Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 15(2) 2023, pp Math. 102-110

Available online at www.qu.edu.ig/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS
ISSN:2521-3504(online) ISSN:2074-0204(print)

University Of AL-Qadisiyah

A Certain Families of Bi-Univalent Functions with Respect to
Symmetric Conjugate Points Defined by Beta Negative Binomial
Distribution Series

Abbas Kareem Wanas®* and Faiz Chaseb Khudher?

aDepartment of Mathematics, College of Science, University of Al-Qadisiyah, Iraq.Email: abbas.kareem.w@qu.edu.iq

bDepartment of Mathematics, College of Science, University of Al-Qadisiyah, Iraq.Email: almdrsfayz@gmail.com

ARTICLEINFO ABSTRACT

Article history: The objective of this paper is to introduce and investigate two families of analytical and bi-
Received: 30 /03/2023 univalent functions, Ts¢(a, ,1,2, 6; 1) and W5(a, B,n, A, 0; v), with respect to symmetric
Rrevised form: 25 /05/2023 conjugate points that are defined in the open unit disk U and connected to a series of beta-

negative binomial distributions. For functions in each of these families, we look into upper

Accepted: 01 /06/2023 bounds for the initial Taylor-Maclaurin coefficients |a,| and |as] .

Available online: 30 /06/2023

Keywords: Analytic functions, Bi-
univalent functions, Symmetric
conjugate points, Coefficient
estimates, Beta negative binomial
distribution.

MSC: 30C45.

Each keyword to start on a new line

https://doi.org/10.29304/jqcm.2023.15.2.1252

1. Introduction

We indicate by A the family of functions which are holomorphic in the open unit disk
U ={z€C : |zl <1}and have the following normalized from :

f@)=z+ ) az". (1.1)
kZZ "

We also indicate by S the subclass of A consisting of functions which are also univalent in U. According to the
Koebe one-quarter theorem [3], every function f € S has an inverse f ! defined by

+Corresponding author
Email addresses: abbas.kareem.w@qu.edu.iq

Communicated by ‘sub etitor’


mailto:abbas.kareem.w@qu.edu.iq

2 A.B.Wanas and F. C. Khudher, Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 15(2) 2023, pp Math. 102-110

@) =2 @ ev)

and

FFw) =w, (wl <P =3)

where
gw) = F71(w) = w — a,w? + (2a2 — az;)w?® — (543 — 5a,a; + ay)w* + - . (1.2)

If both f and £~ are univalent in U, then a function f € A is said to be bi-univalent in U. The category of bi-
univalent functions in U provided by (1.1) is denoted by the symbol. See the ground-breaking study on this topic by
Srivastava et al. [13] for a brief history and fascinating instances of functions in the class. This work really rekindled
the study of bi-univalent in more recent years. Here, we select to recollect the following instances of functions in the
class from the work of Srivastava et al. [13]:

z 11 <1+z> d log(1 )
1—z' 2 %8\1—5) and¢ —loeli—2

We notice that the class 2 is not empty . However the Koebe function is not a member of .

Many authors introduced and studied various subclasses of the bi-univalent function class in sequels to the work of
Srivastava et al. [13] (see, for example, [1,5,6,10,11,16,17,18]), but only non-sharp estimates on the initial
coefficients |a,| and |a;| in the Taylor -Maclaurin expansion (1.1) were obtained in many of these recent papers.
The challenge of determining the Taylor-Maclaurin coefficients' universal bounds|a,| (n € N\{1,2};N :=

{1,23,..}),

for functions f € X' is still not completely addressed for many of the subclasses of the bi-univalent function class
2 (see, for example, [12,14,15]).

From a theoretical standpoint, the Geometric Function Theory has explored some basic distributions, including
the Poisson, Pascal, Logarithmic, Binomial, and Borel (for examples, see [2,4,7,9,20]).
If a discrete random variable x takes the values 0, 1, 2, 3,... with the probability, it is said to have a beta negative

binomial distribution.

