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A B S T R A C T 

 

This essay aims to describe the peristaltic behavior of Bingham's fluid in 

an asymmetric channel and porous material. The liquid is thought to flow 

in a porous media and be susceptible to a powerfully inclined magnetic 

field. The long wavelength dependency and low Reynolds number result 

in a major simplification of the nonlinear equations. The pressure 

gradient, pressure rise per wavelength, axial velocity, spin velocity, 

volume flow rate, and tilted magnetic number are all given specific 

attention. The findings reveal that rotation, density, permeability, 

coupling diversity, and non-dimensional wave amplitude all play 

significant roles in the phenomenon. With rising slip coefficient values 

and falling magnetic field strengths, permeability, and yield stress 

coefficients the trapped bolus grows in size. 

 
MSC.. 
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1. Introduction 

The peristaltic mechanism is well-studied in the realm of fluid research because it has several uses in both 
physiological and industrial settings. Through a progressive wave of stretching and reducing motion along the 
fluid-carrying tube channel, peristalsis promotes fluid flow inside the corresponding system. In biological 
systems, peristalsis is responsible for a variety of processes, such as the development of chyme in the 
gastrointestinal tract, the transport of spermatozoa in the ducts efferent of the male reproductive tract, the 
development of the ovum in the female fallopian tube, the Vaso-movement of little veins, the transport of the 
fetus in the non-pregnant uterus, and the transport of urine from the kidney to the bladder are all included. 
Inappropriate peristalsis is the main factor contributing to the sterility of the human uterus, the thrombus 
improvement of blood, and the neurotic passage of microscopic organisms [1]. A fluid has the ability to flow 
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regardless of its size. Gases and liquids are both fluids, and each is characterized by a "State Equation" that ties 
stress to strain rate. Breathing, blood flow, swimming, pumps, fans, turbines, airplanes, and ships are all examples 
of fluid engineering applications. Almost everything on our world is a fluid or moves with relation to a fluid, if 
you think about it. Fluid mechanics is an area of applied mathematics that examines the dynamics of fluids in 
motion (fluid dynamics) or at rest (fluid statics) [2]. Narahari and Sreenadh [3] To comprehend the peristaltic 
behavior of a Newtonian fluid in contact with a Bingham fluid, two-layer fluid models were examined. To 
examine the flow behavior in the unyielded plug area. Mekheimer [4] investigated how a generated magnetic field 
affected a magneto micropolar fluid's peristaltic flow. Pandey and Chaube [5] also investigated how an external 
magnetic field affected the peristaltic flow of a micropolar fluid through a porous medium. Setting exposure limits 
for these devices requires evaluating the impact of magnetic fields on physiological systems. The peristaltic flow 
of blood has been demonstrated to be greatly influenced by magnetic fields because erythrocytes, a significant 
portion of blood, are known to have bio magnetic properties. Due to this, efforts have been made to provide an 
explanation for why fluid undergoes peristalsis when subjected to magnetic fields. Abdulsalam et al. [6] examined 
the effects of a magnetic field on the peristaltic mechanism of an electrically conducting hyperbolic tangent fluid 
when applied with ion and hall slip. By utilizing the perturbation method, Hayat et al. [7] have focused on the 
peristaltic flow of Maxwell fluid in an asymmetric channel. Abd El Naby et al. [8] examined the effect of an 
attractive field on peristaltic catching to collect Newtonian liquid in a conduit. [9]describes the peristaltic behavior 
of a fluid in the Bingham equation with variable viscosity under the premise that the fluid is subject to a magnetic 
field with a significant inclination and flows within a porous medium. In [10], authors investigated the effect the 
rotation and initial stress on the peristaltic flow of an incompressible fluid. investigating the inclination effects of 
magnetic field and rotation on peristaltic slip flow of a Bingham fluid is the goal of the current study. The influence 
of heat and mass transfer on peristaltic transport of viscoelastic fluid in presence of magnetic field through 
symmetric channel with porous medium has been investigated [11]. Investigating the inclination effects of 
magnetic field and rotation on peristaltic slip flow of a Bingham fluid is the goal of the current study. Low 
Reynolds number and long wavelength assumptions are used. Axial velocity, spin velocity, stream function, and 
pressure rise per wavelength have exact formulas that are produced. Pictures have been used to highlight the 
relevant restrictions. 

