∈ J(𝑀). By [4, Exercises (7)(2), p.238], Sa(𝑀) is a 

semiartinian module and hence from [4, Exercises (7)(8), p.238] we have 𝑥𝑅 is a semiartinian submodule of  𝑀. By 

[4, Corollary 9.1.3, p.214], 𝑥𝑅 is a small submodule of 𝑀. By hypothesis 𝑥𝑅 is  a summand  of  𝑀 and hence 𝑥𝑅 ⨁ 𝐾 =

𝑀 for some submodule  𝐾 of 𝑀. Since  𝑥𝑅 is a small submodule of 𝑀,  we have that 𝐾 = 𝑀 and hence  𝑥𝑅 = 0. So, 𝑥 =

0  and hence  Sa(𝑀) ∩  J(𝑀) = 0.   □ 

Corollary  2.9.  For a ring 𝑅, the next conditions are equivalent: 
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(1) All  right 𝑅-modules  are  SAS-injective. 

(2) All semiartinian small submodules  of  any  right 𝑅-module are SAS-injective. 

(3) All semiartinian small  right ideals of  𝑅 are SAS-injective. 

(4) All semiartinian small  right ideals of  𝑅 are summands of  𝑅. 

(5) 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) = 0.   

Proof. By applying  Proposition  2.8 with  𝑀 = 𝑅.    □ 

Proposition  2.10.  Let  𝑀  be a right  𝑅-module. Then Sa(𝑀) ∩ J(𝑀) is a semisimple summand of 𝑀 if and only if  all 

modules are SAS-𝑀-injective. 

Proof.  (⇒)  Let  Sa(𝑀) ∩ J(𝑀) be a semisimple summand of 𝑀 and let 𝑁 be a module. Let 𝐾 be a semiartinian small 

submodule of 𝑀. Since Sa(𝑀) ∩ J(𝑀) is a semisimple summand of 𝑀, it follows that   𝑀 = (Sa(𝑀) ∩ J(𝑀)) ⨁ 𝑊  for 

some submodule  𝑊  of 𝑀 . Since 𝐾 is a submodule of Sa(𝑀) ∩ J(𝑀)  and Sa(𝑀) ∩ J(𝑀)  is semisimple,                             

Sa(𝑀) ∩ J(𝑀) = 𝐾⨁𝑈 for some submodule 𝑈 of Sa(𝑀) ∩ J(𝑀). We obtain  𝑀 = 𝐾⨁𝑈⨁𝑊 and hence all semiartinian 

small submodules of  𝑀 are summand of  𝑀. By Proposition  2.8, all modules are SAS-𝑀-injective. 

(⇐)  Suppose that every right 𝑅-module is SAS-𝑀-injective. By Proposition 2.8,  Sa(𝑀) ∩ J(𝑀) = 0 and hence  

Sa(𝑀) ∩ J(𝑀)  is a semisimple summand of 𝑀.      □ 

Theorem 2.11. If all simple singular modules are SAS-injective, then 𝑟(𝑎) ≤⨁ 𝑅𝑅 and 𝑎𝑅 is projective, for every 𝑎 ∈

Sa(𝑅𝑅) ∩ J(𝑅𝑅). 

Proof. Let 𝑎 ∈ Sa(𝑅𝑅) ∩ J(𝑅𝑅) and let 𝐿 = 𝑅𝑎𝑅 + 𝑟(𝑎). Thus there exists 𝑁 ≤ 𝑅𝑅  such that  𝐿 ⊕ 𝑁 ≤𝑒𝑠𝑠 𝑅𝑅 . Assume 

that 𝐿⨁𝑁 ≠ 𝑅𝑅, then there exists 𝐼 ≤𝑚𝑎𝑥 𝑅𝑅 with 𝐿 ⊕𝑁 ⊆ 𝐼, and hence 𝐼 ≤𝑒𝑠𝑠 𝑅𝑅. By [6, Example 7.6 (3), p. 247], 𝑅 𝐼⁄  

is a singular right 𝑅-module. By [4, Corollary 3.1.14, p. 49], 𝑅 𝐼⁄  is a simple module and hence the hypothesis implies 

that 𝑅 𝐼⁄  is SAS-injective. Clearly, 𝛼 is a well-defined 𝑅-homomorphism, where 𝛼: 𝑎𝑅 ⟶ 𝑅 𝐼⁄  is defined by 𝛼(𝑎𝑡) =

