Solving Linear System of Fredholm Integral Equations with Homotopy Analysis and Genetic Algorithms

Rasha F. Ahmed a,*, Waleed Al-Hayani b, Abbas Y. Al-Bayati c

aDepartment of Mathematics, College of Computer Science and Mathematics, University of Mosul, Mosul, Iraq.
email: rasha.20csp146@student.uomosul.edu.iq

bDepartment of Mathematics, College of Computer Science and Mathematics, University of Mosul, Mosul, Iraq.
extails: waleedalhayani@uomosul.edu.iq, waleedalhayani@yahoo.es

University of Telafer, Tall’Afar, Iraq.
extails: profabbasalbayati@yahoo.com

ARTICLE INFO

Article history:
Received: 15 /03/2023
Revised form: 03 /05/2023
Accepted: 06 /05/2023
Available online: 30 /06/2023

Keywords:
System of Fredholm Integral Equations (SFIEs),
Homotopy Analysis Method (HAM),
h-curves,
Genetic Algorithm (GA).

https://doi.org/10.29304/jqcm.2023.15.2.1250

ABSTRACT

In this paper, we propose a technique called Homotopy Analysis Method (HAM) for solving linear systems of Fredholm integral equations to find relatively close solutions. The HAM approach involves an auxiliary parameter h that offers a straightforward method for adjusting and managing the region where the series of solutions converge. We demonstrate the effectiveness of the HAM approach through our experimental results. Additionally, we improve the HAM approach by incorporating a genetic algorithm (HAM-GA) to further optimize the solutions. The performance of HAM-GA is evaluated by comparing its results to those obtained by HAM, using the residual error function as a fitness function for the genetic algorithm.

1. Introduction

Most often, FIEs result from the mathematical modelling of physical models. FIEs happen in a variety of engineering and physical models, including those that deal with the distribution of polymers in polymeric melts, linear forward modeling, signal processing, etc. Numerous methods for solving FIEs have recently been presented by various writers. Babolian et al. [1] used the technique of decomposition to resolve the second-kind linear FIEs. The decomposition method was put forth by Vahidi and Mokhtari [2] for a second-order linear FIEs system. They

*Corresponding Author: Rasha F. Ahmed
Email addresses: rasha.20csp146@student.uomosul.edu.iq
Communicated by ‘sub etitor’
demonstrate that Picard’s approach and the method of Adomian decomposition are interchangeable. When using the method of Sinc collocation to achieve a numerical solution to the FIEs, Rashidinia and Zarebnia proved the approximation converges [3]. This method transforms integral system equations into algebraic explicit system equations. Maleknejad et al. [4] introduced the Taylor expansion approach with a weakly or smoothly singular kernel to solve the second FIEs sort. Additionally, Javidi [5] presents the modified homotopy of perturbation technique for finding the system of linear FIEs. A unique multi-parametric homotopy computing technique was introduced by Khan et al. [6]. This was the modified method with three convergence control parameters that create a better homotopy. Muthuvalu and Sulaiman [7] introduced the mean of the half-sweep arithmetic approach using the composite trapezoidal rule to solve FIEs. They look at how well the arithmetic mean approach with a half sweep works for resolving complex linear equations. In mathematical physics solving simultaneous equations of Volterra and Fredholm integral type in two dimensions Khan et al. proposed a discretization technique [8,9]. Additionally, Jafari and Measoomy [10] employed the feedback neural networks (NNs) method to develop an approximation of the FIEs solution. Taylor expansion has also been suggested for a wide range of methods to solve other types of integral equations [11-13]. Numerous methods according to hyperchaotic behaviours, dynamical systems, and fractional mathematics of Recent developments include a nonautonomous cardiac conduction system [14-23] of specific physical models to find their numerical solutions. The analytical solutions to a set of linear Fredholm equations are presented in this study. A technique known as homotopy analysis can improve the results using the genetic algorithm.

2. Basic Idea of HAM

We shall have a look at the following integral equation to explain the fundamental concepts of the HAM, [24]:

\[N[u(x)] = k(x), \]

where \(k(x) \) is a standard analytic function, an unknown function, denoted by \(u(x) \), \(x \) is the independent variable. In addition, \(N \) is a nonlinear operator. By expanding the scope of the conventional homotopy method, Liao [25-28] constructs what is formally known as the equation of zero-order deformation.

\[(1-q)\mathcal{L}[\phi(x;q) - u_0(x)] = qh \{ N[\phi(x;q)] - k(x) \} \]

(2)

where \(h \) stands for a non-zero auxiliary function, \(q \in [0,1] \) represents an embedding parameter, \(u_0(x) \) stands for an initial guess of \(u(x) \), \(\mathcal{L} \) is an operator of auxiliary linear, and \(\phi(x;q) \) is an unknown function. It is significant to notice that there is a lot of freedom in choosing auxiliary objects, like \(\mathcal{L} \) and \(h \) in HAM. [29].

Noticeably, when \(q = 0 \) and \(q = 1 \), both

\[\phi(x;0) = u_0(x), \quad \text{and} \quad \phi(x;1) = u(x) \]

(3)

As \(q \) increases from 0 to 1, the solution \(\phi(x;q) \) transitions from the initial estimate \(u_0(x) \) to the final solution \(u(x) \).

This change can be described by expanding \(\phi(x;q) \) in a Taylor series with respect to \(q \), yielding the following result: "hold. Thus, the solution \(\phi(x;q) \) changes from primary guess \(u_0(x) \) to the solution \(u(x) \) as \(q \) rises from 0 to 1.