 

2. Mathematic Formulation   

In a non-uniform asymmetric channel with a porous medium, consider the two-dimensional flow of a Bingham 

fluid. Flow results from sinusoidal wave trains moving at a steady pace along the elastic channel walls (see Fig. 

A). The proposed cause of the channel wall deformation is 

h1(x, t) = E1 − r1 sin[
2π

λ
(x − ct)]       upper wall,                                                                                                        (1)   

while at the lower wall is given by. 

h2(x, t) = −E2 − r2 sin[
2π

λ
(x − ct) + ∅]           lower wall.                                                                                         (2)  

where (r1) and (r2) indicate the wave's amplitudes, (E1) and (E2) denotes the channel's width, (λ) specifying the 

wavelength, The direction of the wave's propagation is represented by (X), while the time is indicated by (t). The 

difference in phase (∅ ) varies across the range (0 ≤ ∅ ≤ 𝜋)  in which (∅ = 0) is equivalent to an out-of-phase, 

asymmetric channel and (∅ = 𝜋) stands for the phase of the waves. Further (r1), (r2), (E1), (E2), and (∅) satisfy 

the condition ( h1(x, t) = 𝐻1 , h2(x, t) = 𝐻2): 

r1
2 + r2

2 + 2r1r2 cos 𝑖(∅) ≤  (E1 + E2)2.                                                                                                                          (3)   

Furthermore, it is assumed that the walls don't move longitudinally. This assumption limits the ability of the walls 

to deform rather than implying that the channel is stiff during longitudinal motions. 

 

 



Mohammed Obayes Kadhim, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 15(2) 2023 , pp  Math.   46–64             3 

 

 

 

 

 

x= X −ct , y =Y, u =U −c, v =V and p (x, y) = P (X, Y, t)                                                                              (4) 

In the fixed and wave frames, the transverse velocity components are, respectively. These are the equations that 

control fluid flow in the wave frame. 

∂ U

∂X
+

∂ V

∂Y
= 0                                                                                                                                                                     (5) 

The x ̅– part of the moment equation is: 

ρ ( 
∂ 

∂t̅
+ u̅

∂ 

∂x̅
+ v̅

∂ 

∂y̅
) u̅ − ρΩ (Ωu̅ + 2

∂ v̅

∂t̅
)

=  −
∂p̅

∂x̅
+

∂ 

∂x̅
s̅x̅x̅ +

∂ 

∂y̅
s̅x̅y̅ − σ B0

2cosβ∗(u̅ cosβ∗ − v̅ sinβ∗) −
𝜇

k̅
u̅                                       (6) 

The y ̅– part of the moment equation is: 

ρ ( 
∂ 

∂t̅
+ u̅

∂ 

∂x̅
+ v̅

∂ 

∂y̅
) v̅ − ρΩ (Ωv̅ + 2

∂ u̅

∂t̅
)

=  −
∂p̅

∂x̅
+

∂ 

∂x̅
s̅x̅y̅ +

∂ 

∂y̅
s̅yy̅ − σ B0

2cosβ∗(u̅ cosβ∗ − v̅ sinβ∗) −
𝜇

k̅
v̅                                       (7) 

The fluid exhibits behavior consistent with the Bingham model, and the following information about its Cauchy 

stress tensor is given 

σ = −PI +  S̅                                                                                                                                                              (8) 

S̅  = 2μτ + 2𝜏0�̂�                                                                                                                                                        (9) 

in equation (9) 𝜏0 is the yield stress, and the tensor of rate of deformation τ and �̂� is the tensor is described: 

�̂�  =
𝜏

√2 𝑡𝑟𝑎𝑠 𝜏2
                                                                                                                                                         (10) 

