

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS

ISSN:2521-3504(online) ISSN:2074-0204(print)

SAS-Injective Modules

Heba Hadi Chyada, Akeel Ramadan Mehdib

^aMathematical Department / College of Education / University of Al-Qadisiyah / Al-Diwaniya City/ Iraq. Email: math.post40@qu.edu.iq ^bMathematical Department / College of Education / University of Al-Qadisiyah / Al-Diwaniya City/ Iraq. Email: akeel.mehdi@qu.edu.iq

ARTICLEINFO

Article history: Received: 05 /03/2023 Rrevised form: 15 /04/2023 Accepted: 19 /04/2023 Available online: 30 /06/2023

Keywords:

Injective modules. Small injective modules. SAS-injective modules. Semiartinian small submodule.

ABSTRACT

We introduce and investigate SAS-injective modules as a generalization of small injectivity. A right module M over a ring R is said to be SAS-N-injective (where N is a right R-module) if every right R-homomorphism from a semiartinian small right submodule of N into M extends to N. A module M is said to be SAS-n-injective, if M is SAS-R-injective. Some characterizations and properties of SAS-injective modules are given. Some results on small injectivity are extended to SAS-injectivity.

2020MSC: Primary: 16D50, 16D10, 16D80; Secondary: 16P40, 16E30, 16S90.

https://doi.org/ 110.29304/jqcm.2023.15.2.1247

1. Introduction

Throughout *R* is an associative ring with identity and all modules are unitary *R*-modules. If not otherwise specified, by a module (resp. homomorphism) we will mean a right *R*-module (resp. right *R*-homomorphism). For a submodule *N* of a module *M*, the notations $N \leq M$, $N \ll M$, $N \leq^{ess} M$, $N \leq^{max} M$, and $N \leq^{\bigoplus} M$ mean, respectively, that *N* is a submodule, a small submodule, an essential submodule, a maximal submodule, and a direct summand of *M*, respectively. If a is an element of right *R*-module *M*, then we use r(a) to denote the right annihilator of *a* in *R*. Also, we use the symbols J(M), soc(M) and Z(M) to denote the Jacobson radical, the socle and singular submodule of M_R , respectively. A module *M* is called semiartinian, if $soc(M/N) \neq 0$, for any proper submodule *N* of *M*. For a right *R*-module M_R , we denote by Sa(M) to the sum of all semiartinian submodules of *M*. We refer the reader to [1,3,4,6,12], for general background materials.

Injective modules have been studied extensively, and several generalizations for these modules are given by many authors (see, for example, [2,10,9,7,8]).

^{*}Corresponding author: Akeel Ramadan Mehdi

Email addresses: akeel.mehdi@qu.edu.iq

A module *M* is called small-injective if every homomorphism from a small right ideal of *R* into *M* can be extended to a homomorphism from R_R into *M* [10].

In this article, a proper generalization of small-injectivity is introduced and investigated, namely SAS-injective modules. Let N be a right R-module. A right R-module M is said to be SAS-N-injective if every R-homomorphism from a semiartinian small right submodule of N into M extends to N. If M is SAS-R-injective, then we say that M is SAS-injective. Firstly, we give an example to show that SAS-injective modules need not be small-injective. Several properties of the class of SAS-injective modules are given. For example, we show that the class of SAS-N-injective modules is closed under isomorphic copies, direct products, finite direct sums and summands. Some characterizations of SAS-injective modules are given. We prove the equivalence of the following statements: (1) Every right *R*-module is SAS-injective; (2) Every simple right *R*-module is SAS-injective (3) Every semiartinian small submodule of any right *R*-module SAS-injective; (4) Every semiartinian small right ideal of *R* is SAS-injective; (5) Every semiartinian small right ideal of *R* is a summand of *R*; (6) $Sa(R_R) \cap J(R) = 0$. Conditions under which quotient of SAS-injective right *R*-modules is SAS-injective are given. For instance, we prove that the equivalence of the following: (1) The class of SAS-injective right *R*-modules is closed under quotient; (2) For any right R-module M, the sum of any two SAS-injective submodules of M is SAS-injective; (3) All semiartinian small submodules of R_{R} are projective. Finally, we give conditions such that the class of SAS-injective right *R*-modules is closed under direct sums. For instance, we prove that the equivalence of the following conditions: (1) Sa(R_R) $\cap J(R)$ is Noetherian; (2) All direct sums of injective modules are SAS-injective; (3) The class of SAS-injective modules is closed under direct sums.

2. SAS-Injective Modules

As a generalization of small injective modules, we introduce the concept of SAS-injective modules.

Definition 2.1. A right *R*-module *M* is said to be SAS-*N*-injective (where *N* is a right *R*-module), if any right *R*-homomorphism $f: K \to M$ extends to *N*, where *K* is any semiartinian small submodule of *N*. If *M* is SAS-*R*-injective, then *M* is said to be SAS-injective.

Examples 2.2.