𝑡 + 𝐼, for any 𝑡 ∈ 𝑅. It is obvious that 𝑎𝑅 is a semiartinian small right ideal of 𝑅. By SAS-injectivity of 𝑅/𝐼, there  is a 

right  𝑅-homomorphism 𝑔: 𝑅 ⟶ 𝑅/𝐼   with  g(𝑥) = 𝑓(𝑥) for any 𝑥 ∈ 𝑎𝑅. Thus  1 + 𝐼 = 𝑓(𝑎) = 𝑔(𝑎) = 𝑔(1)𝑎 =

(𝑐 + 𝐼)𝑎 = 𝑐𝑎 + 𝐼, for some 𝑐 ∈ 𝑅 and hence 1 − 𝑐𝑎 ∈ 𝐼. But 𝑐𝑎 ∈ 𝑅𝑎𝑅 ⊆ 𝐼, so 1 ∈ 𝐼, a contradiction. Hence 𝐿 ⊕𝑁 =

𝑅 and so 𝑅𝑎𝑅 + (𝑟(𝑎) ⊕ 𝑁) = 𝑅 and this implies that 𝑟(𝑎) ⊕ 𝑁 = 𝑅 (since 𝑅𝑎𝑅 ≪ 𝑅𝑅). We will prove that 𝑎𝑅 is 

projective. Since 𝑟(𝑎) is a summand of 𝑅𝑅, it follows that 𝑟(𝑎) = (1 − 𝑒)𝑅 for some an idempotent element 𝑒 in 𝑅 (by 

[12, 2.3(3), p.8]) with  𝑅 = 𝑒𝑅⨁(1 − 𝑒)𝑅. Define 𝜆: 𝑒𝑅 ⟶ 𝑎𝑒𝑅 by 𝜆(𝑒𝑟) = 𝑎𝑒𝑟, for all 𝑟 ∈ 𝑅. It is clear that 𝜆 is an 

epimorphism. Let 𝑥 ∈ ker(𝜆), thus 𝜆(𝑥) = 0 and so 𝑥 = 𝑒𝑟 for some 𝑟 ∈ 𝑅 and 𝑎𝑒𝑟 = 0. Hence 𝑒𝑟 ∈ 𝑟(𝑎) and 𝑒𝑟 ∈ 𝑒𝑅, 

and this implies that 𝑥 ∈ 𝑒𝑅 ∩ 𝑟(𝑎) and so ker(𝜆) ⊆ 𝑒𝑅 ∩ 𝑟(𝑎). Let 𝑦 ∈ 𝑅 ∩ 𝑟(𝑎), thus 𝑦 = 𝑒𝑟 and 𝑎𝑦 = 0. So 𝑎𝑒𝑟 = 0 

and hence 𝜆(𝑦) = 0. Thus 𝑦 ∈ ker(𝜆) and so 𝑒𝑅 ∩ 𝑟(𝑎) ⊆ ker(𝜆). Thus ker(𝜆) = 𝑒𝑅 ∩ 𝑟(𝑎). Since 𝑅 = 𝑒𝑅⨁(1 − 𝑒)𝑅, 

we have 𝑒𝑅 ∩ (1 − 𝑒)𝑅 = 0. Since 𝑟(𝑎) = (1 − 𝑒)𝑅, we have 𝑒𝑅 ∩ 𝑟(𝑎) = 0. Since  ker(𝜆) = 𝑒𝑅 ∩ 𝑟(𝑎), we have 

ker(𝜆) = 0. Thus 𝜆: 𝑒𝑅 ⟶ 𝑎𝑒𝑅 is an isomorphism. Clearly 𝑎𝑅 = 𝑎𝑒𝑅, since 𝑎𝑒𝑅 ⊆ 𝑎𝑅 and if 𝑥 ∈ 𝑎𝑅, then 𝑥 = 𝑎 ⋅ 𝑟 for 

some 𝑟 ∈ 𝑅. So 𝑥 = 𝑎𝑟 = 𝑎𝑒𝑟 + 𝑎(1 − 𝑒)𝑟. Since 𝑟(𝑎) = (1 − 𝑒)𝑅, we have 𝑎(1 − 𝑒)𝑟 = 0 and so 𝑥 = 𝑎𝑒𝑟 ∈ 𝑎𝑒𝑅. 

