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A B S T R A C T 

In this paper, we propose a technique called Homotopy Analysis Method (HAM) 
for solving linear systems of Fredholm integral equations to find relatively 
close solutions. The HAM approach involves an auxiliary parameter ℎ that 
offers a straightforward method for adjusting and managing the region where 
the series of solutions converge. We demonstrate the effectiveness of the HAM 
approach through our experimental results. Additionally, we improve the HAM 
approach by incorporating a genetic algorithm (HAM-GA) to further optimize 
the solutions. The performance of HAM-GA is evaluated by comparing its 
results to those obtained by HAM, using the residual error function as a fitness 
function for the genetic algorithm. 
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1. Introduction 

Most often, FIEs result from the mathematical modelling of physical models. FIEs happen in a variety of engineering 
and physical models, including those that deal with the distribution of polymers in polymeric melts, linear forward 
modeling, signal processing, etc. Numerous methods for solving FIEs have recently been presented by various 
writers. Babolian et al. [1] used the technique of decomposition to resolve the second-kind linear FIEs. The 
decomposition method was put forth by Vahidi and Mokhtari [2] for a second-order linear FIEs system. They 
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demonstrate that Picard's approach and the method of Adomian decomposition are interchangeable. When using 
the method of Sinc collocation to achieve a numerical solution to the FIEs, Rashidinia and Zarebnia proved the 
approximation converges [3]. This method transforms integral system equations into algebraic explicit system 
equations. Maleknejad et al. [4] introduced the Taylor expansion approach with a weakly or smoothy singular kernel 
to solve the second FIEs sort. Additionally, Javidi [5] presents the modified homotopy of perturbation technique for 
finding the system of linear FIEs. A unique multi-parametric homotopy computing technique was introduced by 
Khan et al. [6]. This was the modified method with three convergence control parameters that create a better 
homotopy. Muthuvalu and Sulaiman [7] introduced the mean of the half-sweep arithmetic approach using the 
composite trapezoidal rule to solve FIEs. They look at how well the arithmetic mean approach with a half sweep 
works for resolving complex linear equations. In mathematical physics solving simultaneous equations of Volterra 
and Fredholm integral type in two dimensions Khan et al. proposed a discretization technique [8,9]. Additionally, 
Jafarian and Measoomy [10] employed the feedback neural networks (NNs) method to develop an approximation of 
the FIEs solution. Taylor expansion has also been suggested for a wide range of methods to solve other types of 
integral equations [11-13]. Numerous methods according to hyperchaotic behaviours, dynamical systems, and 
fractional mathematics of Recent developments include a nonautonomous cardiac conduction system [14–23] of 
specific physical models to find their numerical solutions. The analytical solutions to a set of linear Fredholm 
equations are presented in this study. A technique known as homotopy analysis can improve the results using the 
genetic algorithm. 

2. Basic Idea of HAM 

We shall have a look at the following integral equation to explain the fundamental concepts of the HAM. [24]: 

( ) ( ) ,u x k x=  N  (1) 

where 𝑘(𝑥) is a standard analytic function, an unknown function, denoted by 𝑢(𝑥), 𝑥 is the independent variable. In 
addition,  𝒩 is a nonlinear operator. By expanding the scope of the conventional homotopy method, Liao [25-28] 
constructs what is formally known as the equation of zero-order deformation. 

( ) ( ) ( ) ( ) ( ) 01 ; ;q x q u x qh x q k x − − = −      L N  (2) 

where ℎ stands for a non-zero auxiliary function, 𝑞 ∈ [0,1] represents an embedding parameter, 𝑢0(𝑥) stands for an 
initial guess of 𝑢(𝑥), ℒ is an operator of auxiliary linear, and 𝜙(𝑥; 𝑞) is an unknown function. It is significant to notice 
that there is a lot of freedom in choosing auxiliary objects, like ℒ and ℎ in HAM. [29]. 

Noticeably, when 𝑞 = 0 and 𝑞 = 1, both 

( ) ( ) ( ) ( )0;0 , ;1x u x and x u x = =  (3) 

As 𝑞 increases from 0 to 1, the solution 𝜙(𝑥; 𝑞) transitions from the initial estimate u_0 (x) to the final solution u(x). 

This change can be described by expanding 𝜙(𝑥; 𝑞) in a Taylor series with respect to q, yielding the following result: 

"hold. Thus, the solution 𝜙(𝑥; 𝑞) changes from primary guess 𝑢0(𝑥) to the solution 𝑢(𝑥) as 𝑞 rises from 0 to 1. 

Expanding 𝜙(𝑥; 𝑞) in Taylor series with respect to 𝑞, one has''. 

( ) ( ) ( )0

1

; ,m
m

m

x q u x u x q
+

=

= +  (4) 

( )

0

;1
,

!

m

m m

q

x q
u

m q



=


=


 (5) 

If the auxiliary linear, auxiliary function, and auxiliary parameter ℎ operator are all correctly chosen, then, at 𝑞 = 1 
and one, series (4) converges, and there is 
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( ) ( ) ( )0

1

;1 ,m

m

x u x u x
+

=

= +  (6) 

This, as demonstrated by Liao [25–28], must be the answer to the equation original nonlinear. If ℎ = −1, 
Equation (3) becomes 

( ) ( ) ( ) ( ) ( ) 01 ; ; 0,q x q u x q x q k x − − + − =      L N  (7) 

for which the HPM is mostly utilized [30]. 