2

(1) All small-injective modules are SAS-injective, but the converse is not true in general, for example: let *R* be the localization ring of \mathbb{Z} at the prime *p*, that is $R = \mathbb{Z}_{(p)} = \{\frac{m}{n}: p \text{ does not divide n}\}$. Then *R* is not small injective with $\operatorname{soc}(R_R) = 0$ (see [13, Example 4]). Since $\operatorname{soc}(R_R) = 0$, we have that $\operatorname{Sa}(R_R) = 0$ and hence the zero ideal is the only semiartinian small right ideal in R_R . Thus R_R is SAS-injective and hence SAS-injectivity is a proper generalization of small injectivity.

(2) Clearly, if $soc(N_R) = 0$, then 0 is the only semiartinian small submodule of N and hence every module is SAS-N-injective. Particularly, all \mathbb{Z} -modules are SAS-injective.

Some properties of SAS-*N*-injective modules are given in the following theorem.

Theorem 2.3. Let *M*, *N* and *K* be right *R*-modules. Then the following statements hold:

- (1) Let $\{M_i: i \in I\}$ be a class of modules. Then the direct product $\prod_{i \in I} M_i$ is SAS-*N*-injective if and only if all M_i are SAS-*N*-injective.
- (2) If $K \subseteq N$ and M is SAS-N-injective, then M is SAS-K-injective.
- (3) If *M* is SAS-*K*-injective and $M \cong N$, then *N* is SAS-*K*-injective.
- (4) If *M* is SAS-*K*-injective and $K \cong N$, then *M* is SAS-*N*-injective.
- (5) Any summand of an SAS-*K*-injective module is SAS-*K*-injective.

Proof. Obvious.

Corollary 2.4. The next statements hold:

- (1) A finite direct sum of SAS-*N*-injective modules is SAS-*N*-injective, for any module *N*. Moreover, a finite direct sum of SAS-injective modules is SAS-injective.
- (2) A summand of an SAS-injective module is again SAS-injective.

Proof. (1) By applying Theorem 2.3 (1), when index *I* is taken to be a finite set.

(2) This directly by using Theorem 2.3 (5).

If for any submodule *N* of a right *R*-module *M*, there exists an ideal *I* of *R* such that N = MI, then *M* is called a multiplication module [11, p. 3839].

Proposition 2.5. Let $\{N_i : i \in I\}$ be a family of right *R*-modules and *M* be a right *R*-module. If $\bigoplus_{i \in I} N_i$ is a multiplication module, then *M* is SAS- $\bigoplus_{i \in I} N_i$ -injective if and only if *M* is SAS- N_i -injective, for all $i \in I$.

Proof. (\Rightarrow) By Theorem 2.3 ((2), (4)).

(⇐) Let *K* be a semiartinian small submodule of $\bigoplus_{i \in I} N_i$. Since $\bigoplus_{i \in I} N_i$ is a multiplication module (by hypothesis), we have from [11, Theorem 2.2, p. 3844] that $K = \bigoplus_{i \in I} K_i$ with K_i is a submodule of N_i , for all $i \in I$. By [4, Lemma 5.1.3(c), p. 108], $K_i \ll N_i$. Since *K* is a semiartinian module, we have from [4, Exercises (7)(8), p. 238] that K_i is a semiartinian module of N_i . For $i \in I$, consider the following diagram:

where i_{K_i} , i_{N_i} are injection maps and i_1 , i_2 are inclusion maps. The hypothesis implies that there exists a homomorphism $h_i: N_i \to M$ such that $h_i \circ i_2 = f \circ i_{K_i}$. By [4, Theorem 4.1.6(2)], there exists exactly one homomorphism $h: \bigoplus_{i \in I} N_i \to M$ satisfying $h_i = h \circ i_{N_i}$. Thus $f \circ i_{K_i} = h_i \circ i_2 = h \circ i_{N_i} \circ i_2 = h \circ i_1 \circ i_{K_i}$ for all $i \in I$. Let $(a_i)_{i \in I} \in \bigoplus_{i \in I} K_i$, thus $a_i \in K_i$, for all $i \in I$ and $f((a_i)_{i \in I}) = f(\sum_{i \in I} i_{K_i}((a_i)_{i \in I})) = (h \circ i_1)((a_i)_{i \in I})$ and hence $f = h \circ i_1$.

If all right ideals of a ring *R* are ideals in *R*, then *R* is called right invariant [11, p.3839].

Corollary 2.6. Let *R* be a right invariant ring and let $1 = s_1 + s_2 \dots + s_n$ in *R*, where the s_i are orthogonal idempotent, then a right *R*-module *M* is SAS-injective if and only if *M* is SAS- s_iR -injective for every $i = 1, 2, \dots, n$.

Proof. By [1, Corollary 7.3, p. 96], we have $R = \bigoplus_{i=1}^{n} s_i R$. Since *R* is a right invariant ring, we get from [11, Proposition 3.1, p. 3855] that *R* is a multiplication module and hence Proposition 2.5 implies that *M* is SAS-injective if and only if *M* is SAS- $s_i R$ -injective. \Box

The following proposition gives characterizations of SAS-injective modules.