Thus 𝑎𝑅 ⊆ 𝑎𝑒𝑅 and hence 𝑎𝑅 = 𝑎𝑒𝑅. Since 𝑅 = 𝑒𝑅⨁(1 − 𝑒)𝑅, we have 𝑒𝑅 is projective. Since 𝑒𝑅 ≅ 𝑎𝑒𝑅, we have 

𝑎𝑒𝑅 is projective. Since 𝑎𝑅 = 𝑎𝑒𝑅, we have that 𝑎𝑅 is projective.       □ 

Corollary 2.12. If all simple singular right 𝑅-modules are SAS-injective, then 𝑍(𝑅𝑅) ∩ 𝑆a(𝑅𝑅) ∩ J(𝑅𝑅) = 0. 

Proof. Assume that 𝑍(𝑅𝑅) ∩  Sa(𝑅𝑅) ∩ J(𝑅𝑅) ≠ 0, then there exists 0 ≠ 𝑎 ∈ 𝑍(𝑅𝑅) ∩ Sa(𝑅𝑅) ∩ J(𝑅𝑅). Since    𝑎 ∈

𝑍(𝑅𝑅), we have 𝑟(𝑎) ≤𝑒𝑠𝑠 𝑅𝑅. By Proposition 2.11, 𝑟(𝑎) ≤⊕ 𝑅𝑅   and so 𝑟(𝑎) ∩ 𝐾 = 0 and 𝑟(𝑎) + 𝐾 = 𝑅 for some  

𝐾 ≤ 𝑅𝑅 . Since 𝑟(𝑎) ≤𝑒𝑠𝑠 𝑅𝑅 , which implies that 𝐾 = 0 and so 𝑟(𝑎) = 𝑅 and hence 𝑎 = 0 but this a contradiction. 

Thus   𝑍(𝑅𝑅) ∩ Sa(𝑅𝑅) ∩ J(𝑅𝑅) = 0.     □ 
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          A ring 𝑅 is named zero insertive, if for any 𝑎, 𝑏 ∈ 𝑅 with  𝑎𝑏 = 0, then  𝑎𝑅𝑏 = 0 [10].                                                                      

Lemma 2.13. [10, Lemma 2.11]   𝑅𝑎𝑅 + 𝑟(𝑎) ≤𝑒𝑠𝑠 𝑅𝑅,  for any element  𝑎 in a zero insertive ring 𝑅. 

Proposition 2.14. If all simple singular right  𝑅-modules are SAS-injective and 𝑅 is a zero insertive ring, then  

Sa(𝑅𝑅) ∩ J(𝑅𝑅) = 0. 

Proof. Assume that Sa(𝑅𝑅) ∩ J(𝑅𝑅) ≠ 0. Thus  there is  0 ≠ 𝑎 ∈ Sa(𝑅𝑅) ∩ J(𝑅𝑅), and hence  𝑅𝑎𝑅 ≪ 𝑅𝑅 . If  𝑅𝑎𝑅 +

𝑟(𝑎) ⊊ 𝑅, then 𝑅𝑎𝑅 + 𝑟(𝑎) ⊆ 𝐾 for some a maximal right ideal 𝐾 of  𝑅. Using Lemma 2.13, we have  𝑅𝑎𝑅 + 𝑟(𝑎) is an 

essential  in 𝑅𝑅 and  hence  𝐾  is an essential in 𝑅𝑅  and  so  𝑅/𝐾  is a simple singular right                   𝑅-module (by [6, 

Example  7.6(3)  p. 247]). By hypothesis,  𝑅/𝐾  is  an  SAS-injective module. Consider  the mapping  𝑓: 𝑎𝑅 ⟶ 𝑅/𝐾  

defined by 𝑓(𝑎𝑟) = 𝑟 + 𝐾  for all  𝑟 ∈ 𝑅. Thus 𝑓 is  a well-defined right 𝑅-homomorphism. Since  𝑎𝑅   is a 

semiartinian small right ideal of 𝑅, it follows from  SAS-injectivity of 𝑅/𝐾, there  is a right  𝑅-homomorphism          

