

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

On JS-Injective Rings

Zahraa Abbas Zone^a, Akeel Ramadan Mehdi^b

^aMathematical Department / College of Education / University of Al-Qadisiyah / Al-Diwaniya City/ Iraq. Email: edu-math.post32@qu.edu.iq ^bMathematical Department / College of Education / University of Al-Qadisiyah / Al-Diwaniya City/ Iraq. Email: akeel.mehdi@qu.edu.iq

ARTICLEINFO

Article history: Received: 22 /04/2023 Rrevised form: 05 /06/2023 Accepted: 07 /06/2023 Available online: 30 /06/2023

Keywords:

JS-injective ring. Finitely generated module. Injective ring.

ABSTRACT

Let R be a ring. A right R-module M is called JS-N-injective (where N is any right R-module) if every right R-homomorphism from a submodule of $J(N)J(R_R)$ into M extends to N [9]. A ring R is called right JS-injective if R_R is JS-R-injective. The right JS-injective rings are studied in this paper. Many characterizations and properties of this type of rings are obtained.

2020MSC: Primary: 16D50, 16D10; Secondary: 16D25, 16S90.

https://doi.org/10.29304/jqcm.2023.15.2.1253

1. Introduction

This paper assumes that *R* is an associative ring with identity $1 \neq 0$ and any module is unitary. By a module (resp. homomorphism) we mean a right *R*-module (resp. right *R*-homomorphism), if not otherwise specified. The class of right *R*-modules is denoted by Mod-*R*. We use soc(M) and J(M) to denote, respectively, the socle and the Jacobson radical of a right *R*-module *M*. We write $Z(R_R)$ for the right singular ideal of a ring *R*. We denote to $J(M)J(R_R)$ by JS(M) for any right *R*-module *M*. For any $a \in R$, we use $l_R(a)$ (resp. $r_R(a)$) to denote the left (resp. right) annihilator of *a* in *R*.

Injective modules play important role in module theory, and extensively many authors were studied their generalizations (see, for example, [5], [6], and [7]). If every *R*-homomorphism from a right ideal of *R* into R_R can be extended to R_R , then a ring *R* is called right self-injective ring [4, p.64]. Let *N* be a right *R*-module. A right *R*-module *M* is called JS-*N*-injective, if every right *R*-homomorphism from a submodule of J(*N*)J(R_R) into *M* extends to *N*. If a right *R*-module *M* is JS-*R*-injective, then *M* is called JS-injective. A ring *R* is called right JS-injective if the right *R*-module R_R is JS-injective [9]. JS-injective rings are studied in this paper. We give many characterizations and properties of right JS-injective rings. For examples, we prove that a ring *R* is a right JS-injective if and only if for any

^{*}Corresponding author: Akeel Ramadan Mehdi

Email addresses: akeel.mehdi@qu.edu.iq

 $N \in \text{Mod-}R$ and a nonzero R-monomorphsim f from N to R with $f(N) \subseteq \text{JS}(R_R)$, then $\text{Hom}_R(R, N) = Rf$. Also, we show that if R is a right JS-injective ring, then $l_R(A_1 \cap A_2) = l_R(A_1) + l_R(A_2)$, for all submodules A_1 and A_2 of JS (R_R) . In Proposition 2.4, we prove that if R is a right JS-injective ring, then JS $(R_R) \subseteq Z(R_R)$. Moreover, we show that if Ra is a simple left ideal of a right JS-injective ring R, then JS $(aR) \cap \text{soc}(aR)$ is zero or simple, for any $a \in R$. Condition under which JS-injectivity implies injectivity is given. We get that if R is a ring such that for any right ideal K of R, we have $K = eR \oplus B$ for some right ideal B of R with $B \subseteq \text{JS}(R_R)$ and an idempotent $e^2 = e \in K$, then R is a right JS-injective ring, and $a, b \in R$ with $b \in \text{JS}(R_R)$ and $bR \cong aR$, then $Ra \cong Rb$. Finally, we prove that every right R-module is JS-injective if and only if R is a JS-injective ring and every cyclic submodule of JS (R_R) is projective.

2. JS-Injective Rings

Let *N* be a right *R*-module. A right *R*-module *M* is called JS-*N*-injective, if every right *R*-homomorphism from a submodule of $J(N)J(R_R)$ into *M* extends to *N*. A right *R*-module *M* is called JS-injective if *M* is JS-*R*-injective. A ring *R* is called right JS-injective if the right *R*-module R_R is JS-injective [9]. In this section, right JS-injective rings are studied extensively. Many characterizations and properties of this type of rings are given.

Recall that a right *R*-module *M* is called multiplication if any submodule *N* of *M* takes the form *MI*, for some ideal *I* of *R* [8, p. 3839].