Proposition 2.7. The next conditions are equivalent for a right *R*-module *M*:

- (1) *M* is SAS-injective.
- (2) The sequence $0 \to \operatorname{Hom}_R(R/N, M) \xrightarrow{\pi^*} \operatorname{Hom}_R(R, M) \xrightarrow{i^*} \operatorname{Hom}_R(N, M) \to 0$ is exact, for all submodule N of $Sa(R_R) \cap J(R)$, where *i* and π are the inclusion and canonical maps, respectively.
- (3) $\operatorname{Ext}^{1}(R/N, M) = 0$, for all submodule $N \subseteq Sa(R_{R}) \cap J(R)$.
- (4) For each semiartinian small right ideal N of R and for any R-homomorphism $f: N \to M$, there exists an element $m \in M$ such that f(r) = mr for all $r \in N$.

Proof. (1) \Rightarrow (2) Let *N* be a submodule of Sa(R_R) \cap *J*(*R*). It is clear that the sequence

 $0 \longrightarrow \operatorname{Hom}_{R}(R/N, M) \xrightarrow{\pi^{*}} \operatorname{Hom}_{R}(R, M) \xrightarrow{i^{*}} \operatorname{Hom}_{R}(N, M) \text{ is exact. Let } g \in \operatorname{Hom}_{R}(N, M). \text{ Since } M \text{ is SAS-injective, there exists a right } R-homomorphism } f: R \longrightarrow M \text{ such that } fi = g \text{ and hence } i^{*}(f) = g. \text{ Thus } i^{*} \text{ is an } R\text{-epimorphism } and hence \text{ the sequence } 0 \longrightarrow \operatorname{Hom}_{R}(R/N, M) \xrightarrow{\pi^{*}} \operatorname{Hom}_{R}(R, M) \xrightarrow{i^{*}} \operatorname{Hom}_{R}(N, M) \longrightarrow 0 \text{ is exact.}$

(2) \Rightarrow (3) By [5, Theorem 4.4(3), p.491], there is an exact sequence $0 \rightarrow \operatorname{Hom}_{R}(R/N, M) \xrightarrow{\pi^{*}} \operatorname{Hom}_{R}(R, M) \xrightarrow{i^{*}}$

 $\begin{array}{l} \operatorname{Hom}_{R}(N,M) \to \operatorname{Ext}^{1}(R/N,M) \to \operatorname{Ext}^{1}(R,M) \to \operatorname{Ext}^{1}(N,M) \to \cdots. & \operatorname{Since} \ R_{R} \text{ is projective, it is follows from [5, Theorem 4.4(1), p.491] that } \operatorname{Ext}^{1}(R,M) = 0 & \operatorname{and} & \operatorname{hence} & \operatorname{the} & \operatorname{sequence} & 0 \\ \to \operatorname{Hom}_{R}(R/N,M) \xrightarrow{\pi^{*}} \operatorname{Hom}_{R}(R,M) \xrightarrow{i^{*}} \operatorname{Hom}_{R}(N,M) \to \operatorname{Ext}^{1}(R/N,M) \to 0 & \operatorname{is exact. By hypothesis, the sequence } 0 \\ \to \operatorname{Hom}_{R}(R/N,M) \xrightarrow{\pi^{*}} & \operatorname{Hom}_{R}(R,M) \xrightarrow{i^{*}} \operatorname{Hom}_{R}(N,M) \to 0 & \operatorname{is exact. By hypothesis, the sequence } 0 \end{array}$

(3) \Rightarrow (4) Let $f: N \to M$ be a *R*-homomorphism where *N* is a semiartinian small right ideal of *R*. Thus $N \leq \operatorname{Sa}(R_R) \cap J(R)$. As the proof of (2) \Rightarrow (3) we have that the sequence 0 $\rightarrow \operatorname{Hom}_R(R/N, M) \xrightarrow{\pi^*} \operatorname{Hom}_R(R, M) \xrightarrow{i^*} \operatorname{Hom}_R(N, M) \to \operatorname{Ext}^1(R/N, M) \to 0$ is exact. By hypothesis, $\operatorname{Ext}^1(R/N, M) = 0$ and hence the sequence $0 \to \operatorname{Hom}_R(R/N, M) \xrightarrow{\pi^*} \operatorname{Hom}_R(R, M) \xrightarrow{i^*} \operatorname{Hom}_R(N, M) \to 0$ is exact. Thus there is a right *R*-homomorphism $g \in \operatorname{Hom}_R(R, M)$ with $i^*(g) = f$, this means gi = f. Let $r \in N$, thus f(r) = g(r) = g(1)r = mr, where m = g(1).

(4) \Rightarrow (1) It is clear.

Proposition 2.8. For a module M, the next statements are equivalent:

- (1) All modules are SAS-*M*-injective.
- (2) All semiartinian small submodules of any module is SAS-M-injective.
- (3) All semiartinian small submodules of *M* are SAS-*M*-injective.
- (4) Every semiartinian small submodule of *M* is a summand of *M*.
- (5) $Sa(M) \cap J(M) = 0.$

Proof. (1) \Rightarrow (2) \Rightarrow (3) and (5) \Rightarrow (1) are clear.