𝑔: 𝑅 ⟶ 𝑅/𝐾 with 𝑔(𝑥) = 𝑓(𝑥) for any 𝑥 ∈ 𝑎𝑅. Thus  1 + 𝐾 = 𝑓(𝑎) = 𝑔(𝑎) = 𝑔(1)𝑎 = (𝑐 + 𝐾)𝑎 = 𝑐𝑎 + 𝐾, for some 

𝑐 ∈ 𝑅  and hence 1 − 𝑐𝑎 ∈ 𝐾.  Since  𝑐𝑎 ∈ 𝑅𝑎𝑅 ⊆ 𝐾,  we have 1 ∈ 𝐾  and so 𝐾 = 𝑅  and this is a contradiction. 

Therefore, 𝑅𝑎𝑅 + 𝑟(𝑎) = 𝑅.  Since  𝑅𝑎𝑅 ≪ 𝑅𝑅   which implies  that  𝑟(𝑎) = 𝑅 and so 𝑎 = 0 and this is a contradiction. 

Thus Sa(𝑅𝑅) ∩ J(𝑅𝑅) = 0.  □ 

Corollary 2.15. If all simple singular right  modules over a zero insertive ring 𝑅 are SAS-injective, then all right            

𝑅-modules are SAS-injective. 

Proof.  By Proposition 2.14 and  Corollary  2.9. □ 

Theorem 2.16. Let 𝑅 be  ring. Then the following conditions are equivalent:     

(1) 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) = 0. 

(2) All right 𝑅-modules are SAS-injective.                                                                                                         

(3) All simple right 𝑅-modules are SAS-injective.   

Proof. Clearly, we have (𝟏) ⇒ (𝟐) ⇒ (𝟑). 

(𝟑) ⇒ (𝟏).  Assume that Sa(𝑅𝑅) ∩  J(𝑅𝑅) ≠ 0 . Thus there is  0 ≠ 𝑎 ∈ Sa(𝑅𝑅) ∩ J(𝑅𝑅) , and hence  𝑎𝑅 ≪ 𝑅𝑅 . 

If (Sa(𝑅𝑅) ∩  J(𝑅𝑅)) + 𝑟(𝑎) ⊊ 𝑅, then (Sa(𝑅𝑅) ∩ J(𝑅𝑅)) + 𝑟(𝑎) ⊆ 𝐼, for some maximal right ideal 𝐼 of 𝑅. Thus 𝑅 𝐼 ⁄ is a 

simple right 𝑅 -module. By hypothesis, 𝑅 𝐼 ⁄  is an SAS-injective module. We define  𝑓: 𝑎𝑅 → 𝑅 𝐼 ⁄   by                                           

𝑓(𝑎𝑥) = 𝑥 + 𝐼 for any element 𝑥  in 𝑅 . Then  clearly 𝑓  is a well-defined right 𝑅 -homomorphism. Since                        

𝑎𝑅 ⊆ Sa(𝑅𝑅) ∩ J(𝑅𝑅) it follows that 𝑎𝑅 is a semiartinian small right ideal of 𝑅. By SAS-injectivity of 𝑅 𝐼⁄ , there is a 

right  𝑅-homomorphism 𝑔: 𝑅 ⟶ 𝑅/𝐼   with  𝑔(𝑥) = 𝑓(𝑥) for any 𝑥 ∈ 𝑎𝑅. Thus  1 + 𝐼 = 𝑓(𝑎) = 𝑔(𝑎) = 𝑔(1)𝑎 =

(𝑐 + 𝐼)𝑎 = 𝑐𝑎 + 𝐼, for some 𝑐 ∈ 𝑅 and hence 1 − 𝑐𝑎 ∈ 𝐼. Since Sa(𝑅𝑅) and  J(𝑅𝑅)  are predicals, we have that Sa(𝑅𝑅) 

and  J(𝑅𝑅)  are two-sided ideals. Thus  𝑐𝑎 ∈  𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅)  ⊆ 𝐼  and hence 1 ∈ 𝐼 , and so 𝐼 = 𝑅  and this is a 

contradiction. Therefore,   (Sa(𝑅𝑅) ∩  J(𝑅𝑅)) + 𝑟(𝑎) = 𝑅. Since Sa(𝑅𝑅) ∩  J(𝑅𝑅) is a small ideal in 𝑅𝑅, we have that  