The governing equations, according to (5), is developed from the equations of zeroth-order deformation (2). The 
vectors are defined as follows 

( ) ( ) ( ) 0 1, , , .i iu u x u x u x=   

The equation of mth-order deformation is obtained by differentiating (2), 𝑚- times regarding the setting  𝑞 = 0, 
embedding parameter 𝑞, then dividing the results by 𝑚! 

( ) ( ) ( )1 1 ,m m m m mu x u x hR u− −− =  L X  (8) 

where 

( )
( )

( ) ( ) 1

1
1

0

;1
,

1 !

m

mm m

q

t q k x
R u

m q

−

−
−

=

 −  
=

− 

N
 (9) 

And 

1 1
,

0 1
m

m

m


= 


X  

In particular, it needs to be said that 𝑢𝑚(𝑥) (𝑚 ≥ 1) are subject to the original problem's linear equation (9) and 
conditions of a linear boundary, which are easily resolved by symbolic computation programs like Maple and 
Matlab. 

3. Genetic Algorithm (GA) 

A genetic algorithm is a method for improving tough problems and systems of linear equations. Instead of 
employing deterministic transition rules, GA regulates an alternative population solution identified as iteratively or 
individually evolving chromosomes. [31]. "Generations" refers to an algorithm's iterations. To replicate how 
solutions evolve, genetic operators and fitness functions like crossover, mutation, and reproduction are used. [32]. 
Figure 1 shows a genetic algorithm's initial population, which is often random. A chromosome, which may be either 
a real number or a binary text, is widely utilized in this population (or mate pool). The objective function, also 
known as its fitness, assigns a corresponding number to each individual and examines and quantifies a person's 
performance. The objective function examines It gives each individual a numerical rating based on their 
performance, known as their fitness. The fittest principle of the survival is implemented after evaluating each 
chromosome's fitness. In this work, the fitness of each chromosome was assessed by the residual error value. 
Reproduction, crossover, and mutation are the three main activities carried out by a genetic algorithm. The GA 
operation sequences are detailed in Figure 1. 
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  Fig. 1 - Flowchart of genetic algorithm 

4. Basic Steps of Genetic Algorithm [33] 

Step 1: Initialize each parameter, including the number of clusters, mutation rate, crossover rate, and generations, 
using a population of random solutions. Identify the coding mode. 

Step 2: Determine and assess the fitness function value. 

Step 3: To create the new cluster, keep up with the crossover and mutation processes. 

Step 4: For the best outcome, Step 2 must be repeated. 

Here, we apply the genetic algorithm to enhance the HAM's performance in the following areas: 

Table 1 - Genetic Algorithm for the best parameters 𝒉 and 𝝀𝟏, 𝝀𝟐 in system of volterra integral equations 

Input:  

Set number of variables (var)  

Set upper and lower limit for each variable (ub, lb) 

Set population size (a), 

Set crossover rate (rc) 

Set mutation rate (rm) 

Set number of iterations (Max_iteration) 

Set the name of fitness function 

Output:  

solution 𝝀𝟏, 𝝀𝟐 and 𝒉 

Initialization  

1- Generate individual feasible solutions randomly with a limit boundary. 

2- Save them in the population 𝑝; 

Not an optimum solution 

Mutation 

Crossover 

Optimum solution 

Measuring fitness 

Selection 

Initialize population 
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3- Find fitness values for each population 𝐹 

Loop till the terminal condition 

4- for 𝑖 =  1 to Max_iteration do 

using Rank selection, Elitism based selection 

5- fitness = Sort individual descending to find minimum fitness value. 

6- Select the best rc solutions in pop1 and save them in popt according to fitness; 

Crossover 

7- number of crossover nc = (𝛼− ne)/2  

8- for 𝑗 = 1 to nc do  

9-          arbitrarily choose two solutions 𝑋A and 𝑋𝐵 from Popi;  

10-        by Arithmetic crossover to 𝑋𝐴 and 𝑋𝐵, produce 𝑋𝐶 and 𝑋𝐷;  

11-        save 𝑋𝐶 and 𝑋𝐷 to popt;  

12- endfor 

Mutation 

13- for 𝑗 = 1 to 𝑛e do  

14-          select a solution 𝑋𝑗 from popt;  

15-          mutate Random Resetting of 𝑋𝑗 under the rate rm and make a new solution 𝑋𝑗 ′;  

16-          if 𝑋𝑗 ′ is impractical  

17-                       by repairing 𝑋𝑗 ′, renew 𝑋𝑗 ′ with a feasible solution; 

18-          endif 

18-         update 𝑋𝑗 with 𝑋𝑗 ′ in popt;  

19 – endfor  

Updating 

20- update pop i+1= Pop i + popt;  

21- endfor 

Returning the best solution 

22- put back the best solution 𝑋 in Pop. 