(3) \Rightarrow (4) Let *W* be a semiartinian small submodule of *M*. By hypothesis, *W* is SAS-*M*-injective and hence $g \circ i = I_W$ for some a homomorphism $g: M \to W$, where *i* is the inclusion and I_W is the identity homomorphism. Hence *i* is split and this implies that *W* is a summand of *M*.

(4)⇒ **(5)** Let $x \in Sa(M) \cap J(M)$, thus $x \in Sa(M)$ and $x \in J(M)$. By [4, Exercises (7)(2), p.238], Sa(M) is a semiartinian module and hence from [4, Exercises (7)(8), p.238] we have xR is a semiartinian submodule of M. By [4, Corollary 9.1.3, p.214], xR is a small submodule of M. By hypothesis xR is a summand of M and hence $xR \oplus K = M$ for some submodule K of M. Since xR is a small submodule of M, we have that K = M and hence xR = 0. So, x = 0 and hence $Sa(M) \cap J(M) = 0$. □

Corollary 2.9. For a ring *R*, the next conditions are equivalent:

- (1) All right *R*-modules are SAS-injective.
- (2) All semiartinian small submodules of any right *R*-module are SAS-injective.
- (3) All semiartinian small right ideals of *R* are SAS-injective.
- (4) All semiartinian small right ideals of R are summands of R.
- $(5) \quad Sa(R_R) \cap J(R_R) = 0.$

Proof. By applying Proposition 2.8 with M = R. \Box

Proposition 2.10. Let *M* be a right *R*-module. Then $Sa(M) \cap J(M)$ is a semisimple summand of *M* if and only if all modules are SAS-*M*-injective.

Proof. (\Rightarrow) Let Sa(M) \cap J(M) be a semisimple summand of M and let N be a module. Let K be a semiartinian small submodule of M. Since Sa(M) \cap J(M) is a semisimple summand of M, it follows that $M = (Sa(M) \cap J(M)) \oplus W$ for some submodule W of M. Since K is a submodule of Sa(M) \cap J(M) and Sa(M) \cap J(M) is semisimple, Sa(M) \cap J(M) = $K \oplus U$ for some submodule U of Sa(M) \cap J(M). We obtain $M = K \oplus U \oplus W$ and hence all semiartinian small submodules of M are summand of M. By Proposition 2.8, all modules are SAS-M-injective.

(⇐) Suppose that every right *R*-module is SAS-*M*-injective. By Proposition 2.8, $Sa(M) \cap J(M) = 0$ and hence $Sa(M) \cap J(M)$ is a semisimple summand of *M*. \Box

Theorem 2.11. If all simple singular modules are SAS-injective, then $r(a) \leq^{\oplus} R_R$ and aR is projective, for every $a \in Sa(R_R) \cap J(R_R)$.

Proof. Let $a \in Sa(R_R) \cap J(R_R)$ and let L = RaR + r(a). Thus there exists $N \leq R_R$ such that $L \oplus N \leq e^{ss} R_R$. Assume that $L \oplus N \neq R_R$, then there exists $I \leq^{max} R_R$ with $L \oplus N \subseteq I$, and hence $I \leq^{ess} R_R$. By [6, Example 7.6 (3), p. 247], R/Iis a singular right *R*-module. By [4, Corollary 3.1.14, p. 49], R/I is a simple module and hence the hypothesis implies that R/I is SAS-injective. Clearly, α is a well-defined R-homomorphism, where $\alpha: aR \to R/I$ is defined by $\alpha(at) =$ t + I, for any $t \in R$. It is obvious that aR is a semiartinian small right ideal of R. By SAS-injectivity of R/I, there is a with g(x) = f(x) for any $x \in aR$. Thus 1 + I = f(a) = g(a) = g(1)a = g(1)aright *R*-homomorphism $g: R \rightarrow R/I$ (c + I)a = ca + I, for some $c \in R$ and hence $1 - ca \in I$. But $ca \in RaR \subseteq I$, so $1 \in I$, a contradiction. Hence $L \oplus N =$ *R* and so $RaR + (r(a) \oplus N) = R$ and this implies that $r(a) \oplus N = R$ (since $RaR \ll R_R$). We will prove that aR is projective. Since r(a) is a summand of R_R , it follows that r(a) = (1 - e)R for some an idempotent element e in R (by [12, 2.3(3), p.8]) with $R = eR \oplus (1 - e)R$. Define $\lambda: eR \to aeR$ by $\lambda(er) = aer$, for all $r \in R$. It is clear that λ is an epimorphism. Let $x \in \text{ker}(\lambda)$, thus $\lambda(x) = 0$ and so x = er for some $r \in R$ and aer = 0. Hence $er \in r(a)$ and $er \in eR$, and this implies that $x \in eR \cap r(a)$ and so ker $(\lambda) \subseteq eR \cap r(a)$. Let $y \in R \cap r(a)$, thus y = er and ay = 0. So aer = 0and hence $\lambda(y) = 0$. Thus $y \in \ker(\lambda)$ and so $eR \cap r(a) \subseteq \ker(\lambda)$. Thus $\ker(\lambda) = eR \cap r(a)$. Since $R = eR \oplus (1 - e)R$, we have $eR \cap (1-e)R = 0$. Since r(a) = (1-e)R, we have $eR \cap r(a) = 0$. Since $ker(\lambda) = eR \cap r(a)$, we have $\ker(\lambda) = 0$. Thus $\lambda: eR \to aeR$ is an isomorphism. Clearly aR = aeR, since $aeR \subseteq aR$ and if $x \in aR$, then $x = a \cdot r$ for some $r \in R$. So x = ar = aer + a(1 - e)r. Since r(a) = (1 - e)R, we have a(1 - e)r = 0 and so $x = aer \in aeR$. Thus $aR \subseteq aeR$ and hence aR = aeR. Since $R = eR \oplus (1 - e)R$, we have eR is projective. Since $eR \cong aeR$, we have *aeR* is projective. Since aR = aeR, we have that *aR* is projective. П