𝑟(𝑎) = 𝑅 and so 𝑎 = 0 and this is a contradiction. Thus    Sa(𝑅𝑅) ∩ J(𝑅𝑅) = 0.  □ 

Remark 2.17.   It is not necessary that all semiartinian small  submodules of a projective module are projective, for 

example < 2̅ > is  a semiartinian small  submodule of the projective  𝑍4-module 𝑍4 but it is not projective, because  it 

is not a summand  of   𝑍4
(𝐼),  for any index 𝐼. 

Theorem 2.18.  The following conditions are equivalent for a projective module 𝑀: 

(1) All epimorphic images of  SAS-𝑀-injective modules are SAS-𝑀-injective.                                                                                                     

(2) All epimorphic images of  small-𝑀-injective modules are SAS-𝑀-injective.   

(3) All epimorphic images of injective modules are SAS-𝑀-injective.                                                                                                   

(4) All sums of two SAS-𝑀-injective submodules of any module are SAS-𝑀-injective.                                                                                                                                        

(5) All sums of two small-𝑀-injective submodules of any module are SAS-𝑀-injective.    
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(6) All sums of two injective submodules of any module are SAS-𝑀-injective.                     

(7) All semiartinian small submodules of  𝑀 are projective. 

Proof.  (1)⇒(2)⇒(3) and  (4)⇒(5)⇒(6) are clear.  

(3)⇒(7)  Let 𝐷 and  𝑁 be modules and  𝑈 be a semiartinian small submodule of 𝑀. Consider the following diagram: 

  

 

 

where  𝑓 is epimorphism, ℎ is a homomorphism, and  𝑖  is the inclusion homomorphism. We can take 𝑁 to be an 

injective 𝑅-module  (by [3, Proposition 5.2.10,  p. 148]).  By hypothesis, 𝐷  is  SAS-𝑀-injective and hence 𝛼𝑖 = ℎ for 

some a homomorphism  𝛼:𝑀 ⟶ 𝐷. By projectivity of 𝑀, we get that 𝛼 can be lifted to an  𝑅-homomorphism  

 �̃�: 𝑀 ⟶ 𝑁  with  𝑓�̃� = 𝛼.  Let ℎ̃: 𝑈 ⟶ 𝑁 be the restriction  of  �̃� over 𝑈.  It is clear that  𝑓ℎ̃ = ℎ and hence  𝑈 is 

projective.  

(7)⇒(1) Let  ℎ: 𝐴 ⟶ 𝐵  be  an  𝑅-epimorphism, where 𝐴 and  𝐵 are right  𝑅-modules and 𝐴 is an SAS-𝑀-injective. Let  

𝐾  be a semiartinian  small  submodule of  𝑀,  𝑓: 𝐾 ⟶ 𝐵 be  an   𝑅-homomorphism and  𝑖: 𝐾 → 𝑀 the inclusion 

homomorphism. By (7),  𝐾 is projective and hence  ℎ𝑔 = 𝑓  for some a homomorphism  𝑔:𝐾 ⟶ 𝐴. By SAS-𝑀-

injectivity of 𝐴,  we get  �̃�𝑖 = 𝑔 for some a homomorphism  �̃�:𝑀 ⟶ 𝐴.  Put  𝛼 = ℎ�̃�:𝑀 ⟶ 𝐵.  Thus  𝛼𝑖 = ℎ�̃�𝑖 = ℎ𝑔 =

𝑓.  Hence  𝐵 is an SAS-𝑀-injective right 𝑅-module. 

(1)⇒(4) Let  𝐾1 and  𝐾2 be two SAS-𝑀-injective  submodules  of  a right  𝑅-module 𝐾. Then 𝐾1 + 𝐾2  is a 

homomorphic  image of  𝐾1⨁𝐾2. Since 𝐾1⨁𝐾2 is SAS-𝑀-injective (by Corollary 2.4.(1)), it follows from hypothesis 

that  𝐾1 + 𝐾2  is  SAS-𝑀-injective. 

