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1. Introduction

Throughout R is an associative ring with identity and all modules are unitary R-modules. If not otherwise
specified, by a module (resp. homomorphism) we will mean a right R-module (resp. right R-homomorphism). For
a submodule N of a module M, the notations N<M, N M, N <M, N<™* M, and N <® M mean,
respectively, that N is a submodule, a small submodule, an essential submodule, a maximal submodule, and a direct
summand of M, respectively. If a is an element of right R-module M, then we use r(a) to denote the right annihilator
of ain R. Also, we use the symbols J(M), soc(M) and Z(M) to denote the Jacobson radical, the socle and singular
submodule of My, respectively. A module M is called semiartinian, if soc(M/N) # 0, for any proper submodule N of
M. For a right R-module Mg, we denote by Sa(M) to the sum of all semiartinian submodules of M. We refer the

reader to [1,3,4,6,12], for general background materials.

Injective modules have been studied extensively, and several generalizations for these modules are given by

many authors (see, for example, [2,10,9,7,8]).
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A module M is called small-injective if every homomorphism from a small right ideal of R into M can be extended
to a homomorphism from Ry into M [10].

In this article, a proper generalization of small-injectivity is introduced and investigated, namely SAS-injective
modules. Let N be a right R-module. A right R-module M is said to be SAS-N-injective if every R-homomorphism
from a semiartinian small right submodule of N into M extends to N. If M is SAS-R-injective, then we say that M is
SAS-injective. Firstly, we give an example to show that SAS-injective modules need not be small-injective. Several
properties of the class of SAS-injective modules are given. For example, we show that the class of SAS-N-injective
modules is closed under isomorphic copies, direct products, finite direct sums and summands. Some
characterizations of SAS-injective modules are given. We prove the equivalence of the following statements: (1)
Every right R-module is SAS-injective; (2) Every simple right R-module is SAS-injective (3) Every semiartinian small
submodule of any right R-module SAS-injective; (4) Every semiartinian small right ideal of R is SAS-injective; (5)
Every semiartinian small right ideal of R is a summand of R; (6) Sa(Rg) NJ(R) = 0. Conditions under which
quotient of SAS-injective right R-modules is SAS-injective are given. For instance, we prove that the equivalence of
the following: (1) The class of SAS-injective right R-modules is closed under quotient; (2) For any right
R-module M, the sum of any two SAS-injective submodules of M is SAS-injective; (3) All semiartinian small
submodules of Ry are projective. Finally, we give conditions such that the class of SAS-injective right R-modules is
closed under direct sums. For instance, we prove that the equivalence of the following conditions: (1) Sa(Rg) N J(R)
is Noetherian ; (2) All direct sums of injective modules are SAS-injective; (3) The class of SAS-injective modules is
closed under direct sums.

2. SAS-Injective Modules
As a generalization of small injective modules, we introduce the concept of SAS-injective modules.

Definition 2.1. A right R-module M is said to be SAS-N-injective (where N is a right R-module), if any right
R-homomorphism f: K - M extends to N, where K is any semiartinian small submodule of N. If Mis SAS-R-
injective, then M is said to be SAS-injective.

Examples 2.2.

(1) All small-injective modules are SAS-injective, but the converse is not true in general, for example: let R be the
localization ring of Z at the prime p, thatis R = Z,, = {% p does not divide n}. Then R is not small injective with

soc(Rg) = 0 (see [13, Example 4]). Since soc(Rg) = 0, we have that Sa(R;) = 0 and hence the zero ideal is the only
semiartinian small right ideal in Rg. Thus Ry is SAS-injective and hence SAS-injectivity is a proper generalization of
small injectivity.

(2) Clearly, if soc(Ni) = 0, then 0 is the only semiartinian small submodule of N and hence every module is SAS-N-
injective. Particularly, all Z-modules are SAS-injective.

Some properties of SAS-N-injective modules are given in the following theorem.
Theorem 2.3. Let M, N and K be right R-modules. Then the following statements hold:

(1) Let {M;:i € I} be a class of modules. Then the direct product [];;M; is SAS-N-injective if and only if all M; are
SAS-N-injective.