𝜏 =
1

2
(∇V̅ + (∇V̅)T)                                                                                                                                                  (11) 

where (I) Identifier Tensor, ∇̅=(∂X̅ , ∂Y ̅, 0) the gradient vector, ( P̅) the liquid's pressure and (µ) the dynamic 

viscosity". 

s̅x̅x̅ = 2𝜇u̅x̅ +  
2𝜏0u̅x̅

√2u̅x̅
2 + (v̅x̅ + u̅y̅)

2
+ 2v̅y̅

2

                                                                                                             (12) 

Fig. A The flow geometry 
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s̅x̅y̅ = 𝜇(v̅x̅ + u̅y̅) +  
𝜏0(v̅x̅ + u̅y̅)

√2u̅x̅
2 + (v̅x̅ + u̅y̅)

2
+ 2v̅y̅

2

                                                                                      (13) 

s̅y̅y = 2𝜇v̅y̅ + 
2𝜏0v̅y̅

√2u̅x̅
2 + (v̅x̅ + u̅y̅)

2
+ 2v̅y̅

2

                                                                                                 (14) 

The non-dimensional quantities and parameters used in the governing equations above include 

x =
1

λ
x̅ , y =

1

E1
y̅ , u =

1

c
u̅ , v =

1

δ c
v̅ , t =

 c

λ
t̅ , δ =

E1

λ
 , Re =

ρ c E1 

 μ 
, Da =

 k̅

d2 , η =
Ω2E1

2ρ 

 μ 
, 

sxx =
λ

μ c
s̅x̅x̅ , sxy =

E1

μ c
s̅x̅y̅  ,  syy =

E1

μ c
s̅y̅y̅ h1 =

1

E1
h1
̅̅ ̅ ,   h2 =

1

E1
h2
̅̅ ̅ , R𝑛 =

𝜏0E1

 μ𝑐
 , p =

E1
2

λμ c
p̅ .    

                                                                                                                                                              (15)                                                         

∂u

∂x
+

∂v

∂y
= 0                                                                                                                                                           (16) 

Re δ(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
) −

𝜌𝑑2

𝜇
Ω2u − (2Ω𝛿2Re) (

∂v

∂t
) = −

∂p

∂x
+ δ2 ∂

∂x
sxx +

∂

∂y
sxy − (Ha)2 cos β∗ (u cos β∗ −

δv sin β∗) −
1

Da
u                                                                                                     (17)

 
 
 

Re δ3(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
) −

𝜌𝑑2

𝜇
𝛿2Ω2v − (2Ω𝛿2Re)(

∂u

∂t
) = −

∂p

∂y
+ δ2 ∂

∂x
sxy + δ

∂

∂y
syy +

(Ha)2 sin β∗ (δ u cos β∗ − δ2 v sin β∗) − δ2 1

Da
v                                                                                          (18)  

h1(x, t) = 1 − a 𝑠𝑖𝑛(2πx)a =
r1

E1
                                                                                                          (19) 

h2(x, t) = −E2 − b 𝑠𝑖𝑛( 2πx + ∅)E =
E2

E1
 𝑎𝑛𝑑 𝑏 =

r2

E1
                                                                              (20) 

sxx = 2δ
∂u

∂x
+  

2δ𝑅𝑛(
∂u

∂x
)

√2δ2( 
∂u

∂x
 )

2
+(δ2 

∂v

∂x
+

∂u

∂y
 )

2
+2δ2( 

∂v

∂y
 )

2
                                                                                              (21)  

sxy = (δ2  
∂v

∂x
+

∂u

∂y
 ) +  

𝑅𝑛(δ2 
∂v

∂x
+

∂u

∂y
 )

√2δ2( 
∂u

∂x
 )

2
+(δ2 

∂v

∂x
+

∂u

∂y
 )

2
+2δ2( 

∂v

∂y
 )

2
                                                                               (22)  

syy = 2δ
∂v

∂y
+  

2δ𝑅𝑛(
∂v

∂y
)

√2δ2( 
∂u

∂x
 )

2
+(δ2 

∂v

∂x
+

∂u

∂y
 )