Corollary 2.12. If all simple singular right *R*-modules are SAS-injective, then $Z(R_R) \cap Sa(R_R) \cap J(R_R) = 0$.

Proof. Assume that $Z(R_R) \cap Sa(R_R) \cap J(R_R) \neq 0$, then there exists $0 \neq a \in Z(R_R) \cap Sa(R_R) \cap J(R_R)$. Since $a \in Z(R_R)$, we have $r(a) \leq^{ess} R_R$. By Proposition 2.11, $r(a) \leq^{\oplus} R_R$ and so $r(a) \cap K = 0$ and r(a) + K = R for some $K \leq R_R$. Since $r(a) \leq^{ess} R_R$, which implies that K = 0 and so r(a) = R and hence a = 0 but this a contradiction. Thus $Z(R_R) \cap Sa(R_R) \cap J(R_R) = 0$. \Box

5

A ring *R* is named zero insertive, if for any $a, b \in R$ with ab = 0, then aRb = 0 [10].

Lemma 2.13. [10, Lemma 2.11] $RaR + r(a) \leq^{ess} R_R$, for any element *a* in a zero insertive ring *R*.

Proposition 2.14. If all simple singular right *R*-modules are SAS-injective and *R* is a zero insertive ring, then $Sa(R_R) \cap J(R_R) = 0$.

Proof. Assume that $Sa(R_R) \cap J(R_R) \neq 0$. Thus there is $0 \neq a \in Sa(R_R) \cap J(R_R)$, and hence $RaR \ll R_R$. If $RaR + r(a) \subseteq R$, then $RaR + r(a) \subseteq K$ for some a maximal right ideal K of R. Using Lemma 2.13, we have $RaR \ll R_R$. If RaR + r(a) is an essential in R_R and hence K is an essential in R_R and so R/K is a simple singular right R-module (by [6, Example 7.6(3) p. 247]). By hypothesis, R/K is an SAS-injective module. Consider the mapping $f: aR \rightarrow R/K$ defined by f(ar) = r + K for all $r \in R$. Thus f is a well-defined right R-homomorphism. Since aR is a semiartinian small right ideal of R, it follows from SAS-injectivity of R/K, there is a right R-homomorphism $g: R \rightarrow R/K$ with g(x) = f(x) for any $x \in aR$. Thus 1 + K = f(a) = g(a) = g(1)a = (c + K)a = ca + K, for some $c \in R$ and hence $1 - ca \in K$. Since $ca \in RaR \subseteq K$, we have $1 \in K$ and so K = R and this is a contradiction. Therefore, RaR + r(a) = R. Since $RaR \ll R_R$ which implies that r(a) = R and so a = 0 and this is a contradiction. Thus $Sa(R_R) \cap J(R_R) = 0$.

Corollary 2.15. If all simple singular right modules over a zero insertive ring *R* are SAS-injective, then all right *R*-modules are SAS-injective.

Proof. By Proposition 2.14 and Corollary 2.9.

Theorem 2.16. Let *R* be ring. Then the following conditions are equivalent:

- (1) $Sa(R_R) \cap J(R_R) = 0.$
- (2) All right *R*-modules are SAS-injective.
- (3) All simple right *R*-modules are SAS-injective.

Proof. Clearly, we have $(1) \Rightarrow (2) \Rightarrow (3)$.