(2) IfK € N and M is SAS-N-injective, then M is SAS-K-injective.

(3) If M is SAS-K-injective and M = N, then N is SAS-K-injective.

(4) If M is SAS-K-injective and K = N, then M is SAS-N-injective.

(5) Any summand of an SAS-K-injective module is SAS-K-injective.

Proof. Obvious. O
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Corollary 2.4. The next statements hold:

(1) A finite direct sum of SAS-N-injective modules is SAS-N-injective, for any module N. Moreover, a finite direct
sum of SAS-injective modules is SAS-injective.
(2) A summand of an SAS-injective module is again SAS-injective.

Proof. (1) By applying Theorem 2.3 (1), when index [ is taken to be a finite set.
(2) This directly by using Theorem 2.3 (5). i

If for any submodule N of a right R-module M, there exists an ideal I of R such that N = M, then M is called a
multiplication module [11, p. 3839].

Proposition 2.5. Let{N;:i €I} be a family of right R-modules and M be a right R-module. If @;N;is a
multiplication module, then M is SAS-@®;;N;-injective if and only if M is SAS-N;-injective, for all i € I.

Proof. (=) By Theorem 2.3 ((2), (4)).

(&) Let K be a semiartinian small submodule of @;¢;N;. Since @®;¢;N; is a multiplication module (by hypothesis),
we have from [11, Theorem 2.2, p. 3844] that K = @;¢;K; with K; is a submodule of N;, for alli € I. By [4, Lemma
5.1.3(c), p- 108], K; < N;. Since K is a semiartinian module, we have from [4, Exercises (7)(8), p.- 238] that K;is a
semiartinian module and hence K; is a semiartinian submodule of N;. For i € I, consider the following diagram:

i
KK —2 5 N;
lKi lNi
\ 4 il

K = @ielKi —_—> ®ieINi

f ,’/ h

L Z e

where iy, , iy, are injection maps and iy, i, are inclusion maps. The hypothesis implies that there exists a
homomorphism h;: N; — M such that h;ei; = foiyg,. By [4, Theorem 4.1.6(2)], there exists exactly one
homomorphism h: @;¢;N; — M satisfying h; = hoiy. Thus feiy = hjei; =h oiy oi; = h eijo iy foralli€
L. Let(a;)ier € @K, thusa; € K;, for alli € I'and f ((ap)ier) = f Qierik,((ai)ien)) = (h o i1)((a;)ier) and hence
f=hoi. O

If all right ideals of a ring R are ideals in R, then R is called right invariant [11, p.3839].

Corollary 2.6. LetR be a right invariant ring and let 1 ==5s; +5s,..+s5s, in R, where the s; are orthogonal
idempotent, then a right R-module M is SAS-injective if and only if M is SAS-s;R-injective for every i = 1,2, ... ... M.

Proof. By [1, Corollary 7.3, p. 96], we have R = @[ ;s;R.Since R is a right invariant ring, we get from [11,
Proposition 3.1, p. 3855] that R is a multiplication module and hence Proposition 2.5 implies that M is SAS-injective
ifand only if M is SAS-s;R-injective. O

The following proposition gives characterizations of SAS-injective modules.

Proposition 2.7. The next conditions are equivalent for a right R-module M:
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(1) M is SAS-injective.

(2) The sequence 0 — Homg(R/N,M) N Homg (R, M) R Homg(N,M) — 0 is exact, for all submodule N of
Sa(Rg) NJ(R), where iand m are the inclusion and canonical maps, respectively.

(3) Ext'(R/N,M) =0, forall submodule N € Sa(Rg) NnJ(R).

(4) For each semiartinian small right ideal N of R and for any R-homomorphism f: N — M, there exists an
elementm € M such that f(r) = mr forall r € N.