Expanding \(\phi(x;q) \) in Taylor series with respect to \(q \) one has''.

\[\phi(x;q) = u_0(x) + \sum_{m=1}^{+\infty} u_m(x)q^m, \]

(4)

\[u_m = \frac{1}{m!} \frac{\partial^m \phi(x;q)}{\partial q^m} \bigg|_{q=0}. \]

(5)

If the auxiliary linear, auxiliary function, and auxiliary parameter \(h \) operator are all correctly chosen, then, at \(q = 1 \) and one, series (4) converges, and there is
\[\phi(x;1) = u_0(x) + \sum_{m=1}^{\infty} u_m(x). \]

(6)

This, as demonstrated by Liao [25–28], must be the answer to the equation original nonlinear. If \(h = -1 \), Equation (3) becomes

\[(1-q)L[\phi(x;q) - u_0(x)] + q \{ N[\phi(x;q)] - k(x) \} = 0, \]

(7)

for which the HPM is mostly utilized [30].

The governing equations, according to (5), is developed from the equations of zeroth-order deformation (2). The vectors are defined as follows

\[\vec{u}_1 = \{ u_0(x), u_1(x), \ldots, u_i(x) \}. \]

The equation of \(m \)th-order deformation is obtained by differentiating (2), \(m \) times regarding the setting \(q = 0 \), embedding parameter \(q \), then dividing the results by \(m! \)

\[L[u_m(x) - X_m u_{m-1}(x)] = hR_m(u_{m-1}), \]

(8)

where

\[R_m(u_{m-1}) = \frac{1}{(m-1)!} \partial^{m-1} \{ N[\phi(t;q) - k(x)] \} \bigg|_{q=0}, \]

(9)

And

\[X_m = \begin{cases} 1 & m > 1 \\ 0 & m \leq 1 \end{cases}. \]

In particular, it needs to be said that \(u_m(x) \) (\(m \geq 1 \)) are subject to the original problem's linear equation (9) and conditions of a linear boundary, which are easily resolved by symbolic computation programs like Maple and Matlab.

3. Genetic Algorithm (GA)

A genetic algorithm is a method for improving tough problems and systems of linear equations. Instead of employing deterministic transition rules, GA regulates an alternative population solution identified as iteratively or individually evolving chromosomes. [31]. "Generations" refers to an algorithm's iterations. To replicate how solutions evolve, genetic operators and fitness functions like crossover, mutation, and reproduction are used. [32]. Figure 1 shows a genetic algorithm's initial population, which is often random. A chromosome, which may be either a real number or a binary text, is widely utilized in this population (or mate pool). The objective function, also known as its fitness, assigns a corresponding number to each individual and examines and quantifies a person's performance. The objective function examines It gives each individual a numerical rating based on their performance, known as their fitness. The fittest principle of the survival is implemented after evaluating each chromosome's fitness. In this work, the fitness of each chromosome was assessed by the residual error value. Reproduction, crossover, and mutation are the three main activities carried out by a genetic algorithm. The GA operation sequences are detailed in Figure 1.
4. Basic Steps of Genetic Algorithm [33]

Step 1: Initialize each parameter, including the number of clusters, mutation rate, crossover rate, and generations, using a population of random solutions. Identify the coding mode.

Step 2: Determine and assess the fitness function value.

Step 3: To create the new cluster, keep up with the crossover and mutation processes.

Step 4: For the best outcome, Step 2 must be repeated.

Here, we apply the genetic algorithm to enhance the HAM’s performance in the following areas:

Table 1 - Genetic Algorithm for the best parameters \(h \) and \(\lambda_1, \lambda_2 \) in system of Volterra integral equations

<table>
<thead>
<tr>
<th>Input:</th>
<th>Output:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set number of variables (var)</td>
<td>solution (\lambda_1, \lambda_2) and (h)</td>
</tr>
<tr>
<td>Set upper and lower limit for each variable (ub, lb)</td>
<td>Initialization</td>
</tr>
<tr>
<td>Set population size (a),</td>
<td>1- Generate individual feasible solutions randomly with a limit boundary.</td>
</tr>
<tr>
<td>Set crossover rate (rc)</td>
<td>2- Save them in the population (p);</td>
</tr>
<tr>
<td>Set mutation rate (rm)</td>
<td></td>
</tr>
<tr>
<td>Set number of iterations (Max_iteration)</td>
<td></td>
</tr>
<tr>
<td>Set the name of fitness function</td>
<td></td>
</tr>
</tbody>
</table>
3. Find fitness values for each population F
Loop till the terminal condition
4. for $i = 1$ to Max Iteration do
using Rank selection, Elitism based selection
5. fitness = Sort individual descending to find minimum fitness value.
6. Select the best rc solutions in pop1 and save them in popt according to fitness;
Crossover
7. number of crossover $nc = (\alpha - ne)/2$
8. for $j = 1$ to nc do
9. arbitrarily choose two solutions XA and XB from Popi;
10. by Arithmetic crossover to XA and XB, produce XC and XD;
11. save XC and XD to popt;
12. endfor
Mutation
13. for $j = 1$ to ne do
14. select a solution Xj from popt;
15. mutate Random Resetting of Xj under the rate rm and make a new solution Xj';
16. if Xj' is impractical
17. by repairing Xj', renew Xj' with a feasible solution;
18. endif
19. update Xj with Xj' in popt;
20. update pop $i+1$ = Pop i + popt;
21. endfor
Updating
22. put back the best solution X in Pop.

5. Implementations and numerical outcomes

The following three problems in this part show how the HAM was used to get an approximate-exact solution for LSFIEs. The absolute errors $(AE_i, i = 1,2)$ between the standard HAM and the HAM developed by the genetic algorithm (HAM-GA) with the exact solutions within the interval $0 \leq x \leq 1$ for $\lambda_i, i = 1,2$ and the various values for h, which are used to demonstrate how accurately the solution results compare to the precise answer, are defined as follows:

$$AE_1 = |u_{Exact}(x) - (HAM - GA)| \text{ at } h = -1.$$

$$AE_2 = |u_{Exact}(x) - (HAM - GA)| \text{ at } h_1 \text{ and } h_2.$$

The Maple 18 package was used to execute the calculations necessary to solve the issues with a 20-digit precision.