(3) ⇒ (1). Assume that Sa(R_R) ∩ J(R_R) ≠ 0. Thus there is 0 ≠ *a* ∈ Sa(R_R) ∩ J(R_R), and hence *aR* ≪ R_R . If (Sa(R_R) ∩ J(R_R)) + *r*(*a*) ⊊ *R*, then (Sa(R_R) ∩ J(R_R)) + *r*(*a*) ⊆ *I*, for some maximal right ideal *I* of *R*. Thus *R*/*I* is a simple right *R*-module. By hypothesis, *R*/*I* is an SAS-injective module. We define *f*: *aR* → *R*/*I* by *f*(*ax*) = *x* + *I* for any element *x* in *R*. Then clearly *f* is a well-defined right *R*-homomorphism. Since *aR* ⊆ Sa(R_R) ∩ J(R_R) it follows that *aR* is a semiartinian small right ideal of *R*. By SAS-injectivity of *R*/*I*, there is a right *R*-homomorphism *g*: *R* → *R*/*I* with *g*(*x*) = *f*(*x*) for any *x* ∈ *aR*. Thus 1 + *I* = *f*(*a*) = *g*(*a*) = *g*(1)*a* = (*c* + *I*)*a* = *ca* + *I*, for some *c* ∈ *R* and hence 1 − *ca* ∈ *I*. Since Sa(R_R) and J(R_R) are predicals, we have that Sa(R_R) and J(R_R) are two-sided ideals. Thus *ca* ∈ *Sa*(R_R) ∩ J(R_R) ⊆ *I* and hence 1 ∈ *I*, and so *I* = *R* and this is a contradiction. Therefore, (Sa(R_R) ∩ J(R_R)) + *r*(*a*) = *R*. Since Sa(R_R) ∩ J(R_R) is a small ideal in R_R , we have that *r*(*a*) = *R* and so *a* = 0 and this is a contradiction. Thus Sa(R_R) ∩ J(R_R) = 0. □

Remark 2.17. It is not necessary that all semiartinian small submodules of a projective module are projective, for example $<\overline{2} >$ is a semiartinian small submodule of the projective Z_4 -module Z_4 but it is not projective, because it is not a summand of $Z_4^{(I)}$, for any index *I*.

Theorem 2.18. The following conditions are equivalent for a projective module *M*:

- (1) All epimorphic images of SAS-*M*-injective modules are SAS-*M*-injective.
- (2) All epimorphic images of small-*M*-injective modules are SAS-*M*-injective.
- (3) All epimorphic images of injective modules are SAS-*M*-injective.
- (4) All sums of two SAS-*M*-injective submodules of any module are SAS-*M*-injective.
- (5) All sums of two small-*M*-injective submodules of any module are SAS-*M*-injective.

- (6) All sums of two injective submodules of any module are SAS-*M*-injective.
- (7) All semiartinian small submodules of *M* are projective.

Proof. (1) \Rightarrow (2) \Rightarrow (3) and (4) \Rightarrow (5) \Rightarrow (6) are clear.

(3) \Rightarrow (7) Let *D* and *N* be modules and *U* be a semiartinian small submodule of *M*. Consider the following diagram:

where *f* is epimorphism, *h* is a homomorphism, and *i* is the inclusion homomorphism. We can take *N* to be an injective *R*-module (by [3, Proposition 5.2.10, p. 148]). By hypothesis, *D* is SAS-*M*-injective and hence $\alpha i = h$ for some a homomorphism $\alpha: M \to D$. By projectivity of *M*, we get that α can be lifted to an *R*-homomorphism $\tilde{\alpha}: M \to N$ with $f\tilde{\alpha} = \alpha$. Let $\tilde{h}: U \to N$ be the restriction of $\tilde{\alpha}$ over *U*. It is clear that $f\tilde{h} = h$ and hence *U* is projective.

(7) \Rightarrow (1) Let $h: A \to B$ be an *R*-epimorphism, where *A* and *B* are right *R*-modules and *A* is an SAS-*M*-injective. Let *K* be a semiartinian small submodule of *M*, $f: K \to B$ be an *R*-homomorphism and $i: K \to M$ the inclusion homomorphism. By (7), *K* is projective and hence hg = f for some a homomorphism $g: K \to A$. By SAS-*M*-injectivity of *A*, we get $\tilde{g}i = g$ for some a homomorphism $\tilde{g}: M \to A$. Put $\alpha = h\tilde{g}: M \to B$. Thus $\alpha i = h\tilde{g}i = hg = f$. Hence *B* is an SAS-*M*-injective right *R*-module.

(1) \Rightarrow (4) Let K_1 and K_2 be two SAS-*M*-injective submodules of a right *R*-module *K*. Then $K_1 + K_2$ is a homomorphic image of $K_1 \oplus K_2$. Since $K_1 \oplus K_2$ is SAS-*M*-injective (by Corollary 2.4.(1)), it follows from hypothesis that $K_1 + K_2$ is SAS-*M*-injective.

(6) \Rightarrow (3) Let *E* be an injective module and $N \leq E$. Let $Q = E \oplus E$, $H = \{(x, x) \mid x \in N\}$, $\bar{Q} = Q/H$, $K_1 = \{y + H \in \bar{Q} \mid y \in E \oplus 0\}$ and $K_2 = \{y + H \in \bar{Q} \mid y \in 0 \oplus E\}$. Then $\bar{Q} = K_1 + K_2$. Since $(E \oplus 0) \cap H = 0$ and $(0 \oplus E) \cap H = 0$, it follows that $E \cong K_i$, i = 1, 2. Clearly, $K_1 \cap K_2 \cong N$ under $y \mapsto y + H$ for all $y \in N \oplus 0$. By hypothesis, \bar{Q} is SAS-*M*-injective. Injectivity of K_1 implies that $\bar{Q} = K_1 \oplus A$ for some submodule *A* of \bar{Q} and hence $A \cong (K_1 + K_2)/K_1 \cong K_2/(K_1 \cap K_2) \cong E/N$. By Theorem 2.3 ((3),(5)), E/N is SAS-*M*-injective. \Box

Corollary 2.19. The following statements are equivalent for a ring *R*:

- (1) Every epimorphic image of an SAS-injective right *R*-module is SAS-injective.
- (2) Every epimorphic image of a small injective right *R*-module is SAS-injective.
- (3) Every epimorphic image of an injective right *R*-module is SAS-injective.
- (4) Every sum of two SAS-injective submodules of any right *R*-module is SAS-injective.
- (5) Every sum of two small injective submodules of any right *R*-module is SAS-injective.
- (6) Every sum of two injective submodules of any right *R*-module is SAS-injective.
- (7) Every semiartinian small submodule of R_R is projective.