 

5. Implementations and numerical outcomes 

The following three problems in this part show how the HAM was used to get an approximate-exact solution for 
LSFIEs. The absolute errors (𝐴𝐸𝑖 , 𝑖 = 1,2) between the standard HAM and the HAM developed by the genetic 
algorithm (HAM-GA) with the exact solutions within the interval 0 ≤ 𝑥 ≤ 1 for 𝜆𝑖 , 𝑖 = 1,2 and the various values for 
 ℎ, which are used to demonstrate how accurately the solution results compare to the precise answer, are defined as 
follows: 

( ) ( )1 at 1.Exacti iAE u x HAM GA h= − − = −  

( ) ( )2 1 2at and .Exacti iAE u x HAM GA h h= − −  

The Maple 18 package was used to execute the calculations necessary to solve the issues with a 20-digit precision. 

5.1. Problem 

Let's first consider the following LSFIEs [34] 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1 1 1 1 2
0

1

2 2 2 1 2
0

,

,

u x f x xu t x t u t dt

u x f x x t u t tu t dt






= + + −  


 = + − +  




 (10) 

0 1,x   where 

( )

( )

1 1

2
2 2

3
2 2 ,

4

1
3 ,

12

f x x x

f x x x





 
= + − + 

 

 
= − + 

 

 (11) 

with the exact solutions 

( ) ( ) 2
1 22 , 3 .Exact Exactu x x u x x= =  (12) 

We select the initial approximation to solve (10) using the standard HAM. 

( ) ( ) ( ) ( )1,0 1 2,0 2,u x f x u x f x= =  (13) 

and the linear operator 

( ) ( ) ( ) ( )1 1 2 2, , , , , .L x q x q L x q x q   = =        (14) 

Furthermore, the non-linear operator is suggested by the system (10) to be 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1 2 1 1

1
2

1 1 2
0

2 1 2 2 2

1
2 2

2 1 2
0

, , , ,

, 2 , ,

, , , ,

, , ,

N x q x q x q f x

x t t q x t t q dt

N x q x q x q f x

xt t q x t t q dt

  

  

  

  

= −  

 − + + +
 

= −  

 − +
 





 (15) 

We create the equation of zeroth-order deformation using the aforementioned formulation, as in (3) and (4), for 
1,m  the equation of mth-order deformation is 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1, 1, 1 1, 1, 1 2, 2, 1

2, 2, 1 1, 1, 1 2, 2, 1

, ,

, ,

m m m m m m m

m m m m m m m

L u x u x h R u R u

L u x u x h R u R u





− − −

− − −

  − =   

  − =   

 (16) 

where 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1, 1, 1, 2, 1 1, 1 1

1
2

1 1, 1 2, 1
0

2, 1, 1, 2, 1 2, 1 2

1
2 2

2 1, 1 2, 1
0

2 ,

.

m m m m

m m

m m m m

m m

R u u u x f x

x t u t x t u t dt

R u u u x f x

xt u t x tu t dt





− − −

− −

− − −

− −

= −

 − + + +
 

= −

 − +
 





 (17) 

Now, for 1,m  the solutions of mth-order deformation, Equation (17) are 



Rasha F. Ahmed, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 15(2) 2023 , pp  Math.   65–86             7 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1, 1, 1 1, 1, 1 2, 2, 1

2, 2, 1 1, 1, 1 2, 2, 1

, ,

, .

m m m m m m m

m m m m m m m

u x u x h R u R u

u x u x h R u R u





− − −

− − −

 = +
 

 = +
 

 (18) 

In a series form, this results in the approximate answer being given by 

( ) ( ) ( ) ( )
4 4

1 1,0 1, 2 2,0 2,

1 1

( ), ( ) ,i i

i i

u x u x u x u x u x u x

= =

= + = +   

This series has the closed form as m→  

( ) ( ) 2
1 2, .u x x u x x= =  

which are the exact solutions to the problem (5.1). 

Table 1 shows a comparison of the HAM's numerical outcomes standard (𝑚 = 4), the numerical results of applying 
the HAM developed by genetic algorithm (𝑚 = 4) within the interval 0 ≤ 𝑥 ≤ 1 for 𝜆1 = 0.16720495, 𝜆2 = 0.1 and 
the various values for  ℎ, with the exact solution (12). Table 2 displays the absolute errors on the interval h-curves 
[−1.2, −0.9] when 𝜆1 = 0.16720495, 𝜆2 = 0.2. 