5.1. Problem

Let’s first consider the following LSFIEs [34]
\[
\begin{align*}
\{ u_1 (x) &= f_1(x) + \lambda_1 \int_0^x [xu_1(t) + (x-t)u_2(t)] dt, \\
\{ u_2 (x) &= f_2(x) + \lambda_2 \int_0^x [(x-t)u_1(t) + tu_2(t)] dt,
\end{align*}
\]

\[0 \leq x \leq 1, \quad \text{where} \]

\[
\begin{align*}
\{ f_1(x) &= 2x + \left(-2x + \frac{3}{4}\right) \lambda_1, \\
\{ f_2(x) &= 3x^2 - \left(x + \frac{1}{12}\right) \lambda_2,
\end{align*}
\]

with the exact solutions

\[u_{Exact1}(x) = 2x, \quad u_{Exact2}(x) = 3x^2. \]

We select the initial approximation to solve (10) using the standard HAM.

\[
\begin{align*}
\{ u_{1,0}(x) &= f_1(x), \quad u_{2,0}(x) = f_2(x) \\
\end{align*}
\]

and the linear operator

\[
L[\phi_1(x, q)] = \phi_1(x, q), \quad L[\phi_2(x, q)] = \phi_2(x, q).
\]

Furthermore, the non-linear operator is suggested by the system (10) to be

\[
\begin{align*}
\{ N_1[\phi_1(x, q), \phi_2(x, q)] &= \phi_1(x, q) - f_1(x) \\
&\quad - \lambda_1 \int_0^x [(x+t)\phi_1(t, q) + (x+2t^2)\phi_2(t, q)] dt, \\
\{ N_2[\phi_1(x, q), \phi_2(x, q)] &= \phi_2(x, q) - f_2(x) \\
&\quad - \lambda_2 \int_0^x [xt^2\phi_1(t, q) + x^2t\phi_2(t, q)] dt,
\end{align*}
\]

We create the equation of zeroth-order deformation using the aforementioned formulation, as in (3) and (4), for \(m \geq 1 \), the equation of \(m \)-th order deformation is

\[
\begin{align*}
\{ L[u_{1,m}(x) - \chi_m u_{1,m-1}(x)] &= h[R_{1,m} (\bar{u}_{1,m-1}), R_{2,m} (\bar{u}_{2,m-1})], \\
\{ L[u_{2,m}(x) - \chi_m u_{2,m-1}(x)] &= h[R_{1,m} (\bar{u}_{1,m-1}), R_{2,m} (\bar{u}_{2,m-1})],
\end{align*}
\]

where

\[
\begin{align*}
\{ R_{1,m} (\bar{u}_{1,m-1}, \bar{u}_{2,m-1}) &= u_{1,m-1}(x) - f_1(x) \\
&\quad - \lambda_1 \int_0^x [(x+t)u_{1,m-1}(t) + (x+2t^2)u_{2,m-1}(t)] dt, \\
\{ R_{2,m} (\bar{u}_{1,m-1}, \bar{u}_{2,m-1}) &= u_{2,m-1}(x) - f_2(x) \\
&\quad - \lambda_2 \int_0^x [xt^2u_{1,m-1}(t) + x^2tu_{2,m-1}(t)] dt.
\end{align*}
\]

Now, for \(m \geq 1 \), the solutions of \(m \)-th order deformation, Equation (17) are
\[u_{1,m}(x) = x_m u_{1,m-1}(x) + h \left[R_{1,m} \left(u_{1,m-1} \right), R_{2,m} \left(u_{2,m-1} \right) \right], \]
\[u_{2,m}(x) = x_m u_{2,m-1}(x) + h \left[R_{1,m} \left(u_{1,m-1} \right), R_{2,m} \left(u_{2,m-1} \right) \right]. \] \tag{18}

In a series form, this results in the approximate answer being given by
\[u_1(x) = u_{0,0}(x) + \sum_{i=1}^{4} u_{1,i}(x), \quad u_2(x) = u_{2,0}(x) + \sum_{i=1}^{4} u_{2,i}(x), \]
This series has the closed form as \(m \rightarrow \infty \)
\[u_1(x) = x, \quad u_2(x) = x^2. \]

which are the exact solutions to the problem (5.1).

Table 1 shows a comparison of the HAM’s numerical outcomes standard \((m = 4) \), the numerical results of applying the HAM developed by genetic algorithm \((m = 4) \) within the interval \(0 \leq x \leq 1 \) for \(\lambda_1 = 0.16720495, \lambda_2 = 0.1 \) and the various values for \(h \), with the exact solution (12). Table 2 displays the absolute errors on the interval h-curves \([-1.2, -0.9]\) when \(\lambda_1 = 0.16720495, \lambda_2 = 0.2 \).