Proof. By taking M = R and applying Theorem 2.18.

Let *N* be a right *R*-module. A right *R*-module *M* is called a rad-*N*-injective, if for any submodule *K* of J(N), any right *R*-homomorphism $f: K \to M$ extends to *N* [14, p.412].

Theorem 2.20. If *M* is a finitely generated right *R*-module, then the following statements are equivalent:

(1) $Sa(M) \cap J(M)$ is a Noetherian *R*-module.

- (2) Any direct sum of SAS-*M*-injective right *R*-modules is SAS-*M*-injective.
- (3) Any direct sum of rad-*M*-injective right *R*-modules is SAS-*M*-injective.
- (4) Any direct sum of small *M*-injective right *R*-modules is SAS-*M*-injective.
- (5) Any direct sum of injective right *R*-modules is SAS-*M*-injective.
- (6) $K^{(L)}$ is SAS-*M*-injective, for any injective right *R*-module *K* and for any index set *L*.
- (7) $K^{(\mathbb{N})}$ is SAS-*M*-injective, for any injective right *R*-module *K*.

Proof. (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7) are clear.

(1) \Rightarrow (2) Let $E = \bigoplus_{i \in I} M_i$ be a direct sum of SAS-*M*-injective right *R*-modules. Let *K* be a semiartinian small submodule of *M* and $f: K \to E$ be a homomorphism. Thus $K \subseteq Sa(M) \cap J(M)$. Since $Sa(M) \cap J(M)$ is a Noetherian (by hypothesis), *K* is finitely generated and hence $f(K) \subseteq \bigoplus_{j \in J} M_j$, for some finite subset *J* of *I*. Since a finite direct sum of SAS-*M*-injective modules is SAS-*M*-injective (by Corollary 2.4(1)), we have $\bigoplus_{j \in J} M_j$ is SAS-*M*-injective. Define $\alpha: K \to \bigoplus_{j \in J} M_j$ by $\alpha(x) = f(x)$, for every $x \in K$. It is clear that α is a right *R*-homomorphism. By SAS-*M*-injectivity of $\bigoplus_{j \in J} M_j$, there exists a right *R*-homomorphism $g: M \to \bigoplus_{j \in J} M_j$ such that $g(a) = \alpha(a)$, for all $a \in K$. Define $h: M \to E = \bigoplus_{i \in I} M_i$ by h(x) = (ig)(x) for every $x \in M$, where $i: \bigoplus_{j \in J} M_j \to \bigoplus_{i \in I} M_i$ is the inclusion. Thus, for all $a \in K$, we have that $h(a) = ig(a) = g(a) = \alpha(a) = f(a)$ and hence *E* is SAS-*M*-injective.

(7) \Rightarrow (1) Let $K_1 \subseteq K_2$... be a chain of submodules of Sa(M) \cap J(M). For each $i \ge 1$, let $E_i = E(M/K_i)$ and $E = \bigoplus_{i=1}^{\infty} E_i$. For every $i \ge 1$, we put $M_i = \prod_{j=1}^{\infty} E_j = E_i \bigoplus \left(\prod_{\substack{j=1 \ i \ne j}}^{\infty} E_j\right)$, then M_i is injective. By hypothesis, $\bigoplus_{i=1}^{\infty} M_i = \prod_{\substack{j=1 \ i \ne j}}^{\infty} E_j$.

 $(\bigoplus_{i=1}^{\infty} E_i) \oplus \left(\bigoplus_{i=1}^{\infty} \prod_{\substack{j=1 \ i \neq j}}^{\infty} E_j \right)$ is SAS-*M*-injective. By using Theorem 2.3(5) we obtain that *E* is SAS-*M*-injective. Define