Table 1 -Numerical results for Problem 5.1 

𝑥 𝑖 𝑢𝐸𝑥𝑎𝑐𝑡𝑖(𝑥) 
HAM-GA 

ℎ = −1 
𝐴𝐸1  

HAM-GA 

ℎ1 = −1.03876 

ℎ2 = −1.04018 

𝐴𝐸2 

0.1 
1 0.200000000 0.200045760 4.576E-05 0.200000003 3.847E-09 

2 0.030000000 0.029957260 4.273E-05 0.029999770 2.295E-07 

0.3 
1 0.600000000 0.60002626 2.626E-05 0.599999756 2.433E-07 

2 0.270000000 0.269959552 4.044E-05 0.270000213 2.135E-07 

0.5 
1 1.000000000 1.000006763 6.763E-06 0.999999509 4.904E-07 

2 0.750000000 0.749961844 3.815E-05 0.750000656 6.567E-07 

0.7 
1 1.400000000 1.399987265 1.273E-05 1.399999262 7.376E-07 

2 1.470000000 1.469964136 3.582E-05 1.470001099 1.099E-06 

0.9 
1 1.800000000 1.799967766 3.223E-05 1.799999015 9.848E-07 

2 2.430000000 2.429966428 3.353E-05 2.430001543 1.543E-06 

 

Table 2 - Absolute errors on the interval h-curves for Problem 5.1 

𝑥 ℎ = −1.2 
ℎ1 = −1.03876 

ℎ2 = −1.04018 
ℎ =  −1 ℎ =  −0.9 

0.1 

 

1.324E-04 6.991E-09 4.576E-05 5.710E-04 

1.520E-04 2.330E-07 4.273E-05 3.738E-04 

0.3 

 

1.635E-04 2.410E-07 2.626E-05 2.644E-04 

4.438E-05 2.109E-07 4.044E-05 4.642E-04 

0.5 

 

1.946E-04 4.891E-07 6.763E-06 4.205E-05 

6.327E-05 6.550E-07 3.815E-05 5.546E-04 

0.7 

 

2.257E-04 7.372E-07 1.273E-05 3.485E-04 

1.709E-04 1.099E-06 3.586E-05 6.449E-04 

0.9 

 

2.567E-04 9.853E-07 3.223E-05 3.485E-04 

2.785E-04 1.543E-06 3.357E-05 7.353E-04 
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In Figures 2 and 3, an illustration shows how well the exact solution matches with the approximate solution using 
the genetic algorithm ℎ1 = −1.03876, ℎ2 = −1.04018 with 𝜆1 = 0.16720, 𝜆2 = 0.2. In Figures 4 and 5, the ℎ-curves 
present for (problem 5.1) when 𝜆1 = 0.16720, 𝜆2 = 0.2. 

 

 

 

 

 

Fig. 2 - 𝑳𝒊𝒏𝒆: 𝒖𝑬𝒙𝒂𝒄𝒕𝟏(𝒙), 𝒐: 𝑯𝑨𝑴 − 𝑮𝑨𝟏(𝒙) 

 

 

Fig. 3 - 𝑳𝒊𝒏𝒆: 𝒖𝑬𝒙𝒂𝒄𝒕𝟐(𝒙), 𝒐: 𝑯𝑨𝑴 − 𝑮𝑨𝟐(𝒙) 
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Fig. 4 - 𝒉-curve for 𝒖𝟏
′ (𝟎. 𝟓, 𝒉)  

 

Fig. 5 - 𝒉-curve for 𝒖𝟐
′ (𝟎. 𝟓, 𝒉)  

5.2. Problem 

Let us now consider the following LSFIEs [34] 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1

1 1 1 1 2
0

1

2 2 2 1 2
0

1
,

3

,

u x f x x t u t u t dt

u x f x xt u t u t dt





  
= + + +    


  = + + 





 (19) 

0 1,x   where 

( )

( )

1 1

2
2 2

17 19
1 ,

18 36

19
1 ,

12

f x x x

f x x x





 
= + − + 

 

= + −

 (20) 

with the precise results 

( ) ( ) 2
1 21, 1.Exact Exactu x x u x x= + = +  (21) 
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We select the initial approximation to solve (19) using the conventional HAM. 

( ) ( ) ( ) ( )1,0 1 2,0 2,u x f x u x f x= =  (22) 

and the linear operator 

( ) ( ) ( ) ( )1 1 2 2, , , , , .L x q x q L x q x q   = =        (23) 

Furthermore, the non-linear operator is suggested to be defined as by the system (19) as 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 1

1

1 1 2
0

2 1 2 2 2

1

2 1 2
0

, , , ,

, , ,

, , , ,

, , ,

N x q x q x q f x

x t q x t t q dt

N x q x q x q f x

x t t q t t q dt

  

  

  

  

= −  

− + −  

= −  

− − +  





 (24) 

We create the equation of zeroth-order deformation like in (2) and (3) using the aforementioned formulation (4) 
and for 1m  , the equation of mth-order deformation is 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1, 1, 1 1, 1, 1 2, 2, 1

2, 2, 1 1, 1, 1 2, 2, 1

, ,

, ,

m m m m m m m

m m m m m m m

L u x u x h R u R u

L u x u x h R u R u





− − −

− − −

  − =   

  − =   

 (25) 

where 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1, 1, 1, 2, 1 1, 1 1

1

1 1, 1 2, 1
0

2, 1, 1, 2, 1 2, 1 2

1

2 1, 1 2, 1
0

,

.