Table 1 - Numerical results for Problem 5.1

<table>
<thead>
<tr>
<th>x</th>
<th>i</th>
<th>(u_{\text{Exact}}(x))</th>
<th>(h = -1)</th>
<th>(AE_1)</th>
<th>(h = -1.03876)</th>
<th>(AE_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1</td>
<td>0.2000000000</td>
<td>0.200045760</td>
<td>4.576E-05</td>
<td>0.200000003</td>
<td>3.847E-09</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0300000000</td>
<td>0.029957260</td>
<td>4.273E-05</td>
<td>0.029999770</td>
<td>2.295E-07</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>0.6000000000</td>
<td>0.60002626</td>
<td>2.626E-05</td>
<td>0.599999756</td>
<td>2.433E-07</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.2700000000</td>
<td>0.269959552</td>
<td>4.044E-05</td>
<td>0.270000213</td>
<td>2.135E-07</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1.0000000000</td>
<td>1.00000676</td>
<td>6.763E-06</td>
<td>0.999999509</td>
<td>4.904E-07</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.7500000000</td>
<td>0.749961844</td>
<td>3.815E-05</td>
<td>0.750000656</td>
<td>6.567E-07</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1.4000000000</td>
<td>1.399987265</td>
<td>1.273E-05</td>
<td>1.39999262</td>
<td>7.376E-07</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.4700000000</td>
<td>1.469964316</td>
<td>3.582E-05</td>
<td>1.470001099</td>
<td>1.099E-06</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1.8000000000</td>
<td>1.799967766</td>
<td>3.223E-05</td>
<td>1.79999015</td>
<td>9.848E-07</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.4300000000</td>
<td>2.429966428</td>
<td>3.353E-05</td>
<td>2.430001543</td>
<td>1.543E-06</td>
</tr>
</tbody>
</table>

Table 2 - Absolute errors on the interval h-curves for Problem 5.1

<table>
<thead>
<tr>
<th>x</th>
<th>(h = -1.2)</th>
<th>(h = -1.03876)</th>
<th>(h = -1)</th>
<th>(h = -0.9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.324E-04</td>
<td>6.991E-09</td>
<td>4.576E-05</td>
<td>5.710E-04</td>
</tr>
<tr>
<td></td>
<td>1.520E-04</td>
<td>2.330E-07</td>
<td>4.273E-05</td>
<td>3.738E-04</td>
</tr>
<tr>
<td>0.3</td>
<td>1.635E-04</td>
<td>2.410E-07</td>
<td>2.626E-05</td>
<td>2.644E-04</td>
</tr>
<tr>
<td></td>
<td>4.438E-05</td>
<td>2.109E-07</td>
<td>4.044E-05</td>
<td>4.642E-04</td>
</tr>
<tr>
<td>0.5</td>
<td>1.946E-04</td>
<td>4.891E-07</td>
<td>6.763E-06</td>
<td>4.205E-05</td>
</tr>
<tr>
<td>0.7</td>
<td>2.257E-04</td>
<td>7.372E-07</td>
<td>1.273E-05</td>
<td>3.485E-04</td>
</tr>
<tr>
<td></td>
<td>1.709E-04</td>
<td>1.099E-06</td>
<td>3.586E-05</td>
<td>6.449E-04</td>
</tr>
<tr>
<td>0.9</td>
<td>2.567E-04</td>
<td>9.853E-07</td>
<td>3.223E-05</td>
<td>3.485E-04</td>
</tr>
<tr>
<td></td>
<td>2.785E-04</td>
<td>1.543E-06</td>
<td>3.357E-05</td>
<td>7.353E-04</td>
</tr>
</tbody>
</table>
In Figures 2 and 3, an illustration shows how well the exact solution matches with the approximate solution using the genetic algorithm $h_1 = -1.03876, h_2 = -1.04018$ with $\lambda_1 = 0.16720, \lambda_2 = 0.2$. In Figures 4 and 5, the h-curves present for (problem 5.1) when $\lambda_1 = 0.16720, \lambda_2 = 0.2$.

Fig. 2 - Line: $u_{\text{Exact}_1}(x)$, o: $\text{HAM} - GA_1(x)$

Fig. 3 - Line: $u_{\text{Exact}_2}(x)$, o: $\text{HAM} - GA_2(x)$
5.2. Problem

Let us now consider the following LSFIEs [34]

\[
\begin{align*}
 u_1(x) &= f_1(x) + \lambda_1 \int_0^1 \left[\frac{1}{3} (x+t)(u_1(t) + u_2(t)) \right] dt, \\
 u_2(x) &= f_2(x) + \lambda_2 \int_0^1 \left[x(t)(u_1(t) + u_2(t)) \right] dt,
\end{align*}
\]

(19)

with the precise results

\[
u_{\text{Exact}}(x) = x + 1, \quad u_{\text{Exact}2}(x) = x^2 + 1.
\]

(21)
We select the initial approximation to solve (19) using the conventional HAM.

\[u_{1,0}(x) = f_1(x), \quad u_{2,0}(x) = f_2(x) \quad (22) \]

and the linear operator

\[L[\phi_1(x,q)] = \phi_1(x,q), \quad L[\phi_2(x,q)] = \phi_2(x,q). \quad (23) \]

Furthermore, the non-linear operator is suggested to be defined as by the system (19) as

\[N_1[\phi_1(x,q), \phi_2(x,q)] = \phi_1(x,q) - f_1(x) \]
\[-\lambda_1 \int_0^1 \left[x \phi_1(t,q) + (x-t) \phi_2(t,q) \right] dt, \]
\[N_2[\phi_1(x,q), \phi_2(x,q)] = \phi_2(x,q) - f_2(x) \]
\[-\lambda_2 \int_0^1 \left[(x-t) \phi_1(t,q) + t \phi_2(t,q) \right] dt. \quad (24) \]

We create the equation of zeroth-order deformation like in (2) and (3) using the aforementioned formulation (4) and for \(m \geq 1 \), the equation of \(mth \)-order deformation is

\[L[u_{1,m}(x) - x^m u_{1,m-1}(x)] = h[R_{1,m}(\bar{u}_{1,m-1}), R_{2,m}(\bar{u}_{2,m-1})], \]
\[L[u_{2,m}(x) - x^m u_{2,m-1}(x)] = h[R_{1,m}(\bar{u}_{1,m-1}), R_{2,m}(\bar{u}_{2,m-1})], \quad (25) \]

where

\[R_{1,m}(\bar{u}_{1,m-1}, \bar{u}_{2,m-1}) = u_{1,m-1}(x) - f_1(x) \]
\[-\lambda_1 \int_0^1 \left[x u_{1,m-1}(t) + (x-t) u_{2,m-1}(t) \right] dt, \]
\[R_{2,m}(\bar{u}_{1,m-1}, \bar{u}_{2,m-1}) = u_{2,m-1}(x) - f_2(x) \]
\[-\lambda_2 \int_0^1 \left[(x-t) u_{1,m-1}(t) + t u_{2,m-1}(t) \right] dt. \quad (26) \]