E+b61) oB@+62+1) 1 60+ 1) w, ... respectively, where 1, 8, 1 are named the parameters.

san T pma 2 B2
Prob(x = 1) = (9 +17-— 1),8(1] +0,A+7) TO+7) T(n+OIA+0)I(n+4) (Mg (8); (V)
roeEEr =l ¢ B A)  TITO) TM+60+A+DTMTA) (0 +Ag @ +n+ o7
where (a), is the Pochhammer symbol defined by
_fa+h { 1 (k=0),
@k =Ty “lat@+1) .. (@+k—-1) (keN).

The following power series, whose coefficients are probabilities of the beta negative binomial distribution, was very
recently introduced by Wanas and Al-Ziadi [19].

C O)ie—1 (D)
92,/1(2)=Z+Z( /1(77);( Dk 1/1( )i 1k —
=+ )o (0 + 1+ )y (k—1)!
We observe using the well-known Ratio Test that the above series' radius of convergence is infinite.
The linear operator ngg,A : A — A is defined as follows (see [19])
0)i—1 M-
(Mo (0)—1 (g1 @ z*, Z€U,
0 (0+n+Dy-q (k—1)!

z&, (z€U,n,1,60>0).

Bl (@) = pfu@ @D =24 ) ey
k=2

where * indicate the Hadamard product (or convolution) of two series.
We now think back to the lemma that will be utilized to support our key findings.

Lemma 1.1 [3]. Ifh € P, then |c,| < 2 for each k € N, where P is the family of all functions h analytic in U for
which
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Re(h(2)) > 0,(z € U),
with

h(z) =14+ c,z+ cyz2 + -, (z € U).

2. Coefficient Bounds for the Class T5“(«, 8,1, 2, 6; p)

Definition 2.1. A function f € X from (1.1) is said to be in the class T (a, 8,7, 4, 0; u) if it satisfies the following
conditions:

2[aps ($af @) + (a + Ca = 0)e ($,/@) +2(B/ @) ] || o

apz? (B0,f ()~ B, (-D) + (@~ B)z(B0,f (@)~ B, (-D) 2
+(1 —a+ ) (BLf(2) -89, (-D))

arg

and

2[apw® (B9,9w)) " + (a+B2a — D)w? (B,9w) +w (BLgw)) |
apw? (B9,9w) = BLgm)) + (a — B)w (BY,9w) — BT, g(—w))
+(1 - a+ ) (B9 ,9w) - $9,9(-))

Ur
arg < > ,(wel), (22)

where zw € U,0<u<1,7,4,60 >0,0< B <a<1landg = ftisgiven by (1.2).
Theorem 2.1 below states that our first main finding.

Theorem 2.1. Let f € T3(a,8,1,4,0; 1) (0 < u <1,1n,4,0 > 0) be given by (1.1). Then

| < prm+6 + 1+ DIMTJT + 6 + 1+ 2)

uo(6 + 1)(6ap + 2(a — B) + DI2(n + 6 + A+ DI(n + O)T(A + 2)T(y + HTMTA)
+2(1 — 1)02(2af + a — B + 1)2T( + 0 + A+ 2)T2(n + O)[2(A + DI2(n + 1)

and

W2T2(n + 6 + A+ D2z

(2af +a — B + D202T2(y + O)I2(A + DI2(n + A)
2T + 6 + A+ 2T QW)

T+ DGag +2(@—B) + DT+ OTA+ 2T + 1)

las| <

Proof. Conditions (2.1) and (2.2) lead to the conclusion that
2[apz?* (B91f @) + (@ +Ba - 1))z (Bf D) +2(BGuf @) |

apz? (‘Bf;,af(Z) - ‘Bﬁ,lf(—z‘))" +(a—pB)z (‘Bf,,/lf(z) - s];;fmf(_z—))'
(A —a+p) (B),f(2) - B,/ (D)

=[p@]* (2.3)

and
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2[apw? (B,9w)) " + (a +B2a — D)w? (B,9w)) +w (BL9w)) ]