m m m m

m m

m m m m

m m

R u u u x f x

xu t x t u t dt

R u u u x f x

x t u t tu t dt





− − −

− −

− − −

− −

= −

 − + − 

= −

 − − + 





 (26) 

Now, for 1m  , the mth-order deformation Equation (26) solutions are 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1, 1, 1 1, 1, 1 2, 2, 1

2, 2, 1 1, 1, 1 2, 2, 1

, ,

, .

m m m m m m m

m m m m m m m

u x u x h R u R u

u x u x h R u R u





− − −

− − −

 = +
 

 = +
 

 (27) 

Therefore, the formula for the approximate answer in series form is 

( ) ( ) ( ) ( )
5 5

1 1,0 1, 2 2,0 2,

1 1

( ), ( ).i i

i i

u x u x u x u x u x u x

= =

= + = +   

This series has the closed form as 𝑚 → ∞ 

( ) ( ) 2
1 21, 1.u x x u x x= + = +  

which are the correct answers to the problem (5.2). 

Table 3 compares the numerical outcomes obtained using the HAM standard (𝑚 = 5), the numerical outcomes using 
the HAM developed by genetic algorithm (𝑚 = 5) within the interval 1 20 1for 0.1, 0.1x   = = −  and the various 
values for  ℎ, with the exact solution (21). Table 4 displays the absolute errors on the interval h-curves [−1.2, −0.9] 
when 1 20.16720, 0.2. = =  
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Table 3 -Numerical results for Problem 5.2 

𝑥 𝑖 𝑢𝐸𝑥𝑎𝑐𝑡𝑖(𝑥) 
HAM-GA 

ℎ = −1 
𝐴𝐸1  

HAM-GA 

ℎ1 = −0.99809 

ℎ2 = −1.00109 

𝐴𝐸2 

0.1 

 

1 1.100000000 1.100000000 5.334E-10 1.100000000 4.806E-10 

2 1.010000000 1.009999999 1.357E-10 1.009999999 1.679E-10 

0.3 

 

1 1.300000000 1.100000000 6.953E-10 1.300000000 5.783E-10 

2 1.090000000 1.089999999 4.072E-10 1.089999999 5.038E-10 

0.5 

 

1 1.500000000 1.500000000 8.573E-10 1.500000000 6.760E-10 

2 1.250000000 1.249999999 6.787E-10 1.249999999 8.397E-10 

0.7 

 

1 1.700000000 1.700000001 1.019E-09 1.700000000 7.737E-10 

2 1.490000000 1.489999999 9.502E-10 1.489999999 1.175E-09 

0.9 

 

1 1.900000000 1.900000001 1.181E-09 1.900000000 8.714E-10 

2 1.810000000 1.809999998 1.221E-09 1.809999998 1.511E-09 

Table 4 - Absolute errors on the interval h-curves for Problem 5.2 

𝑥 ℎ = −1.2 
ℎ1 = −0.99809 

ℎ2 = −1.00109 
ℎ =  −1 ℎ =  −0.9 

0.1 

 

1.107E-04 4.806E-10 5.334E-10 9.430E-05 

2.780E-05 1.679E-10 1.357E-10 2.425E-05 

0.3 

 

1.469E-04 5.783E-10 6.953E-10 1.212E-04 

8.340E-05 5.038E-10 4.072E-10 7.275E-05 

0.5 

 

1.831E-04 6.760E-10 8.573E-10 1.481E-04 

1.390E-04 8.397E-10 6.787E-10 1.212E-04 

0.7 

 

2.192E-04 7.737E-10 1.019E-09 1.750E-04 

1.946E-04 9.068E-10 9.502E-10 1.697E-04 

0.9 

 

2.554E-04 8.714E-10 1.181E-09 2.020E-04 

2.502E-04 1.511E-09 1.221E-09 2.182E-04 

 

In Figures 6 and 7, an illustration shows how well the exact solution matches with the approximate solution using 
the genetic algorithm ℎ1 = −0.99809, ℎ2 = −1.00109  with 1 20.1, 0.1. = − = In Figures 8 and 9 present the ℎ-
curves for (problem 5.2). 

when 1 20.1, 0.1. = − =  

 

Fig. 6 - 𝑳𝒊𝒏𝒆: 𝒖𝑬𝒙𝒂𝒄𝒕𝟏(𝒙), 𝒐: 𝑯𝑨𝑴 − 𝑮𝑨𝟏(𝒙) 
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Fig. 7 - 𝑳𝒊𝒏𝒆: 𝒖𝑬𝒙𝒂𝒄𝒕𝟐(𝒙), 𝒐: 𝑯𝑨𝑴 − 𝑮𝑨𝟐(𝒙) 

 

Fig. 8 -  𝒉-curve for 𝒖𝟏
′ (𝟎. 𝟓, 𝒉)  

 

 

Fig. 9 - 𝒉-curve for 𝒖𝟐
′ (𝟎. 𝟓, 𝒉)  
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5.3. Problem 5.3 

Let's now consider the following LSFIEs [35] 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
3 2

1 1 1 1 2
0

1
2 2

2 2 2 1 2
0

2 ,

,

u x f x x t u t t u t dt

u x f x x u t x t u t dt





  = + + +  

  = + + −

 




 (28) 

0 1,x   where 

( )

( )

2 3
1 1

4 2
2 2

4 23
1 ,

3 14

4 1 1
,

3 5 7

f x x x

f x x x x





 
= + − + 

 

 
= − + − 

 

 (29) 

with the exact solutions 

( ) ( )2 4
1 21, .Exact Exactu x x u x x= + =  (30) 

We select the initial approximation to solve (28) using the conventional HAM. 