Now, for \(m \geq 1 \), the \(mth \)-order deformation Equation (26) solutions are

\[u_{1,m}(x) = x^m u_{1,m-1}(x) + h[R_{1,m}(\bar{u}_{1,m-1}), R_{2,m}(\bar{u}_{2,m-1})], \]
\[u_{2,m}(x) = x^m u_{2,m-1}(x) + h[R_{1,m}(\bar{u}_{1,m-1}), R_{2,m}(\bar{u}_{2,m-1})]. \quad (27) \]

Therefore, the formula for the approximate answer in series form is

\[u_1(x) = u_{1,0}(x) + \sum_{i=1}^{5} u_{1,i}(x), \quad u_2(x) = u_{2,0}(x) + \sum_{i=1}^{5} u_{2,i}(x). \]

This series has the closed form as \(m \to \infty \)

\[u_1(x) = x + 1, \quad u_2(x) = x^2 + 1. \]

which are the correct answers to the problem (5.2).

Table 3 compares the numerical outcomes obtained using the HAM standard \((m = 5) \), the numerical outcomes using the HAM developed by genetic algorithm \((m = 5) \) within the interval \(0 \leq x \leq 1 \) for \(\lambda_1 = -0.1, \lambda_2 = 0.1 \) and the various values for \(h \), with the exact solution (21). Table 4 displays the absolute errors on the interval h-curves \([-1.2, -0.9]\) when \(\lambda_1 = 0.16720, \lambda_2 = 0.2 \).
Table 3 - Numerical results for Problem 5.2

<table>
<thead>
<tr>
<th>x</th>
<th>i</th>
<th>$u_{\text{Exact}}(x)$</th>
<th>HAM-GA $h = -1$</th>
<th>AE_1</th>
<th>HAM-GA $h_1 = -0.99809$</th>
<th>AE_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1</td>
<td>1.1000000000</td>
<td>1.1000000000</td>
<td>5.334E-10</td>
<td>1.1000000000</td>
<td>4.806E-10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.0100000000</td>
<td>1.0099999999</td>
<td>1.357E-10</td>
<td>1.0099999999</td>
<td>1.679E-10</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>1.3000000000</td>
<td>1.1000000000</td>
<td>6.953E-10</td>
<td>1.3000000000</td>
<td>5.783E-10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.0900000000</td>
<td>1.0899999999</td>
<td>4.072E-10</td>
<td>1.0899999999</td>
<td>5.038E-10</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1.5000000000</td>
<td>1.5000000000</td>
<td>8.573E-10</td>
<td>1.5000000000</td>
<td>6.760E-10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.2500000000</td>
<td>1.2499999999</td>
<td>6.787E-10</td>
<td>1.2499999999</td>
<td>8.397E-10</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1.7000000000</td>
<td>1.7000000001</td>
<td>1.019E-09</td>
<td>1.7000000000</td>
<td>7.737E-10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.4900000000</td>
<td>1.4899999999</td>
<td>9.502E-10</td>
<td>1.4899999999</td>
<td>1.175E-09</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1.9000000000</td>
<td>1.9000000001</td>
<td>1.181E-09</td>
<td>1.9000000000</td>
<td>8.714E-10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.8100000000</td>
<td>1.8099999998</td>
<td>1.221E-09</td>
<td>1.8099999998</td>
<td>1.511E-09</td>
</tr>
</tbody>
</table>

Table 4 - Absolute errors on the interval h-curves for Problem 5.2

<table>
<thead>
<tr>
<th>x</th>
<th>$h = -1.2$</th>
<th>$h_1 = -0.99809$</th>
<th>$h_2 = -1.00109$</th>
<th>$h = -1$</th>
<th>$h = -0.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.107E-04</td>
<td>4.806E-10</td>
<td>5.334E-10</td>
<td>9.430E-05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.780E-05</td>
<td>1.679E-10</td>
<td>1.357E-10</td>
<td>2.425E-05</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>1.469E-04</td>
<td>5.783E-10</td>
<td>6.953E-10</td>
<td>1.212E-04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.340E-05</td>
<td>5.038E-10</td>
<td>4.072E-10</td>
<td>7.275E-05</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1.831E-04</td>
<td>6.760E-10</td>
<td>8.573E-10</td>
<td>1.481E-04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.390E-04</td>
<td>8.397E-10</td>
<td>6.787E-10</td>
<td>1.212E-04</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>2.192E-04</td>
<td>7.737E-10</td>
<td>1.019E-09</td>
<td>1.750E-04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.946E-04</td>
<td>9.068E-10</td>
<td>9.502E-10</td>
<td>1.697E-04</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>2.554E-04</td>
<td>8.714E-10</td>
<td>1.181E-09</td>
<td>2.020E-04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.502E-04</td>
<td>1.511E-09</td>
<td>1.221E-09</td>
<td>2.182E-04</td>
<td></td>
</tr>
</tbody>
</table>

In Figures 6 and 7, an illustration shows how well the exact solution matches with the approximate solution using the genetic algorithm $h_1 = -0.99809, h_2 = -1.00109$ with $\lambda_1 = -0.1, \lambda_2 = 0.1$. In Figures 8 and 9 present the h-curves for problem 5.2.

when $\lambda_1 = -0.1, \lambda_2 = 0.1$.