—————— = [gW)]* (2.4)
apw? (B0,9(w) —BL,gCm)) + (a - B)w (BY9w) — DL g(—m))
+(1 —a+B) (B gw) - B9 ,9(-))
where g = f~1 and p, q in P have the representations of the following series:
p(2) =14+ pz+pyz% +pyz3+ - (2.5)
and
qw) =1+ qw + quw? + qzw + -+ (2.6)
We discover that by comparing the corresponding coefficients of (2.3) and (2.4),
2Qaf + a — B + 1)OI(n + O)I(A + DI + A)
[(y +6 + 1+ DI %2 = IPy @7
(6aB +2(a — B) + OO + DI + OTA+ 2T +2) pu—1)
T+ 6+ A+ DT 3 = WPz + =P, (28)
2Qaf +a — B + 1)OI(n + OT(A + DI + A)
B I +6+ 1+ DI@IQA) %2 = i (2:9)
and
Making use of (2.7) and (2.9), we obtain
PL= —q (2.11)
and
_ 22 2 2
802(2ap + ?Z(nﬁ++91-)k ; +(nl)+F 33;) F(f(:)nr 4D o _ 2ot 4ty 212)
If we add (2.8) to (2.10), we have
20(6 + 1) (6ap Jrr(f;(i - f)l++12))rr(?n;2)r(z FDNOHD) # ety (213)

After performing various calculations and substituting the value of p? + ¢? from (2.12) into the right-hand side
of (2.13), we conclude that

3 T+ 0+ 2+ 22+ 6 + 21+ DMz (p, + q2)
T 2u00 + D(6aBf +2(a—B)+ D2+ 0+ A+ DI + OTA+ 2)T(n + HIMIQA)
+4(1 — p)022af + a — B+ 12T + 60 + A + 2)T2(n + OT2(A + DI2(n + 1)

2

a2 (2.14)

Now, taking the absolute value of (2.14) and applying Lemma 1.1 for the coefficients p, and g,, we obtain

Urm+6 + A+ DIMT)JT + 6 + 1 + 2)

\/ (@ + D6ap +2(a—B)+Dr2(n+0+21+Dr(n+0)r(A+2)r(n + HrHrQ)

la,| <

+2(1 — W02af + a — B+ 12T + 6 + A + 2)T2(n + 02 + DI2( + A)

In order to find the bound on |a;|, by subtracting (2.10) from (2.8), we get
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2000 + 1)(6aB + 2(a — B) + DI(n + O)T(A + 2)I'(n + 1)

T(y+6 + 1+ 2)T(IQA) (i —qD).  (2.15)

u
(az —a3) =pup, —q2) +———

-1
2

It follows from (2.11), (2.12) and (2.15) that

o = W2+ 6 + A+ Dr2mr) (pf + qf)
37 8Qaf +a—f + 1)202r2(n + O)F2(A + DI2(n + A)
N F'm+6+A+2)TMIA) (P, — q2)
2000+ 1) (6af +2(a—B)+ DI(n+Or(A+2)T(n+ 1) °

(2.16)

Taking the absolute value of (2.16) and applying Lemma 1.1 once again for the coefficients p,, p,, ¢; and q,, we
obtain

Wrim+6+ 1+ Dr2mr2)

1951 < G T a = + D202r2(y + T2 (A + DIZ(n + )
2T + 6 + A+ 2T )

T G+ D(6aB +2(a—B) + DTG + OTA+ DT + )

which completes the proof of Theorem 2.1.

3. Coefficient Bounds for the Class W3(a, 3,1, 4, 8; v)

Definition 3.1. A function f € X given by (1.1) is said to be in the class Ws°(a, 8,7n,1,0;v) if it satisfies the
following conditions:

2[apz* (B1f @) + (@ + B2a - 1))z (Bf (D) +2(BGuf@) ]
apz? (B9,f(2) — B, f (D) +(a—P)z(BIf @) —BL,f (D)
+(1—a+ ) (BLf () - %9,/ (D))

Re

> v (3.1)

and
Ikl L (B9,9w)) "+ (a + p2a — D)w? (BL9w)) +w (BL9w)) | o 62
apw? (B9, gw) — B9 .9 () + (a — P)w (B9 (w) — BT g(—w)) '
+(1 —a + ) (B 1gw) - B9 ,9(-))
where
z,w €U,0<v < 1,n,4,60 > 0and the function g = f~1 is given by (1.2).
Our second main result is asserted by Theorem 3.1 below.
Theorem 3.1. Let f € Wi(a,8,1,4,0;v) (0 < v <1,1,4,0 > 0) be given by (1.1). Then
@l SJ 2(1—v)I( + 6 + 2+ 2)T(DTQA) 53
[6(6 +1)(6af +2(a—B)+1DI(n+6)T(A+2)T'(n+ )|

and
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(1—-v)’T2(m+ 6+ 21+ DI2mr)