( ) ( ) ( ) ( )1,0 1 2,0 2,u x f x u x f x= =  (31) 

and the linear operator 

( ) ( ) ( ) ( )1 1 2 2, , , , , .L x q x q L x q x q   = =        (32) 

Furthermore, the system (28) proposes that the non-linear operator is defined as 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 1

1
3 2

1 1 2
0

2 1 2 2 2

1
2 2

2 1 2
0

, , , ,

2 , , ,

, , , ,

, , ,

N x q x q x q f x

x t t q t t q dt

N x q x q x q f x

x t q x t t q dt

  

  

  

  

= −  

 − + +
 

= −  

 − + −
 





 (33) 

We create the equation of zeroth-order deformation as in (2) and (3) using the above-mentioned formulation (4) 
and the equation of mth-order deformation for 1m   is 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1, 1, 1 1, 1, 1 2, 2, 1

2, 2, 1 1, 1, 1 2, 2, 1

, ,

, ,

m m m m m m m

m m m m m m m

L u x u x h R u R u

L u x u x h R u R u





− − −

− − −

  − =   

  − =   

 (34) 

where 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1, 1, 1 2, 1 1, 1 1

1
3 2

1 1, 1 2, 1
0

2, 1, 1 2, 1 2, 1 2

1
2 2

2 1, 1 2, 1
0

,

2 ,

,

.

m m m m

m m

m m m m

m m

R u u u x f x

x t u t t u t dt

R u u u x f x

x u t x t u t dt





− − −

− −

− − −

− −

= −

 − + +
 

= −

 − + −
 





 (35) 

Now, for 1m  , the mth-order deformation Equation (35) solutions are 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1, 1, 1 1, 1, 1 2, 2, 1

2, 2, 1 1, 1, 1 2, 2, 1

, ,

, .

m m m m m m m

m m m m m m m

u x u x h R u R u

u x u x h R u R u





− − −

− − −

 = +
 

 = +
 

 (36) 

Therefore, the formula for the approximate answer in series form is 

( ) ( ) ( ) ( )
5 5

1 1,0 1, 2 2,0 2,

1 1

( ), ( ).i i

i i

u x u x u x u x u x u x

= =

= + = +   

This series has the closed form as m→  

( ) ( )2 4
1 21, .u x x u x x= + =  

which are the exact solutions to the problem (5.3). 

Table 5 compares the numerical outcomes obtained using the HAM standard (𝑚 = 5), the numerical outcomes 
applying the HAM developed by genetic algorithm (𝑚 = 5) within the interval 0 ≤ 𝑥 ≤ 1 for 𝜆1 = 𝜆2 = 0.1 and the 
various values for  ℎ, with the exact solution (30). Table 6 displays the absolute errors on the interval h-curves 
[−1.6, −0.8] when 𝜆1 = 𝜆2 = 0.1. 

Table 5 -Numerical results for Problem 5.3 

𝑥 𝑖 𝑢𝐸𝑥𝑎𝑐𝑡𝑖(𝑥) 
HAM-GA 

ℎ = −1 
𝐴𝐸1  

HAM-GA 

ℎ1 = −1.14902 

ℎ2 = −1.11288 

𝐴𝐸2 

0.1 

 

1 1.010000000 1.009919328 8.067E-05 1.009999662 3.379E-07 

2 0.000100000 0.000106980 6.980E-06 0.000099941 5.804E-08 

0.3 

 

1 1.090000000 1.089917635 8.236E-05 1.089999662 3.377E-07 

2 0.008100000 0.008099184 8.150E-07 0.008100027 2.708E-08 

0.5 

 

1 1.250000000 1.249911254 8.874E-05 1.249999662 3.372E-07 

2 0.062500000 0.062486179 1.382E-05 0.062500036 3.666E-08 

0.7 

 

1 1.490000000 1.489897058 1.029E-04 1.489999663 3.361E-07 

2 0.240100000 0.240067965 3.203E-05 0.240099970 2.929E-08 

0.9 

 

1 1.810000000 1.809871923 1.280E-04 1.809999665 3.340E-07 

2 0.656100000 0.656044541 5.545E-05 0.656099829 1.708E-07 
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 Table 6 - Absolute errors on the interval h-curves for Problem 5.3 

𝑥 ℎ = −1.2 
ℎ1 = −1.14902 

ℎ2 = −1.11288 
ℎ =  −1 ℎ =  −0.9 

0.1 

 