Proof. (1) = (2) Let N be a submodule of Sa(Ry) N J(R). Itis clear that the sequence

0 — Homg(R/N, M) N Hompg (R, M) 5 Homg (N, M) is exact. Let g € Homy (N, M). Since M is SAS-injective, there
exists a right R-homomorphism f:R — M such that fi=g and hence i*(f) = g. Thus i* is an R-epimorphism

and hence the sequence 0 — Homgz(R/N,M) N Homy (R, M) R Hom,(N,M) — 0 isexact.

%

(2) = (3) By|[5, Theorem 4.4(3), p.491], there is an exact sequence 0 — Homgz(R/N, M) SN Homg (R, M) 5

Homg (N, M) — Ext'(R/N,M) — Ext'(R,M) — Ext'(N,M) — ---. Since Rjyis projective, it is follows from [5,
Theorem  4.4(1), p.491] that Ext'(R,M) =0 and hence the  sequence 0

— Homg(R/N, M) —>HomR(R M) N HomR(N M) — Ext’(R/N,M) — 0 is exact. By hypothesis, the sequence 0
— Homg(R/N, M) N Homg (R, M) 5 Homg(N,M) — 0 isexactand hence Ext'(R/N,M) = 0.

(3)>(@4) Letf:N— M be aR-homomorphism where N is a semiartinian small right ideal of R. Thus
N < Sa(Rg) nJ(R). As the proof of (2) =@3) we have that the sequence 0

— Homg(R/N, M) — Homg (R, M) — Homg(N,M)  — Ext'(R/N,M) — 0  is exact. By hypothesis,
Ext!(R/N ,M) = 0 and hence the sequence 0 — Homg(R/N,M) N Homg (R, M) l—>H0mR(N, M) — 0 is exact.
Thus there is a right R-homomorphism g € Homg(R, M) with i*(g) = f, this means gi = f. Letr € N, thus
fr)=g@) =gQ)r = mr, wherem = g(1).

(4) = (1) Itis clear. mi
Proposition 2.8. For a module M, the next statements are equivalent:

(1) All modules are SAS-M-injective.

(2) All semiartinian small submodules of any module is SAS-M-injective .
(3) All semiartinian small submodules of M are SAS-M-injective.

(4) Every semiartinian small submodule of M is a summand of M.

(5) SaM)n J(M) = 0.

Proof. (1) = (2) = (3) and (5) = (1) are clear.

(3) = (4) Let W be a semiartinian small submodule of M. By hypothesis, W is SAS-M-injective and hence g o i =
Iy for some a homomorphism g: M — W, where i is the inclusion and [, is the identity homomorphism. Hence i is
split and this implies that W is a summand of M.

(4)= (5) Let x € Sa(M)n J(M), thus x € Sa(M) and x € J(M).By [4, Exercises (7)(2), p.238],Sa(M)is a
semiartinian module and hence from [4, Exercises (7)(8), p.238] we have xR is a semiartinian submodule of M. By
[4, Corollary 9.1.3, p.214], xR is a small submodule of M. By hypothesis xR is a summand of M and hence xR @ K =
M for some submodule K of M. Since xR is a small submodule of M, we have that K = M and hence xR = 0.So, x =
0 and hence Sa(M)n J(M) =0. o

Corollary 2.9. For aring R, the next conditions are equivalent:
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(1) All right R-modules are SAS-injective.

(2) All semiartinian small submodules of any right R-module are SAS-injective.
(3) All semiartinian small right ideals of R are SAS-injective.

(4) All semiartinian small right ideals of R are summands of R.

(5) Sa(Rg) NJ(Rg) = 0.
Proof. By applying Proposition 2.8 with M =R. O

Proposition 2.10. Let M be aright R-module. Then Sa(M) N J(M) is a semisimple summand of M if and only if all
modules are SAS-M-injective.

Proof. (=) Let Sa(M) NnJ(M) be a semisimple summand of M and let N be a module. Let K be a semiartinian small
submodule of M. Since Sa(M) N J(M) is a semisimple summand of M, it follows that M = (Sa(M) N J(M)) @ W for
some submodule W of M. Since K is a submodule of Sa(M)NJ(M) and Sa(M) nJ(M) is semisimple,
Sa(M) nJ(M) = K@U for some submodule U of Sa(M) N J(M). We obtain M = KQU®W and hence all semiartinian
small submodules of M are summand of M. By Proposition 2.8, all modules are SAS-M-injective.