(6)⇒ (3) Let 𝐸  be an injective module and 𝑁 ≤ 𝐸 . Let 𝑄 = 𝐸 ⊕ 𝐸, 𝐻 = {(𝑥, 𝑥)|  𝑥 ∈ 𝑁}, �̅� = 𝑄 𝐻⁄ ,  𝐾1 =

{𝑦 + 𝐻 ∈ �̅�|  𝑦 ∈ 𝐸 ⊕ 0}  and 𝐾2 = {𝑦 + 𝐻 ∈ �̅�|   𝑦 ∈ 0⊕ 𝐸} . Then �̅� = 𝐾1 + 𝐾2 . Since (𝐸 ⊕ 0) ∩ 𝐻 = 0  and 

(0 ⊕ 𝐸) ∩ 𝐻 = 0, it follows that  𝐸 ≅ 𝐾𝑖 , 𝑖 = 1, 2.  Clearly,  𝐾1 ∩ 𝐾2 ≅ 𝑁 under 𝑦 ⟼ 𝑦 + 𝐻 for all 𝑦 ∈ 𝑁 ⊕ 0. By 

hypothesis, �̅� is SAS-𝑀-injective. Injectivity of 𝐾1 implies that �̅� = 𝐾1⊕𝐴 for some submodule 𝐴 of �̅� and hence 

𝐴 ≅ (𝐾1 + 𝐾2) 𝐾1⁄ ≅ 𝐾2 (𝐾1 ∩ 𝐾2)⁄ ≅ 𝐸 𝑁⁄ . By Theorem 2.3 ((3),(5)), 𝐸 𝑁⁄  is SAS-𝑀-injective. □               

Corollary 2.19.  The following statements are equivalent for a ring  𝑅:  

(1) Every epimorphic image of an SAS-injective right 𝑅-module is SAS-injective.                                                     

(2) Every epimorphic image of a small injective right 𝑅-module is SAS-injective.                                                                                                     

(3) Every epimorphic image of an injective right 𝑅-module is SAS-injective. 

(4) Every sum of two SAS-injective submodules of any right 𝑅-module is SAS-injective. 

(5) Every sum of two small injective submodules of any right 𝑅-module is SAS-injective.                                                                                                     

(6) Every sum of two injective submodules of any right 𝑅-module is  SAS-injective.   

(7) Every semiartinian small  submodule of 𝑅𝑅 is projective. 

Proof.  By taking 𝑀 = 𝑅  and  applying  Theorem 2.18.     □ 

        Let 𝑁 be a right 𝑅-module. A right 𝑅-module 𝑀 is called a  rad-𝑁-injective, if for any submodule 𝐾 of J(𝑁), any 

right 𝑅-homomorphism 𝑓:𝐾 → 𝑀 extends to 𝑁 [14, p.412]. 

Theorem  2.20.  If 𝑀 is  a  finitely generated right 𝑅-module,  then the following statements are equivalent: 

(1) 𝑆𝑎(𝑀) ∩ 𝐽(𝑀)  is a Noetherian 𝑅-module. 

𝑁 𝐷 

𝑈 

𝑓 

ℎ 

 𝑀 0 

0 

𝑖 
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(2) Any  direct sum of  SAS-𝑀-injective right 𝑅-modules is SAS-𝑀-injective. 

(3) Any  direct sum of  rad-𝑀-injective right 𝑅-modules is SAS-𝑀-injective. 

(4) Any  direct sum of small 𝑀-injective right 𝑅-modules is SAS-𝑀-injective. 

(5) Any  direct sum of  injective right 𝑅-modules is SAS-𝑀-injective. 

(6) 𝐾(𝐿)  is  SAS-𝑀-injective,  for any injective  right 𝑅-module 𝐾 and for any index set 𝐿. 

(7) 𝐾(ℕ)  is  SAS-𝑀-injective,  for  any  injective right 𝑅-module 𝐾. 

Proof.  (2)⇒(3)⇒(4) ⇒ (5) ⇒(6) ⇒(7) are clear. 