2
+2δ2( 

∂v

∂y
 )

2
                                                                                               (23)  

The relations establish a connection between the velocity components and stream function (ψ): 

u = 𝜕𝜓 ⁄ 𝜕𝑦, v = − 𝜕𝜓 𝜕𝑥⁄ .                                                                                                                  (24)  

Substituted Eq. (24) in Eq. (16), (17), (18), (21), (22), (23) respectively, 

∂2ψ

∂x ∂y
−

∂2ψ

∂x ∂y
= 0                                                                                                                                                       (25)  

 

Re δ(
∂2ψ

∂t ∂y
+

∂3ψ

∂x ∂y2 −
∂3ψ

∂x ∂y2) −
𝜌𝑑2

𝜇
Ω2 ∂ψ

∂y
− (2Ω𝛿2Re)(

∂2ψ

∂t ∂x
) = −

∂p

∂x
+ δ2 ∂

∂x
sxx +

∂

∂y
sxy −

(Ha)2 cos β∗ (
∂ψ

∂y
cos β∗ + δ

∂ψ

∂x
sin β∗) −

1

Da
 
∂ψ

∂y
                                                                                             (26)   
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Re δ3( −
∂2ψ

∂t ∂x
+

∂3ψ

∂x2 ∂𝑦
−

∂3ψ

∂x2 ∂𝑦
) +

𝜌𝑑2

𝜇
𝛿2Ω2 ∂ψ

∂x
− (2Ω𝛿2Re)(

∂2ψ

∂t ∂y
) = −

∂p

∂y
+ δ2 ∂

∂x
sxy + δ

∂

∂y
syy +

(Ha)2 sin β∗ (δ 
∂ψ

∂y
cos β∗ + δ2  

∂ψ

∂x
sin β∗) + δ2 1

Da

∂ψ

∂x
 ,                                                                                          (27)  

sxx = (2δ)
∂2ψ

∂x ∂y
+  

2δ𝑅𝑛(
∂2ψ

∂x ∂y
)

√2δ2( 
∂2ψ

∂x ∂y
 )

2

+(−δ2 
∂2ψ

∂x2 +
∂2ψ

∂y2  )
2

+2δ2(− 
∂2ψ

∂x ∂y
 )

2
                                                                               (28)   

sxy = (−δ2  
∂2ψ

∂x2 +
∂2ψ

∂y2  ) + 
𝑅𝑛(−δ2 

∂2ψ

∂x2 +
∂2ψ

∂y2 )

√δ2( 
∂2ψ

∂x ∂y
 )

2

+(−δ2 
∂2ψ

∂x2 +
∂2ψ

∂y2  )
2

+2δ2(− 
∂2ψ

∂x ∂y
 )

2
                                                                  (29)  

syy = −δ
∂2ψ

∂x ∂y
+ 

2δ𝑅𝑛(
∂2ψ

∂x ∂y
)

√δ2( 
∂2ψ

∂x ∂y
 )

2

+(−δ2 
∂2ψ

∂x2 +
∂2ψ

∂y2  )
2

+2δ2(− 
∂2ψ

∂x ∂y
 )

2
                                                                                    (30)  

The wave frames dimensionless slip boundary conditions are 

ψ =
F

2
   at y= h1 ,    ψ = −

F

2
  at y= h.2, 

∂ψ

∂y
+ β1

∂2ψ

∂y2 = −1 at y= h1 ,   
∂ψ

∂y
− β1

∂2ψ

∂y2 = −1 at y= h.2,    

   β1 is the dimensionless slip parameter.                                                                                                         (31) 

 

3. Solution of the Problem   

It is impossible to provide a precise answer for each of the random parameters involved. We take perturbation 
strategy to get the answer. We go beyond treating the disorder. 

ψ = ψ0 + 𝑅𝑛 ψ1 + O(𝑅𝑛
2), 

F = F0 + 𝑅𝑛F1 + O(𝑅𝑛
2)                                                                                                                                 (32) 

Substitute the terms (32) into Eq. (25)-(30), and the equations for the boundary conditions (31) (δ≪1), We can 

create the following system of comparable powers (Re) by equating the coefficients of the higher order components 

it entails because the power of (δ) is lower and inconsequential. 