(&) Suppose that every right R-module is SAS-M-injective. By Proposition 2.8, Sa(M) nJ(M) = 0 and hence
Sa(M) nJ(M) is asemisimple summand of M. O

Theorem 2.11. If all simple singular modules are SAS-injective, then r(a) <® Ry and aR is projective, for every a €
Sa(Rg) NJ(Rg).

Proof. Let a € Sa(Rg) NJ(Rg) and let L = RaR + r(a). Thus there exists N < Ry such that L @ N <°° Rg. Assume
that LN # Rp, then there exists [ <™** Rp with L @ N € I, and hence I <*° Ry. By [6, Example 7.6 (3), p. 247], R/1
is a singular right R-module. By [4, Corollary 3.1.14, p. 49], R/I is a simple module and hence the hypothesis implies
that R/1 is SAS-injective. Clearly, a is a well-defined R-homomorphism, where a: aR — R/I is defined by a(at) =
t + I, for any t € R. It is obvious that aR is a semiartinian small right ideal of R. By SAS-injectivity of R/I, there is a
right R-homomorphism g:R — R/I  with g(x) = f(x) for anyx € aR.Thus 1+ = f(a) = g(a) =g(Da =
(c+Da=ca+ 1, for somec € Rand hencel —ca € I.Butca € RaR €1, so1 € I, a contradiction. Hence L ® N =
R and so RaR + (r(a) @ N) = R and this implies thatr(a) @ N = R (since RaR < Rg). We will prove thataR is
projective. Since r(a) is a summand of Ry, it follows that r(a) = (1 — e)R for some an idempotent element e in R (by
[12, 2.3(3), p.8]) with R = eR®(1 — e)R. Define 1: eR — aeR by A(er) = aer, for allr € R. It is clear that Ais an
epimorphism. Let x € ker(1), thus A(x) = 0 and so x = er for some r € R and aer = 0. Hence er € r(a) and er € eR,
and this implies that x € eR N r(a) and so ker(1) C eRNr(a). Lety € RNr(a), thusy =eranday = 0.Soaer =0
and hence A(y) = 0. Thus y € ker(4) and so eR N r(a) < ker(4). Thus ker(1) = eR N r(a). Since R = eRO(1 — e)R,
we have eR N (1 —e)R = 0. Sincer(a) = (1 —e)R, we have eR nr(a) = 0. Since ker(1) = eR Nnr(a), we have
ker(A1) = 0. Thus A: eR — aeR is an isomorphism. Clearly aR = aeR, since aeR < aR and if x € aR,thenx = a - r for
somer ER. Sox =ar =aer + a(l —e)r. Sincer(a) = (1 —e)R, we havea(l —e)r =0and sox = aer € aeR.
Thus aR € aeR and hence aR = aeR. Since R = eR®(1 — e)R, we have eR is projective. Since eR = aeR, we have
aeR is projective. Since aR = aeR, we have that aR is projective. O

Corollary 2.12. If all simple singular right R-modules are SAS-injective, then Z(Rg) N Sa(Rg) N J(Rg) = 0.

Proof. Assume that Z(Rz) N Sa(Rg) NJ(Rg) # 0, then there exists 0 # a € Z(Rg) N Sa(Rg) NJ(Rg). Since  a €
Z(Rg), we have r(a) <°° R;. By Proposition 2.11,7(a) <® Ry and sor(a) N K = 0andr(a) + K = R for some
K < Rg.Since r(a) <°° Rg, which implies that K = 0 and sor(a) = R and hence a = 0 but this a contradiction.
Thus Z(Rg) NSa(Rz) NJ(Rg) =0. O
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A ring R is named zero insertive, if for any a, b € R with ab = 0, then aRb = 0 [10].
Lemma 2.13. [10, Lemma 2.11] RaR + r(a) <®° Ry, for any element a in a zero insertive ring R.