2.830E-03 3.379E-07 8.067E-05 1.704E-03 

1.316E-04 5.799E-08 6.980E-06 1.419E-04 

0.3 

 

2.891E-03 3.377E-07 8.236E-05 1.740E-03 

2.259E-04 2.708E-08 8.150E-07 2.149E-05 

0.5 

 

3.120E-03 3.372E-07 8.874E-05 1.875E-03 

5.072E-04 3.660E-08 1.382E-05 2.950E-04 

0.7 

 

3.630E-03 3.361E-07 1.029E-04 2.175E-03 

9.757E-04 2.943E-08 3.203E-05 6.787E-04 

0.9 

 

4.532E-03 3.340E-07 1.280E-04 2.706E-03 

1.631E-03 1.710E-07 5.545E-05 1.172E-03 

 

In Figures 10 and 11 an illustration shows how well the exact solution matches with the approximate solution 
using the genetic algorithm ℎ1 = −1.14902, ℎ2 = −1.11288  with 𝜆1 = 𝜆2 = 0.1. In Figures 12 and 13 Present the ℎ-
curves for (problem 5.3). 

when 𝜆1 = 𝜆2 = 0.1. 

 

Fig. 10 - 𝑳𝒊𝒏𝒆: 𝒖𝑬𝒙𝒂𝒄𝒕𝟏(𝒙), 𝒐: 𝑯𝑨𝑴 − 𝑮𝑨𝟏(𝒙) 

  

Fig. 11 - 𝑳𝒊𝒏𝒆: 𝒖𝑬𝒙𝒂𝒄𝒕𝟐(𝒙), 𝒐: 𝑯𝑨𝑴 − 𝑮𝑨𝟐(𝒙) 
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Fig. 12 -  𝒉-curve for 𝒖𝟏
′ (𝟎. 𝟓, 𝒉)  

 

Fig. 13 -  𝒉-curve for 𝒖𝟐
′ (𝟎. 𝟓, 𝒉)  

5.4. Problem  

Finally, let's now consider the following LSFIEs [35] 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1 1 1 1 2
0

1
2

2 2 2 1 2
0

,

2 ,

u x f x x t u t xtu t dt

u x f x x t u t x t u t dt






= + − +  


  = + + + +

 




 (37) 

0 1,x   where 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

1 1

2 2
2 2

sin 1 sin 1 cos 1 sin ,

cos 1 sin 1 3sin 1 cos 1 1 cos ,

f x x x

f x x x x x





= − − +

= − − − + + +
 (38) 

with the exact solutions 

( ) ( ) ( ) ( )1 2sin , cos .Exact Exactu x x u x x= =  (39) 

To solve (37) through the standard HAM, we choose the initial approximation. 



Rasha F. Ahmed, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 15(2) 2023 , pp  Math.   65–86             17 

 

( ) ( ) ( ) ( )1,0 1 2,0 2,u x f x u x f x= =  (40) 

and the linear operator 

( ) ( ) ( ) ( )1 1 2 2, , , , , .L x q x q L x q x q   = =        (41) 

Furthermore, the system (37) proposes that the non-linear operator is defined as 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 1 1

1

1 1 2
0

2 1 2 2 2

1
2

2 1 2
0

, , , ,

, , ,

, , , ,

2 , , ,

N x q x q x q f x

x t t q xt t q dt

N x q x q x q f x

x t t q x t t q dt

  

  

  

  

= −  

− − +  

= −  

 − + + +
 





 (42) 

We create the equation of zeroth-order deformation as in (2) and (3) using the above-mentioned formulation (4) 
and the equation of mth-order deformation for 1m  is 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1, 1, 1 1, 1, 1 2, 2, 1

2, 2, 1 1, 1, 1 2, 2, 1

, ,

, ,

m m m m m m m

m m m m m m m

L u x u x h R u R u

L u x u x h R u R u





− − −

− − −

  − =   

  − =   

 (43) 

where 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1, 1, 1 2, 1 1, 1 1

1

1 1, 1 2, 1
0

2, 1, 1 2, 1 2, 1 2

1
2

2 1, 1 2, 1
0

,

,

,

2 .

m m m m

m m

m m m m

m m

R u u u x f x

x t u t xtu t dt

R u u u x f x

x t u t x t u t dt





− − −

− −

− − −

− −

= −

 − − + 

= −

 − + + +
 





 (44) 

Now, for 1m  , the solutions of the mth-order deformation Equation (44) are 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1, 1, 1 1, 1, 1 2, 2, 1

2, 2, 1 1, 1, 1 2, 2, 1

, ,

, .

m m m m m m m

m m m m m m m

u x u x h R u R u

u x u x h R u R u





− − −

− − −

 = +
 

 = +
 

 (45) 

Therefore, the formula for the approximate solution in series form is 

( ) ( ) ( ) ( )
5 5

1 1,0 1, 2 2,0 2,

1 1

( ), ( ).i i

i i

u x u x u x u x u x u x

= =

= + = +   

This series has the closed form as m→  

( ) ( ) ( ) ( )1 2sin , cos .u x x u x x= =  

which are the precise answers to the problem (5.4). 