Fig. 6 - Line: $u_{\text{Exact}}(x)$, a: $HAM-GA_1(x)$
Fig. 7 - Line: $u_{Exact2}(x)$, o: HAM $- GA_2(x)$

Fig. 8 - h-curve for $u_1'(0.5, h)$

Fig. 9 - h-curve for $u_2'(0.5, h)$
5.3. Problem 5.3

Let's now consider the following LSFIEs [35]

\[
\begin{align*}
 u_1(x) &= f_1(x) + \lambda_1 \int_0^1 \left[(x^3 + 2t)u_1(t) + r^2 u_2(t) \right] dt, \\
 u_2(x) &= f_2(x) + \lambda_2 \int_0^1 \left[x^2 u_1(t) + (x-r^2) u_2(t) \right] dt,
\end{align*}
\]

(28)

\[0 \leq x \leq 1, \] where

\[
\begin{align*}
 f_1(x) &= x^2 + 1 - \left(\frac{4}{3} x^3 + \frac{23}{14} \right) \lambda_1, \\
 f_2(x) &= x^4 - \left(\frac{4}{3} x^2 + \frac{1}{5} x - \frac{1}{7} \right) \lambda_2,
\end{align*}
\]

(29)

with the exact solutions

\[
 u_{Exact1}(x) = x^2 + 1, \quad u_{Exact2}(x) = x^4.
\]

(30)

We select the initial approximation to solve (28) using the conventional HAM.

\[
 u_{i,0}(x) = f_1(x), \quad u_{2,0}(x) = f_2(x)
\]

(31)

and the linear operator

\[
 L[\phi_1(x,q)] = \phi_1(x,q), \quad L[\phi_2(x,q)] = \phi_2(x,q).
\]

(32)

Furthermore, the system (28) proposes that the non-linear operator is defined as

\[
\begin{align*}
 N_1[\phi_1(x,q), \phi_2(x,q)] &= \phi_1(x,q) - f_1(x) - \lambda_1 \int_0^1 \left[(x^3 + 2t)\phi_1(t,q) + r^2 \phi_2(t,q) \right] dt, \\
 N_2[\phi_1(x,q), \phi_2(x,q)] &= \phi_2(x,q) - f_2(x) - \lambda_2 \int_0^1 \left[x^2 \phi_1(t,q) + (x-r^2) \phi_2(t,q) \right] dt.
\end{align*}
\]

(33)

We create the equation of zeroth-order deformation as in (2) and (3) using the above-mentioned formulation (4) and the equation of mth-order deformation for \(m \geq 1 \) is

\[
\begin{align*}
 L[u_{1,m}(x) - \lambda^m u_{1,m-1}(x)] &= h \left[R_{1,m} \left(\bar{u}_{1,m-1} \right), R_{2,m} \left(\bar{u}_{2,m-1} \right) \right], \\
 L[u_{2,m}(x) - \lambda^m u_{2,m-1}(x)] &= h \left[R_{1,m} \left(\bar{u}_{1,m-1} \right), R_{2,m} \left(\bar{u}_{2,m-1} \right) \right],
\end{align*}
\]

(34)

where
\[R_{1,m}(\vec{u}_{1,m-1}, \vec{u}_{2,m-1}) = u_{1,m-1}(x) - f_1(x) \]
\[-\lambda_1 \int_0^1 \left(x^3 + 2t \right) u_{1,m-1}(t) + t^2 u_{2,m-1}(t) \, dt. \]
\[R_{2,m}(\vec{u}_{1,m-1}, \vec{u}_{2,m-1}) = u_{2,m-1}(x) - f_2(x) \]
\[-\lambda_2 \int_0^1 \left(x^2 u_{1,m-1}(t) + \left(x - t^2 \right) u_{2,m-1}(t) \right) \, dt. \]

(35)

Now, for \(m \geq 1 \), the \(m \)-th order deformation Equation (35) solutions are
\[u_{1,m}(x) = \chi_m u_{1,m-1}(x) + h \left[R_{1,m}(\vec{u}_{1,m-1}), R_{2,m}(\vec{u}_{2,m-1}) \right], \]
\[u_{2,m}(x) = \chi_m u_{2,m-1}(x) + h \left[R_{1,m}(\vec{u}_{1,m-1}), R_{2,m}(\vec{u}_{2,m-1}) \right]. \]

(36)

Therefore, the formula for the approximate answer in series form is
\[u_1(x) = u_{1,0}(x) + \sum_{i=1}^{5} u_{1,i}(x), \quad u_2(x) = u_{2,0}(x) + \sum_{i=1}^{5} u_{2,i}(x). \]

This series has the closed form as \(m \rightarrow \infty \)
\[u_1(x) = x^5 + 1, \quad u_2(x) = x^4. \]

which are the exact solutions to the problem (5.3).

Table 5 compares the numerical outcomes obtained using the HAM standard \((m = 5) \), the numerical outcomes applying the HAM developed by genetic algorithm \((m = 5) \) within the interval \(0 \leq x \leq 1 \) for \(\lambda_1 = \lambda_2 = 0.1 \) and the various values for \(h \), with the exact solution (30). Table 6 displays the absolute errors on the interval h-curves \([-1.6, -0.8]\) when \(\lambda_1 = \lambda_2 = 0.1 \).