Proposition 2.14. If all simple singular right R-modules are SAS-injective and R is a zero insertive ring, then
Sa(Rg) NJ(Rg) = 0.

Proof. Assume that Sa(Rg) NJ(Rg) # 0.Thus there is 0 # a € Sa(Rg) NJ(Rg), and hence RaR « Rg.If RaR +
r(a) € R, then RaR + r(a) < K for some a maximal right ideal K of R. Using Lemma 2.13, we have RaR + r(a) is an
essential in R and hence K is an essential in R and so R/K is a simple singular right R-module (by [6,
Example 7.6(3) p.247]). By hypothesis, R/K is an SAS-injective module. Consider the mapping f:aR — R/K
defined by f(ar) =r+ K for all r €R. Thusfis a well-defined right R-homomorphism. Since aR is a
semiartinian small right ideal of R, it follows from SAS-injectivity of R/K, there is a right R-homomorphism
g:R — R/K with g(x) = f(x) for any x € aR.Thus 1+ K = f(a) = g(a) = g(1)a = (¢ + K)a = ca + K, for some
c€Rand hencel—ca € K.Since ca € RaR € K,we have 1l € K and so K =R and this is a contradiction.
Therefore, RaR + r(a) = R. Since RaR < Ry which implies that r(a) = R and so a = 0 and this is a contradiction.
Thus Sa(Rg) N J(Rg) = 0. |

Corollary 2.15. If all simple singular right modules over a zero insertive ring R are SAS-injective, then all right
R-modules are SAS-injective.

Proof. By Proposition 2.14 and Corollary 2.9. o
Theorem 2.16. Let R be ring. Then the following conditions are equivalent:

(1) Sa(Rg) NJ(Rg) = 0.
(2) Allright R-modules are SAS-injective.
(3) All simple right R-modules are SAS-injective.

Proof. Clearly, we have (1) = (2) = (3).

(3) = (1). Assume that Sa(Rz) N J(Rg) # 0. Thus there is 0 # a € Sa(Rg) NJ(Rg), and hence aR < Rp.
If (Sa(Rg) N J(RR)) + r(a) & R, then (Sa(Rg) NJ(RR)) + r(a) € I, for some maximal right ideal I of R. Thus R/I is a
simple right R -module. By hypothesis, R/l is an SAS-injective module. We define f:aR - R/l by
f(ax) =x+1 for any element x in R. Then clearly f is a well-defined right R -homomorphism. Since
aR < Sa(Rg) NJ(RR) it follows that aR is a semiartinian small right ideal of R. By SAS-injectivity of R/I, there is a
right R-homomorphism g:R — R/l with g(x) = f(x) for anyx €aR.Thus 1+ =f(a) =g(a) =g(Da =
(c+Da = ca+ 1, for some ¢ € R and hence 1 — ca € I. Since Sa(Ry) and J(Rg) are predicals, we have that Sa(Rg)
and J(Rg) are two-sided ideals. Thus ca € Sa(Rg) NJ(Rgr) €1 and hence 1 €/, and sol =R and this is a
contradiction. Therefore, (Sa(Rg) N J(Rg)) + r(a) = R. Since Sa(Rg) N J(Rg) is a small ideal in Ry, we have that
r(a) = R and so a = 0 and this is a contradiction. Thus Sa(Rgz) N J(Rg) = 0. o

Remark 2.17. It is not necessary that all semiartinian small submodules of a projective module are projective, for
example < 2 > is a semiartinian small submodule of the projective Z,-module Z, but it is not projective, because it
is not a summand of Z4(1), for any index I.

Theorem 2.18. The following conditions are equivalent for a projective module M:

(1) All epimorphic images of SAS-M-injective modules are SAS-M-injective.

(2) All epimorphic images of small-M-injective modules are SAS-M-injective.

(3) All epimorphic images of injective modules are SAS-M-injective.

(4) All sums of two SAS-M-injective submodules of any module are SAS-M-injective.
(5) All sums of two small-M-injective submodules of any module are SAS-M-injective.
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(6) All sums of two injective submodules of any module are SAS-M-injective.
(7) All semiartinian small submodules of M are projective.