Table 7 compares the numerical outcomes obtained using the HAM standard (𝑚 = 5), the numerical results 
obtained by applying the HAM developed by genetic algorithm (𝑚 = 5) within the interval 0 ≤ 𝑥 ≤ 1 for 𝜆1 = 𝜆2 =
0.1 and the various values for  ℎ, with the exact solution (39). Table 8 displays the absolute errors on the interval h-
curves [−1.6, −0.7] when 𝜆1 = 𝜆2 = 0.1. 
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Table 7 -Numerical results for Problem 5.4 

𝑥 𝑖 𝑢𝐸𝑥𝑎𝑐𝑡𝑖(𝑥) 
HAM-GA 

ℎ = −1 
𝐴𝐸1  

HAM-GA 

ℎ1 = −1.06915 

ℎ2 = −1.09388 

𝐴𝐸2 

0.1 

 

1 0.099833416 0.099835597 2.181E-06 0.099834992 1.576E-06 

2 0.995004165 0.994968183 3.598E-05 0.995000841 3.323E-06 

0.3 

 

1 0.295520206 0.295516661 3.545E-06 0.295520865 6.589E-07 

2 0.955336489 0.955292268 4.422E-05 0.955333758 2.730E-06 

0.5 

 

1 0.479425538 0.479416267 9.271E-06 0.479425280 2.583E-07 

2 0.877582561 0.877529570 5.299E-05 0.877579708 2.853E-06 

0.7 

 

1 0.644217687 0.644202689 1.499E-05 0.644216511 1.175E-06 

2 0.764842187 0.764779891 6.229E-05 0.764838495 3.692E-06 

0.9 

 

1 0.783326909 0.783306185 2.072E-05 0.783324816 2.092E-06 

2 0.621609968 0.621537835 7.213E-05 0.621604722 5.246E-06 

 Table 7 - Absolute errors on the interval h-curves for Problem 5.4 

𝑥 ℎ = −1.2 
ℎ1 = −1.06915 

ℎ2 = −1.09388 
ℎ =  −1 ℎ =  −0.9 

0.1 

 

2.937E-03 1.576E-06 2.181E-06 2.369E-04 

3.874E-03 3.323E-06 3.598E-05 2.463E-03 

0.3 

 

2.253E-03 6.589E-07 3.545E-06 1.491E-04 

3.903E-03 2.730E-06 4.422E-05 3.010E-03 

0.5 

 

1.568E-03 2.583E-07 9.271E-06 5.352E-04 

4.407E-03 2.853E-06 5.299E-05 3.604E-03 

0.7 

 

8.837E-04 1.175E-06 1.499E-05 9.213E-04 

5.387E-03 3.692E-06 6.229E-05 4.245E-03 

0.9 

 

1.991E-04 2.092E-06 2.072E-05 1.307E-03 

6.843E-03 5.246E-06 7.213E-05 4.932E-03 

 

In Figures 14 and 15 An illustration shows how well the exact solution matches with the approximate solution 
using the genetic algorithm ℎ1 = −1.06915, ℎ2 = −1.09388  with 𝜆1 = 𝜆2 = 0.1. In Figures 16 and 17 Present the ℎ-
curves for (problem 5.4). 

when 𝜆1 = 𝜆2 = 0.1. 

 

Fig. 14 - 𝑳𝒊𝒏𝒆: 𝒖𝑬𝒙𝒂𝒄𝒕𝟏(𝒙), 𝒐: 𝑯𝑨𝑴 − 𝑮𝑨𝟏(𝒙) 
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Fig. 15 - 𝑳𝒊𝒏𝒆: 𝒖𝑬𝒙𝒂𝒄𝒕𝟏(𝒙), 𝒐: 𝑯𝑨𝑴 − 𝑮𝑨𝟐(𝒙) 

 

Fig. 16 -  𝒉-curve for 𝒖𝟏
′ (𝟎. 𝟓, 𝒉)  

 

Fig. 17 -  𝒉-curve for 𝒖𝟐
′ (𝟎. 𝟓, 𝒉)  

6. Conclusions 

The current study proposes a new algorithm (HAM-GA) designed for the linear system equations solving of 
Fredholm integral by merging the GA and the HAM. The program calculates the answer based on four consecutive 
cases. The algorithm chooses the best value for 𝜆1 , 𝜆2 and ℎ based on the residual error function's classification as a 
fitness function. In the first instance, the results were determined using the normal HAM, whereas in the second 
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instance, the optimal value for ℎ was selected using the genetic algorithm, and the results were determined using 
the HAM-GA. Lastly, HAM-GA was used to determine the findings based on optimal 𝜆1 , 𝜆2 , and ℎ. 

The results achieved with the best ℎ were superior to those produced by the conventional HAM. The fourth case's 
outcomes were perfect for the precise solution. The results show that the suggested approach is successful in 
locating the solution because they are in good agreement with the ℎ-curves. 
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