Table 5 - Numerical results for Problem 5.3

<table>
<thead>
<tr>
<th>(x)</th>
<th>(i)</th>
<th>(u_{Exact}(x))</th>
<th>HAM-GA (h = -1)</th>
<th>(AE_1)</th>
<th>HAM-GA (h_1 = -1.14902)</th>
<th>(AE_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1</td>
<td>1.0100000000</td>
<td>1.009919328</td>
<td>8.067E-05</td>
<td>1.009999662</td>
<td>3.379E-07</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0001000000</td>
<td>0.000106980</td>
<td>6.980E-06</td>
<td>0.000099941</td>
<td>5.804E-08</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>1.0900000000</td>
<td>1.089917635</td>
<td>8.236E-05</td>
<td>1.089999662</td>
<td>3.377E-07</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0081000000</td>
<td>0.008099184</td>
<td>8.150E-07</td>
<td>0.008100027</td>
<td>2.708E-08</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1.2500000000</td>
<td>1.249911254</td>
<td>8.874E-05</td>
<td>1.249999662</td>
<td>3.372E-07</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0625000000</td>
<td>0.062486179</td>
<td>1.382E-05</td>
<td>0.062500036</td>
<td>3.666E-08</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1.4900000000</td>
<td>1.489897058</td>
<td>1.029E-04</td>
<td>1.489999663</td>
<td>3.361E-07</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.2401000000</td>
<td>0.240067965</td>
<td>3.203E-05</td>
<td>0.240099970</td>
<td>2.929E-08</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1.8100000000</td>
<td>1.809871923</td>
<td>1.280E-04</td>
<td>1.809999665</td>
<td>3.340E-07</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.6561000000</td>
<td>0.656044541</td>
<td>5.545E-05</td>
<td>0.656099829</td>
<td>1.708E-07</td>
</tr>
</tbody>
</table>
In Figures 10 and 11 an illustration shows how well the exact solution matches with the approximate solution using the genetic algorithm $h_1 = -1.14902, h_2 = -1.11288$ with $\lambda_1 = \lambda_2 = 0.1$. In Figures 12 and 13 present the h-curves for (problem 5.3).

when $\lambda_1 = \lambda_2 = 0.1$.

Table 6 - Absolute errors on the interval h-curves for Problem 5.3

<table>
<thead>
<tr>
<th>x</th>
<th>$h = 1.2$</th>
<th>$h = -1$</th>
<th>$h = -0.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2.830E-03</td>
<td>3.379E-07</td>
<td>8.067E-05</td>
</tr>
<tr>
<td>0.3</td>
<td>2.891E-03</td>
<td>3.377E-07</td>
<td>8.236E-05</td>
</tr>
<tr>
<td>0.5</td>
<td>2.259E-04</td>
<td>2.708E-08</td>
<td>8.150E-07</td>
</tr>
<tr>
<td>0.7</td>
<td>3.630E-03</td>
<td>3.361E-07</td>
<td>1.029E-04</td>
</tr>
<tr>
<td>0.9</td>
<td>4.532E-03</td>
<td>3.340E-07</td>
<td>1.280E-04</td>
</tr>
</tbody>
</table>

Fig. 10 - Line: $u_{Exct1}(x), \ o: HAM - GA_1(x)$

Fig. 11 - Line: $u_{Exct2}(x), \ o: HAM - GA_2(x)$
5.4. Problem

Finally, let’s now consider the following LSFIEs [35]

\[
\begin{cases}
 u_1(x) = f_1(x) + \lambda_1 \int_0^1 [(x-t)u_1(t) + xu_2(t)] \, dt, \\
 u_2(x) = f_2(x) + \lambda_2 \int_0^1 [(x^2 + 2t)u_1(t) + (x+t)u_2(t)] \, dt,
\end{cases}
\]

(37)

with the exact solutions

\[
\begin{align*}
 u_{\text{Exact}1}(x) &= \sin(x), \\
 u_{\text{Exact}2}(x) &= \cos(x).
\end{align*}
\]

(39)

To solve (37) through the standard HAM, we choose the initial approximation.
and the linear operator
\[L[\phi_1(x,q)] = \phi_1(x,q), \quad L[\phi_2(x,q)] = \phi_2(x,q). \]

Furthermore, the system (37) proposes that the non-linear operator is defined as
\[N_1[\phi_1(x,q),\phi_2(x,q)] = \phi_1(x,q) - f_1(x) \]
\[-\lambda_1 \int_0^1 [(x-t)\phi_1(t,q)+xt\phi_2(t,q)]dt, \]
\[N_2[\phi_1(x,q),\phi_2(x,q)] = \phi_2(x,q) - f_2(x) \]
\[-\lambda_2 \int_0^1 [(x^2+2t)\phi_1(t,q)+(x+t)\phi_2(t,q)]dt, \]

We create the equation of zeroth-order deformation as in (2) and (3) using the above-mentioned formulation (4) and the equation of mth-order deformation for \(m \geq 1 \) is
\[L[u_{1,m}(x) - \chi_m u_{1,m-1}(x)] = h \left[R_{1,m}(\bar{u}_{1,m-1}), R_{2,m}(\bar{u}_{2,m-1}) \right], \]
\[L[u_{2,m}(x) - \chi_m u_{2,m-1}(x)] = h \left[R_{1,m}(\bar{u}_{1,m-1}), R_{2,m}(\bar{u}_{2,m-1}) \right], \]

where
\[R_{1,m}(\bar{u}_{1,m-1},\bar{u}_{2,m-1}) = u_{1,m-1}(x) - f_1(x) \]
\[-\lambda_1 \int_0^1 [(x-t)u_{1,m-1}(t)+xu_{2,m-1}(t)]dt, \]
\[R_{2,m}(\bar{u}_{1,m-1},\bar{u}_{2,m-1}) = u_{2,m-1}(x) - f_2(x) \]
\[-\lambda_2 \int_0^1 [(x^2+2t)u_{1,m-1}(t)+(x+t)u_{2,m-1}(t)]dt. \]

Now, for \(m \geq 1 \), the solutions of the mth-order deformation Equation (44) are
\[u_{1,m}(x) = \chi_m u_{1,m-1}(x) + h \left[R_{1,m}(\bar{u}_{1,m-1}), R_{2,m}(\bar{u}_{2,m-1}) \right], \]
\[u_{2,m}(x) = \chi_m u_{2,m-1}(x) + h \left[R_{1,m}(\bar{u}_{1,m-1}), R_{2,m}(\bar{u}_{2,m-1}) \right]. \]

Therefore, the formula for the approximate solution in series form is
\[u_1(x) = u_{1,0}(x) + \sum_{i=1}^{5} u_{1,i}(x), \quad u_2(x) = u_{2,0}(x) + \sum_{i=1}^{5} u_{2,i}(x). \]

This series has the closed form as \(m \rightarrow \infty \)
\[u_1(x) = \sin(x), \quad u_2(x) = \cos(x). \]

which are the precise answers to the problem (5.4).