951 < G2 Gap Y@ = B+ DG + O + D2 + )
20-v)FT(n+ 0+ A1+ 2)F(mMrd)

TG T D6 +2(a—B) T DI+ OTA+ T + 1) °

(3.4)

Proof. It results from (3.1) and (3.2) that there exist p, ¢ € P such that

2[apz® (Bof @)+ (a+pCa—1)7 (B @) +2(Bo2f @) ] —v+(1-v)p)  (35)

apz? (B @) ~ B (D) +(a— Rz (B @) B/ (-D))
+(1 = a+ ) (B9, (2) - B9,/ (7))

and

2|apw? (‘ngg(w))m + (a+pQa = D)w? (B) 19 (W))” v (SB?"A‘Q(W))I] =v+(1-v)gw), (3.6)

apw? (B9 w) =BT g(-)) + (@ — Bw (B2 ,gw) — B g(—w))
+(1—a+B) (BG9w) - B ,9(—))

where p(z) and q(w) get the forms (2.5) and (2.8), respectively. Equating coefficients (3.5) and (3.6) yields

2Qap +a—L+1)T(n+0)T(A+ DI (n + 1)
Tm+60+ A+ 1DI(mTrd)

a = (1 - U)pp (37)

6ap +2(a—pB)+1)0O+ VDI +0OTA+2)T(n+ 1)
Tm+6+1+2)r(mrn)

az = (1 =v)p,, (3.8)

B 2Qap+a—p+1)Ir(n+60)r(A+ DIr(n + 1)

T(n+6 + A+ DI(MIQ) a, =(1-v)q (3.9

and

6ap +2(a—B)+1)0O+ VDI +0O)T(A+2)T(n+ 1)

T+ 6 + A+ 2)LIQ) (2a; —as) = (1 -v)g,.  (3.10)

From (3.7) and (3.9), we have
1=~ (3.11)

and

802(2af +a—f+ 1T+ Or*A+Dr2in+21) , ar 2 o
I2(n+ 6 + A + DI2(Mrz) a; = (1 —v)*(p1 + q1). (3.12)

Adding (3.8) and (3.10), we obtain

2000 + D(6ap +2(a—pF)+ DI+ OrA+2)rn+4) ,
T +0+A+2)T(rQ) a; = (1 =v)(pz + q2). (3.13)

Therefore, we obtain

PR Gl Vpp— DI+ 0+ 21+ 2)FMIA)(p; + qz)
27200+ 1)(6aB +2(a —B) + DI( + O)T(A+2)I(n +2A)
Applying Lemma 1.1 for the coefficients p, and q,, we have
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2A-v)T(n+6+21+2)T(mMr)

421 = 0@+ Dap + 20— B+ DTG+ OIG + DTG + DI

This gives the desired estimate for |a,| as asserted in (3.3).
In order to find the bound on |a;|, by subtracting (3.10) from (3.8), we have

2000+ D)(6af +2(a—B)+ DT+ 0)T(A+2)T(n+ A1)
Tm+0+A+2)T(mTA)

(as — a%) =1 -v)(p; — q2),

or equivalently

A-v)Im+0+21+2)F(MIA)(p, —q2)
200+ 1D)6af +2(a—B)+DI(n+OT(A+2)T(n + 1)

as = a3+

Upon substituting the value of a2 from (3.12), it follows that

R v)’T2(n + 6 + 2+ r2mrz()(pf + qf)
37802Qaf +a— B +1)2T2(n + O)r2(A + Dr2(n + 1)
4 1-v)TFn+6+1+2TmMIA)(p; — q2)
200+ 1D)(6aB +2(a—B)+ DI+ O+ 2)F(n+ 1)

Applying Lemma 1.1 once again for the coefficients p,, p,, g; and g, , we have

1 -v)T?*(M+6+ 1+ Dr2mrz)

1931 < 57 Gap ¥ @ = B+ D220y + 20+ D20 + )
21 —V)T( + 0 + 1+ 2)T((MTQA)

T+ DGag+2(@— B+ DI+ OTA+ 2T + 1)

which completes the proof of Theorem 3.1.
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