From Eq. (29) and Eq. (26) we get: 

dp

dx
= ηψy +  ψyyy + 𝑅𝑛 ψy − 𝐵𝑛 ψy                                                                                                                             (33)  

𝜂 =
(𝛺2𝑑2𝜌)

𝜇
                                                                                                                                                        (34) 

𝐵𝑛 = Ha2 cos2 β∗ +  
1

Da
                                                                                                                                                    (35) 

From Eq. (27) we get: 

∂p

∂y
= 0                                                                                                                                                                 (36) 

From differential of y for Eq. (33) 
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0 = ψyyyy + 𝑅𝑛 ψyy − 𝐵𝑛ψyy + ηψyy                                                                                                                         (37)  

3.1 Zero Order System 

  When the order's terms are (𝑅𝑛) are trivial in the system of zeroth order, we obtain: 

ψ0yyyy − 𝐵𝑛 ψ0yy + η ψ0yy = 0                                                                                                                      (38) 

Such that 

ψ0 = F0 ⁄ 2 , ∂ψ0 ⁄ 𝜕𝑦 = −1 at y= h1 and  

ψ0 = −F0 ⁄ 2 , ∂ψ0 ⁄ 𝜕𝑦 = −1 at y= h2     

∂ψ0

∂y
+ β1

∂2ψ0

∂y2 = −1 at y= h.1 ,   
∂ψ0

∂y
− β1

∂2ψ0

∂y2 = −1 at y= h.2,                                                                       (39) 

3.2 First order system 

ψ1yyyy + ψ0yy − 𝐵𝑛ψ1yy +  η ψ1yy = 0                                                                                                         (40) 

ψ1yyyy − 𝐵𝑛ψ1yy +  η ψ1yy = −ψ0yy                                                                                                             (41) 

ψ1 = F1 ⁄ 2 , ∂ψ0 ⁄ 𝜕𝑦 = −1 at y= h1 and  

ψ1 = −F1 ⁄ 2 , ∂ψ0 ⁄ 𝜕𝑦 = −1 at y= h2               

 
∂ψ1

∂y
+ β1

∂2ψ1

∂y2 = −1 at y= h.1 ,   
∂ψ1

∂y
− β1

∂2ψ1

∂y2 = −1 at y= h.2,                                                                      (42) 

And by resolving the related zeroth and first order systems, you may obtain the final equation for the stream 

function: 

ψ = ψ0 + 𝑅𝑛 ψ1                                                                                                                                                                 (43)   

Where the functions (ψ0, ψ1) hefty expressions Consequently, they will be mentioned in Appendix.  

𝜕𝑝

𝜕𝑥
= ψ0yyy +  𝑅𝑛ψ1yyy + 𝑅𝑛ψ0yy + 𝑅𝑛

2ψ0yy − 𝐵𝑛 ψ0y + ηψ0y − 𝐵𝑛𝑅𝑛ψ1y + η𝑅𝑛ψ1y                            (44)  

The definition of pressure increases per wave length (Δp) is 

Δp = ∫
dp

dx

1

0

dx.                                                                                                                                                                   (45) 

 

 

4. Results and Discussion 

To investigate the impact of physical factors like Effect of, Darcy number (Da), Hartman number (Ha), inclination 

of magnetic field (𝛽∗), Rotation (𝛺), Porous medium parameter (k), Material fluid parameters (Rn), Density (𝜌), 

Viscosity (𝜇), pressure rise (∆p),  slip coefficient (β1), the plotted axial velocity (u), pressure rise and stream 

function (ψ) in figs. 1-8 are exemplified by software "MATHEMATICA". 

4.1 Velocity Distribution (u) 
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Figure 1 demonstrate how the axial velocity (𝑢) value can vary with respect to y for various rotational values (Ω), 

Darcy number (Da), Viscosity (𝜇 ), material fluid parameter (Rn), inclination of magnetic field ( 𝛽∗ ), slip 

coefficient (β1), Hartman number (Ha), and amplitude ratio (∅). These figures show that the maximum velocity 

is consistently found close to the channel's center and that All instances of the velocity profiles are parabolic. 