Table 7 compares the numerical outcomes obtained using the HAM standard \((m = 5)\), the numerical results obtained by applying the HAM developed by genetic algorithm \((m = 5)\) within the interval \(0 \leq x \leq 1\) for \(\lambda_1 = \lambda_2 = 0.1 \) and the various values for \(h \), with the exact solution (39). Table 8 displays the absolute errors on the interval \(h \)-curves \([-1.6, -0.7]\) when \(\lambda_1 = \lambda_2 = 0.1 \).
Table 7 - Numerical results for Problem 5.4

<table>
<thead>
<tr>
<th>x</th>
<th>i</th>
<th>$u_{Exact}(x)$</th>
<th>$u_{Exact}(x)$</th>
<th>AE_1</th>
<th>AE_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
<td>0.099833416</td>
<td>0.099835597</td>
<td>2.181E-06</td>
<td>0.999834992</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.995004165</td>
<td>0.99468183</td>
<td>3.598E-05</td>
<td>0.99500841</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>0.295520206</td>
<td>0.295516661</td>
<td>3.545E-06</td>
<td>0.295520865</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.955336489</td>
<td>0.955292268</td>
<td>4.422E-05</td>
<td>0.95533758</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>0.479425538</td>
<td>0.479416267</td>
<td>9.271E-06</td>
<td>0.479425280</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.877582561</td>
<td>0.87759570</td>
<td>5.299E-05</td>
<td>0.877579708</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>0.644217687</td>
<td>0.644202689</td>
<td>1.499E-06</td>
<td>0.644216511</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.764842187</td>
<td>0.764779891</td>
<td>6.229E-05</td>
<td>0.764838495</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>0.783326909</td>
<td>0.783306185</td>
<td>2.072E-05</td>
<td>0.783324816</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.621609968</td>
<td>0.621537835</td>
<td>7.213E-05</td>
<td>0.621604722</td>
</tr>
</tbody>
</table>

Table 7 - Absolute errors on the interval h-curves for Problem 5.4

<table>
<thead>
<tr>
<th>x</th>
<th>$h = -1.2$</th>
<th>$h = -1$</th>
<th>$h = -0.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$h_1 = -1.06915$</td>
<td>$h_2 = -1.09388$</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>2.937E-03</td>
<td>1.576E-06</td>
<td>2.181E-06</td>
</tr>
<tr>
<td></td>
<td>3.874E-03</td>
<td>3.323E-06</td>
<td>3.598E-05</td>
</tr>
<tr>
<td>0.3</td>
<td>2.253E-03</td>
<td>6.589E-07</td>
<td>3.545E-06</td>
</tr>
<tr>
<td></td>
<td>3.903E-03</td>
<td>2.730E-06</td>
<td>4.422E-05</td>
</tr>
<tr>
<td>0.5</td>
<td>1.568E-03</td>
<td>2.583E-07</td>
<td>9.271E-06</td>
</tr>
<tr>
<td></td>
<td>4.407E-03</td>
<td>2.853E-06</td>
<td>5.299E-05</td>
</tr>
<tr>
<td>0.7</td>
<td>8.837E-04</td>
<td>1.175E-06</td>
<td>1.499E-05</td>
</tr>
<tr>
<td></td>
<td>5.387E-03</td>
<td>3.692E-06</td>
<td>6.229E-05</td>
</tr>
<tr>
<td>0.9</td>
<td>1.991E-04</td>
<td>2.092E-06</td>
<td>2.072E-05</td>
</tr>
<tr>
<td></td>
<td>6.843E-03</td>
<td>5.246E-06</td>
<td>7.213E-05</td>
</tr>
</tbody>
</table>

In Figures 14 and 15 An illustration shows how well the exact solution matches with the approximate solution using the genetic algorithm $h_1 = -1.06915, h_2 = -1.09388$ with $\lambda_1 = \lambda_2 = 0.1$. In Figures 16 and 17 Present the h-curves for (problem 5.4).

When $\lambda_1 = \lambda_2 = 0.1$.

![Fig. 14 - Line: $u_{Exact}(x)$, o: HAM - GA$_1(x)$](image-url)
6. Conclusions

The current study proposes a new algorithm (HAM-GA) designed for the linear system equations solving of Fredholm integral by merging the GA and the HAM. The program calculates the answer based on four consecutive cases. The algorithm chooses the best value for λ_1, λ_2 and h based on the residual error function’s classification as a fitness function. In the first instance, the results were determined using the normal HAM, whereas in the second
instance, the optimal value for h was selected using the genetic algorithm, and the results were determined using the HAM-GA. Lastly, HAM-GA was used to determine the findings based on optimal λ_1, λ_2, and h.

The results achieved with the best h were superior to those produced by the conventional HAM. The fourth case's outcomes were perfect for the precise solution. The results show that the suggested approach is successful in locating the solution because they are in good agreement with the h-curves.

Conflicts of Interest

The authors declares that there is no conflict of interest regarding the publication of this paper.

References