 $f: H = \bigcup_{i=1}^{\infty} K_i \to E$ by $f(x) = (x + K_i)_i$. Obviously, f is a well-defined right R-homomorphism. Since M is finitely generated, $\operatorname{Sa}(M) \cap \operatorname{J}(M)$ is a semiartinian small submodule of M, and so $\bigcup_{i=1}^{\infty} K_i$ is a semiartinian small submodule of M. By SAS-M-injectivity of E, there exists a right R-homomorphism $g: M \to E = \bigoplus_{i=1}^{\infty} E_i$ such that gi = f, where $i: H \to M$ is the inclusion homomorphism. Since M is finitely generated, $g(M) \subseteq \bigoplus_{i=1}^{n} E(M/K_i)$ for some n and hence $f(H) \subseteq \bigoplus_{i=1}^{n} E(M/K_i)$. Let $\pi_i: \bigoplus_{j=1}^{\infty} E(M/K_j) \to E(M/K_i)$ be the projection homomorphism. Thus $\pi_i f(x) = \pi_i((x + K_j)_{j\geq 1}) = x + K_i$ for all $x \in H$ and $i \geq 1$ and hence $\pi_i f(H) = H/K_i$ for all $i \geq 1$. Since $f(H) \subseteq \bigoplus_{i=1}^{n} E(M/K_i)$, we have that $H/K_i = \pi_i f(H) = 0$ for all $i \geq n + 1$. So $H = K_i$ for all $i \geq n + 1$ and hence the chain $K_1 \subseteq K_2 \subseteq \cdots$ terminates at K_{n+1} . Thus $\operatorname{Sa}(M) \cap \operatorname{J}(M)$ is a Noetherian R-module. \square

Corollary 2.21. If *N* is a finitely generated right *R*-module, then the following statements are equivalent:

- (1) $Sa(N) \cap J(N)$ is a Noetherian *R*-module.
- (2) $M^{(L)}$ is SAS-*N*-injective, for each SAS-*N*-injective right *R*-module *M* and for any index set *L*.
- (3) $M^{(L)}$ is SAS-*N*-injective, for each rad-*N*-injective right *R*-module *M* and for any index set *L*.
- (4) $M^{(L)}$ is SAS-*N*-injective, for each small *N*-injective right *R*-module *M* and for any index set *L*.
- (5) $M^{(\mathbb{N})}$ is SAS-*N*-injective, for each SAS-*N*-injective right *R*-module *M*.
- (6) $M^{(\mathbb{N})}$ is SAS-*N*-injective, for each rad-*N*-injective right *R*-module *M*.
- (7) $M^{(\mathbb{N})}$ is SAS-*N*-injective, for each small *N*-injective right *R*-module *M*.

Proof. By Theorem 2.20. \Box

Corollary 2.22. For a ring *R*, the following conditions are equivalent:

- (1) $Sa(R_R) \cap J(R)$ is a Noetherian right *R*-module.
- (2) All direct sums of SAS-injective right *R*-modules are SAS-injective.
- (3) All direct sums of small-injective right *R*-modules are SAS-injective.
- (4) All direct sums of injective right *R*-modules are SAS-injective.

9

- (5) If *M* is an injective right *R*-module, then $M^{(L)}$ is SAS-injective, for any index set *L*.
- (6) If *M* is a small-injective right *R*-module, then $M^{(L)}$ is SAS-injective, for any index set *L*.
- (7) $M^{(L)}$ is SAS-injective, for any SAS-injective right *R*-module *M* and for an index set *L*.
- (8) $M^{(\mathbb{N})}$ is SAS-injective, for any injective right *R*-module *M*.
- (9) $M^{(\mathbb{N})}$ is SAS-injective, for any small-injective right *R*-module *M*.
- (10) $M^{(\mathbb{N})}$ is SAS-injective, for any SAS-injective right *R*-module *M*.

Proof. By applying Theorem 2.20 and Corollary 2.21.

References

- [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules. New York: Springer-Verlag, (1974).
- [2] I. Amin, M. Yousif and N. Zeyada, "Soc-injective rings and modules," Comm. Algebra, 33 (2005), pp. 4229-4250.
- [3] P. E. Bland, Rings and Their Modules. Berlin: Walter de Gruyter & Co., (2011).
- [4] F. Kasch, Modules and Rings. London: Academic Press, (1982).
- [5] P. A. Grillet, Abstract Algebra 2nd edition. New York: GTM 242, Springer, (2007).
- [6] T. Y. Lam, Lectures on Modules and Rings. New York: Springer-Verlag, (1999).
- [7] A. R. Mehdi, "On L-injective modules," Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28(2) (2018), pp. 176–192.
- [8] A. R. Mehdi and D. T. Abd Al-Kadhim, "(ρ, m)-N-Injective Modules," J. Phys.: Conf. Ser., 1234 012098 (2019).
- [9] A. R. Mehdi and A. S. Tayyah, "SS-Injective Modules and Rings," Journal of AL-Qadisiyah for computer science and mathematics, 9(2) (2017), pp. 57-70.
- [10] L. V. Thuyet and T. C. Quynh, "On small injective rings and modules," J. Algebra and Its Applications, 8 (2009), pp. 379-387.
- [11] A. A. Tuganbaev, "Multiplication modules," J. Mathematical Sciences, 123 (2004), pp.3839-3905.
- [12] R. Wisbauer, Foundations of Module and Ring Theory. London: Gordon and Breach, (1991).
- [13] Y. Xiang, "Principally small injective rings," Kyungpook Math. J., 51(2011), pp. 177-185.
- [14] N. Zeyada, S. Hussein, and A. Amin, "Rad-injective and almost-injective modules and rings," Algebra Colloquium, 18 (2011), pp.411-418.