(1)⇒(2) Let  𝐸 = ⨁𝑖∈𝐼𝑀𝑖  be a direct sum of SAS-𝑀-injective right 𝑅-modules.  Let 𝐾 be a semiartinian small 

submodule of 𝑀 and  𝑓: 𝐾 ⟶ 𝐸  be a homomorphism. Thus 𝐾 ⊆  Sa(𝑀) ∩ J(𝑀). Since Sa(𝑀) ∩ J(𝑀) is a Noetherian 

(by hypothesis),  𝐾 is finitely generated and hence 𝑓(𝐾) ⊆ ⨁𝑗∈𝐽𝑀𝑗 , for some  finite subset  𝐽 of 𝐼. Since a finite direct 

sum of SAS-𝑀-injective modules is SAS-𝑀-injective (by Corollary 2.4(1)), we have ⨁𝑗∈𝐽𝑀𝑗  is SAS-𝑀-injective. Define  

𝛼: 𝐾 ⟶ ⨁𝑗∈𝐽𝑀𝑗  by  𝛼(𝑥) = 𝑓(𝑥),  for every 𝑥 ∈ 𝐾.  It is clear that 𝛼 is a right  𝑅-homomorphism. By  SAS-𝑀-

injectivity of ⨁𝑗∈𝐽𝑀𝑗 , there exists a  right  𝑅-homomorphism  𝑔:𝑀 ⟶ ⨁𝑗∈𝐽𝑀𝑗  such that 𝑔(𝑎) = 𝛼(𝑎), for all 𝑎 ∈ 𝐾. 

Define  ℎ:𝑀 ⟶ 𝐸 = ⨁𝑖∈𝐼𝑀𝑖   by  ℎ(𝑥) = (𝑖𝑔)(𝑥) for every 𝑥 ∈ 𝑀, where  𝑖:⨁𝑗∈𝐽𝑀𝑗 → ⨁𝑖∈𝐼𝑀𝑖  is the inclusion. Thus, 

for all 𝑎 ∈ 𝐾, we have that ℎ(𝑎) = 𝑖𝑔(𝑎) = 𝑔(𝑎) = 𝛼(𝑎) = 𝑓(𝑎)  and hence  𝐸  is SAS-𝑀-injective. 

(7) ⇒(1) Let  𝐾1 ⊆ 𝐾2…  be  a chain  of  submodules  of   Sa(𝑀) ∩ J(𝑀). For  each 𝑖 ≥ 1, let   𝐸𝑖 = 𝐸(𝑀 𝐾𝑖⁄ )   and   𝐸 =

⨁𝑖=1
∞ 𝐸𝑖 .  For  every  𝑖 ≥ 1, we  put   𝑀𝑖 = ∏𝑗=1

∞ 𝐸𝑗 = 𝐸𝑖⨁(∏𝑗=1
𝑖≠𝑗

∞ 𝐸𝑗), then 𝑀𝑖  is injective. By  hypothesis, ⨁𝑖=1
∞ 𝑀𝑖 =

(⨁𝑖=1
∞ 𝐸𝑖)⨁(⨁𝑖=1

∞ ∏𝑗=1
𝑖≠𝑗

∞ 𝐸𝑗) is SAS-𝑀-injective. By using Theorem 2.3(5) we obtain that  𝐸  is SAS-𝑀-injective. Define  

𝑓: 𝐻 = ⋃𝑖=1
∞ 𝐾𝑖 ⟶ 𝐸  by 𝑓(𝑥) = (𝑥 + 𝐾𝑖)𝑖 . Obviously,  𝑓 is a well-defined  right  𝑅-homomorphism. Since 𝑀 is finitely 

generated,  Sa(𝑀) ∩ J(𝑀) is  a semiartinian  small submodule of 𝑀, and so ⋃𝑖=1
∞ 𝐾𝑖   is  a semiartinian small 

submodule of 𝑀.   By SAS-𝑀-injectivity of 𝐸, there exists a right 𝑅-homomorphism    𝑔:𝑀 ⟶ 𝐸 = ⨁𝑖=1
∞ 𝐸𝑖  such that 

𝑔𝑖 = 𝑓, where 𝑖: 𝐻 ⟶ 𝑀  is the inclusion homomorphism. Since 𝑀 is finitely  generated, 𝑔(𝑀) ⊆ ⨁𝑖=1
𝑛 𝐸(𝑀 𝐾𝑖⁄ )  for 

some 𝑛 and hence 𝑓(𝐻) ⊆ ⨁𝑖=1
𝑛 𝐸(𝑀 𝐾𝑖⁄ ).   Let 𝜋𝑖 :⨁𝑗=1

∞ 𝐸(𝑀 𝐾𝑗⁄ ) ⟶ 𝐸(𝑀 𝐾𝑖⁄ ) be the  projection homomorphism. 