Figures b, c, and f show that the axial velocity decreases as (Ha), (Rn), and (β1) increase. Figures a, d, and g show 

that raising the (Da), (𝛺), and (𝛽∗) increases the axial velocity. Figures e and h the effect of (∅) and (𝜇) when the 

speed increases, it starts decreasing at the left channel wall, then it merges with the other one in center, and then 

decreasing too at the right channel wall. 

4.2 Pressure Rise (∆p) 

  Figure 2 display the various pressure increases in the wave outline's capability of volumetric stream rate for 

various Darcy number (Da), Rotation (Ω), material fluid parameter (Rn), Density (𝜌), Hartman number (Ha) and 

slip coefficient (β1). The relationship between a dimensionless mean flow rate (Q1) and a non-dimensional average 

pressure rises per wavelength will be illustrated in this paragraph along with variations in the relevant parameters 

in (∆p). Fig. c, e and h shows the effect of increasing the parameter (Ω), (β1) and (∅) on (Δ𝑃) reveals that pressure 

rice per wave length Δ𝑃 increase in magnitude in all regions. Fig. b demonstrates that pressure increase (∆p) 

diminishes as (Da) In zone of increased pumping and the compounding region (∆p < 0), it is seen that pumping 

rises. According to Fig. a, the pumping rate increases in a retrograde region where (∆p > 0, Q1 > 0) and lowers in 

a cop umping zone where (∆p <0, Q1< 0), according to the graph. As the magnetic field (Ha) expands, the pressure 

rises (∆p > 0). Fig shows the pressure rice per wave length Δ𝑃 decreases in magnitude for fixed values of the (Rn). 

In Figures f and g There is no change in pressure when (𝜌), (𝜇). 

4.3 Trapping phenomena 

An interesting component happens in peristaltic flows closed movement strains lure bolus, or the extent of fluid 

called bolus, in the channel tube close to the partitions, and this trapping bolus advances along the path of the 

wave. In figs 3 – 8 Plots of the stream lines are shown at different values. of (Ω), (Da), (Rn), (Ha), (𝜌) and (β1). 

Figs 3,5 and 8 It shows a shrinking of the trapped bolus when the (Ω), (Ha) and (𝜌) is increased.  Figs 4 and 6 the 

exhibits that the trapping exists in the focus of the channel, an increase in (Da) and (Rn) increases the size of bolus, 

as well effect of slip parameter (β1) is shown in figure 7, A rise in (β1) increased size of bolus. 
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Fig. 1 Variation of Ω, Da, Ha, Rn, ∅, 𝛽1, 𝛽∗, and 𝜇 on the axial velocity (𝑢) with respect to 𝑦. 
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Fig. 2 Variation of Ω, Da, Ha, Rn, ∅, 𝛽1and 𝜇 on the pressure rise per wavelength (Δ𝑝) against the volume flow ratẽ𝑄 

.. 
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5. Conclusions 

The peristaltic motion of Bingham plastic fluid in an asymmetric channel with a porous material was 

examined in this study to determine the impact of magnetism and rotation on it. By choosing peristaltic 

waves with various ranges, phases, low Reynolds numbers, and wavelengths, the asymmetric duct is 

created. The expression for the axial velocity, magnetic force, flow function, and current density were 

also obtained using an application of the perturbation method. Graphs are used to illustrate the findings 

as follows: 

1. Velocity is a decreasing function of the slip parameter β1 whereas it is a increasing function of 

the Darcy number Da, rotation Ω and β.  

2. The influence of relevant parameters on pumping rate vary depending on the pumping region. 

3. The pressure rise enhances above the critical value of flow rate with higher values of Darcy 

number. 

4. For higher values of Ω, Ha and 𝜌, the size of the trapped bolus decreases while it increases with 

increasing Da and Rn. 
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