Proof. (1)=(2)=(3) and (4)=(5)=(6) are clear.

(3)=(7) Let D and N be modules and U be a semiartinian small submodule of M. Consider the following diagram:

f:D
hT
> U

where f is epimorphism, h is a homomorphism, and i is the inclusion homomorphism. We can take N to be an
injective R-module (by [3, Proposition 5.2.10, p. 148]). By hypothesis, D is SAS-M-injective and hence ai = h for
some a homomorphism a:M — D. By projectivity of M, we get that a can be lifted to an R-homomorphism
@M — N with f@& = a. Let h:U — N be the restriction of &over U. It is clear that fh = hand hence Uis
projective.

N >0

Y

0

(7)=(1) Let h: A — B be an R-epimorphism, where 4 and B are right R-modules and A is an SAS-M-injective. Let
K be a semiartinian small submodule of M, f:K — Bbe an R-homomorphism and i:K — M the inclusion
homomorphism. By (7), K is projective and hence hg = f for some a homomorphism g:K — A. By SAS-M-
injectivity of A, we get gi = g for some a homomorphism §:M — A. Put « = hg:M — B. Thus ai = hgi = hg =
f. Hence B is an SAS-M-injective right R-module.

(1)=>(4) Let K;and K, be two SAS-M-injective submodules of a right R-module K. ThenK; + K, is a
homomorphic image of K;@K,. Since K; @K, is SAS-M-injective (by Corollary 2.4.(1)), it follows from hypothesis
that K; + K, is SAS-M-injective.

(6) = (3) Let E be an injective module and N<E. Let Q=E®@E, H={(x,x)| x€N}, Q=Q/H, K, =
{(y+HEQ|yeEE®O0} and K, ={y+H€EQ| yEODE}. Then Q =K, +K,. Since (E@0)NH =0 and
(0B E)nH =0, it follows that E=K;, i =1,2. Clearly, K;NK, = Nundery+— y+ Hfor ally e N @ 0. By
hypothesis, Q is SAS-M-injective. Injectivity of K; implies that Q = K; @ A for some submodule 4 of Q and hence
A= (Ki+K,)/K; =K,/(Ki NK,) = E/N.By Theorem 2.3 ((3),(5)), E/N is SAS-M-injective. 0

Corollary 2.19. The following statements are equivalent for a ring R:

(1) Every epimorphic image of an SAS-injective right R-module is SAS-injective.

(2) Every epimorphic image of a small injective right R-module is SAS-injective.

(3) Every epimorphic image of an injective right R-module is SAS-injective.

(4) Every sum of two SAS-injective submodules of any right R-module is SAS-injective.
(5) Every sum of two small injective submodules of any right R-module is SAS-injective.
(6) Every sum of two injective submodules of any right R-module is SAS-injective.

(7) Every semiartinian small submodule of Ry, is projective.

Proof. By taking M = R and applying Theorem 2.18. i

Let N be a right R-module. A right R-module M is called a rad-N-injective, if for any submodule K of J(N), any
right R-homomorphism f: K - M extends to N [14, p.412].

Theorem 2.20. If M is a finitely generated right R-module, then the following statements are equivalent:

(1) Sa(M) nJ(M) is a Noetherian R-module.
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(2) Any direct sum of SAS-M-injective right R-modules is SAS-M-injective.

(3) Any direct sum of rad-M-injective right R-modules is SAS-M-injective.

(4) Any direct sum of small M-injective right R-modules is SAS-M-injective.

(5) Any direct sum of injective right R-modules is SAS-M-injective.

(6) K® is SAS-M-injective, for any injective right R-module K and for any index set L.
(7) K™ is SAS-M-injective, for any injective right R-module K.

Proof. (2)=(3)=(4) = (5) =(6) =(7) are clear.