Thus 𝜋𝑖𝑓(𝑥 ) = 𝜋𝑖((𝑥 + 𝐾𝑗)𝑗≥1) = 𝑥 + 𝐾𝑖    for all  𝑥 ∈ 𝐻  and 𝑖 ≥ 1 and hence  𝜋𝑖𝑓(𝐻 ) = 𝐻 𝐾𝑖⁄   for all 𝑖 ≥ 1. Since 

𝑓(𝐻) ⊆ ⨁𝑖=1
𝑛 𝐸(𝑀 𝐾𝑖⁄ ), we have that  𝐻 𝐾𝑖⁄ = 𝜋𝑖𝑓(𝐻 ) = 0  for all   𝑖 ≥ 𝑛 + 1. So 𝐻 = 𝐾𝑖   for all   𝑖 ≥ 𝑛 + 1  and hence 

the chain  𝐾1 ⊆ 𝐾2 ⊆ ⋯ terminates  at  𝐾𝑛+1. Thus Sa(𝑀) ∩ J(𝑀) is a Noetherian  𝑅-module.  □ 

Corollary 2.21. If 𝑁 is a finitely generated right 𝑅-module, then the following statements are equivalent: 

(1) 𝑆𝑎(𝑁) ∩ 𝐽(𝑁)  is a Noetherian 𝑅-module. 

(2) 𝑀(𝐿)  is  SAS-𝑁-injective,  for  each SAS-𝑁-injective right 𝑅-module 𝑀 and for any index  set 𝐿. 

(3) 𝑀(𝐿)  is  SAS-𝑁-injective,  for  each rad-𝑁-injective right 𝑅-module 𝑀 and for any index set 𝐿. 

(4) 𝑀(𝐿)  is  SAS-𝑁-injective,  for  each small 𝑁-injective right 𝑅-module 𝑀 and for any index set 𝐿. 

(5) 𝑀(ℕ)  is  SAS-𝑁-injective,  for  each SAS-𝑁-injective right 𝑅-module 𝑀. 

(6) 𝑀(ℕ)  is  SAS-𝑁-injective,  for  each rad-𝑁-injective right 𝑅-module 𝑀. 

(7) 𝑀(ℕ)  is  SAS-𝑁-injective,  for  each small 𝑁-injective right 𝑅-module 𝑀. 

Proof. By Theorem  2.20.     □ 

Corollary 2.22.  For  a  ring 𝑅, the following conditions are equivalent:   

(1) 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅) is a Noetherian right 𝑅-module. 

(2) All  direct sums of  SAS-injective right 𝑅-modules are SAS-injective. 

(3) All  direct sums of  small-injective right 𝑅-modules are SAS-injective. 

(4) All  direct sums of injective right 𝑅-modules are SAS-injective. 
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(5) If 𝑀 is an injective right 𝑅-module, then  𝑀(𝐿)  is  SAS-injective,  for any index set 𝐿. 

(6) If 𝑀 is a small-injective right 𝑅-module, then  𝑀(𝐿)  is  SAS-injective,  for any index set 𝐿. 

(7) 𝑀(𝐿)  is  SAS-injective,  for  any  SAS-injective right 𝑅-module 𝑀 and for an  index set 𝐿. 

(8) 𝑀(ℕ)  is  SAS-injective,  for  any injective  right 𝑅-module 𝑀. 

(9) 𝑀(ℕ)  is  SAS-injective,  for  any small-injective  right 𝑅-module 𝑀. 

(10) 𝑀(ℕ)  is  SAS-injective,  for  any SAS-injective  right 𝑅-module 𝑀. 

Proof.  By applying Theorem  2.20  and Corollary  2.21.       □ 
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