(1)=>(2) Let E = ®;;M; be a direct sum of SAS-M-injective right R-modules. LetK be a semiartinian small
submodule of M and f:K — E be a homomorphism. Thus K € Sa(M) n J(M). Since Sa(M) n J(M) is a Noetherian
(by hypothesis), K is finitely generated and hence f(K) S @;¢;M;, for some finite subset ] of I. Since a finite direct
sum of SAS-M-injective modules is SAS-M-injective (by Corollary 2.4(1)), we have @ ;¢;M; is SAS-M-injective. Define
a:K — @®;e;M; by a(x) = f(x), for everyx € K. It is clear thatais a right R-homomorphism. By SAS-M-
injectivity of @;¢;M;, there exists a right R-homomorphism g: M — @je;M; such that g(a) = a(a), for all a € K.
Define h:M — E = @ M; by h(x) = (ig)(x) for every x € M, where i:@®jc;M; - @;¢;M; is the inclusion. Thus,
forall a € K, we have that h(a) = ig(a) = g(a) = a(a) = f(a) and hence E is SAS-M-injective.

(7) >(1) Let K; € K, ... be achain of submodules of Sa(M) nJ(M).For eachi = 1,let E; = E(M/K;) and E =

®2,E;. For every i>1, we put M;=[]jL,E;= Ei€B<H}’°:1E-), then M; is injective. By hypothesis, ®;2,;M; =
ij
(®2,E)® (@ﬁlﬂ?’;lE]) is SAS-M-injective. By using Theorem 2.3(5) we obtain that E is SAS-M-injective. Define
i#j

f:H =UZ,K; — E by f(x) = (x + K;);. Obviously, f is a well-defined right R-homomorphism. Since M is finitely
generated, Sa(M) NJ(M)is a semiartinian small submodule of M, and so Uj2;K; is a semiartinian small
submodule of M. By SAS-M-injectivity of E, there exists a right R-homomorphism ¢g:M — E = @2, E; such that
gi = f, where i: H — M is the inclusion homomorphism. Since M is finitely generated, g(M) € @[-,E(M/K;) for
somenand hence f(H) € ®,E(M/K;). Letn;: ®;2,E(M/K;) — E(M/K;) be the projection homomorphism.
Thus m;f (x ) = m;((x + Kj)j>1) =x+K; forall x€H andi=1and hence m;f(H) = H/K; for alli > 1. Since
f(H) € ®,E(M/K;), we have that H/K; =m;f(H) =0 forall i>n+1.SoH =K; forall i >n+ 1 and hence
the chain K; € K, € - terminates at K. Thus Sa(M) n J(M) is a Noetherian R-module. O

Corollary 2.21. If N is a finitely generated right R-module, then the following statements are equivalent:

(1) Sa(N)nJ(N) is a Noetherian R-module.

(2) M® is SAS-N-injective, for each SAS-N-injective right R-module M and for any index set L.
(3) M® is SAS-N-injective, for each rad-N-injective right R-module M and for any index set L.
(4) MW is SAS-N-injective, for each small N-injective right R-module M and for any index set L.
(5) MM is SAS-N-injective, for each SAS-N-injective right R-module M.

(6) M®™ is SAS-N-injective, for each rad-N-injective right R-module M.

(7) M®™ is SAS-N-injective, for each small N-injective right R-module M.

Proof. By Theorem 2.20. i
Corollary 2.22. For a ring R, the following conditions are equivalent:

(1) Sa(Rg) NnJ(R) is a Noetherian right R-module.

(2) All direct sums of SAS-injective right R-modules are SAS-injective.
(3) All direct sums of small-injective right R-modules are SAS-injective.
(4) All direct sums of injective right R-modules are SAS-injective.
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(5) If M is an injective right R-module, then M) is SAS-injective, for any index set L.

(6) If M is a small-injective right R-module, then M" is SAS-injective, for any index set L.
(7) MW is SAS-injective, for any SAS-injective right R-module M and for an index set L.
(8) M®™ is SAS-injective, for any injective right R-module M.

(9) MW is SAS-injective, for any small-injective right R-module M.

(10) MM is SAS-injective, for any SAS-injective right R-module M.

Proof. By applying Theorem 2.20 and Corollary 2.21. o
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