We begin this section with the following theorem, which gives some characterizations of right JS-injective rings. **Theorem 2.1.** Consider the following statements for a ring *R*:

- (1) *R* is a right JS-injective ring.
- (2) If *N* and *M* are finitely generated projective right *R*-modules, then *M* is JS-*N*-injective.
- (3) If $N \in \text{Mod}-R$ and $f: N \to R$ is an *R*-monomorphism with $f(N) \subseteq \text{JS}(R_R)$, then $\text{Hom}_R(N, R) = Rf$.

Then (2) \Rightarrow (1) and (1) \Leftrightarrow (3). Moreover, if $JS((R_R)^m)$ is a multiplication module for any positive integer *m*, then (1) \Rightarrow (2).

Proof. (2) \Rightarrow (1) Clear.

 $(1) \Rightarrow (2)$ Suppose that *R* is a right JS-injective ring with $JS((R_R)^m)$ is a multiplication module, for any $m \in \mathbb{Z}^+$. Let *N* and *M* be finitely generated projective right *R*-modules and *K* a submodule of JS(N). Let $f: K \to M$ be any *R*-homomorphism. Since *M* is finitely generated, there exists a right *R*-epimorphism $\alpha_1: \mathbb{R}^n \to M$ for some positive integer number *n*. Since *M* is projective, there is a right *R*-homomorphism $\alpha_2: M \to \mathbb{R}^n$ with $\alpha_1\alpha_2 = I_M$, where $I_M: M \to M$ is the identity homomorphism. Since *R* is a right JS-injective ring, we have from [9, Proposition 2.5 and Corollary 2.4] that \mathbb{R}^n is a right JS- \mathbb{R}^m -injective *R*-module, for any $m \in \mathbb{Z}^+$. Since *N* is finitely generated projective, *N* is a direct summand of \mathbb{R}^k for some *k*. By [9, Proposition 2.3(2)], \mathbb{R}^n is a right JS-*N*-injective *R*-module. Then $hi = \alpha_2 f$, for some $h \in \text{Hom}_R(N, \mathbb{R}^n)$. Put $g = \alpha_1 h: N \to M$. Then $gi = (\alpha_1 h)i = \alpha_1(hi) = \alpha_1(\alpha_2 f) = (\alpha_1 \alpha_2)f = I_M f = f$. Therefore, gi = f for some *R*-homomorphism $g: N \to M$.

 $(1) \Rightarrow (3)$ Suppose that *R* is a right JS-injective ring. Let *N* be any right *R*-module and $f: N \to R$ be a nonzero *R*-monomorphism with $f(N) \subseteq JS(R_R)$. Define $\hat{f}: N \to f(N)$ by $\hat{f}(a) = f(a)$, for all $a \in N$. It is clear that \hat{f} is an isomorphism. Let $g \in Hom_R(N, R)$, then we have $g\hat{f}^{-1}: f(N) \to R$ is an *R*-homomorphism. Since a ring *R* is right JS-injective and $f(N) \subseteq JS(R_R)$, there is $c \in R$ with $(g\hat{f}^{-1})(k) = ck$, for all $k \in f(N)$ (by [9, Proposition 2.7]). Let $n \in N$, then $f(n) \in f(N)$ and hence $(g\hat{f}^{-1})(f(n)) = cf(n)$. Since $(g\hat{f}^{-1})(f(n)) = g(n)$, it follows that g(n) = cf(n), for all $n \in N$. Thus $Hom_R(N, R) = Rf$.

(3) \Rightarrow (1) Let *K* be a submodule of JS(R_R), $f: K \rightarrow R$ a right *R*-homomorphism, and $i: K \rightarrow R$ the inclusion map. Then by hypothesis, we have Hom_{*R*}(*K*, *R*) = *Ri* and hence f = ci for some $c \in R$. Thus there exists $c \in R$ such that f(a) = ca for all $a \in K$. Then *R* is a right JS-injective ring, by [9, Proposition 2.7]. \Box

Theorem 2.2. Let *R* be a right JS-injective ring, then the following statements hold:

(1) $l_R r_R(m) = Rm$, for all $m \in JS(R_R)$.

(2) If $r_R(m) \subseteq r_R(n)$, where $m \in JS(R_R)$ and $n \in R$, then $Rn \subseteq Rm$.

(3) $l_R(mR \cap r_R(a)) = l_R(m) + Ra$, for all m, $a \in R$ with $am \in JS(R_R)$.

Proof. (1) Let $m \in JS(R_R)$ and let $n \in l_R r_R(m)$, By [1, Proposition 2.15, p. 37], $r_R(m) = r_R l_R r_R(m) \subseteq r_R(n)$. Define $f:mR \to R$ by f(mr) = nr for any $r \in R$, thus f is a well-defined right R-homomorphism. By hypothesis, there exists an endomorphism g of R such that g(x) = f(x), for all $x \in mR$. Then $n = n \cdot 1 = f(m \cdot 1) = f(m) = g(m) = g(1)m \in Rm$. Hence $l_R r_R(m) \subseteq Rm$. Conversely, let $rm \in Rm$, where $r \in R$. Thus rmk = 0 for all $k \in r_R(m)$ and hence $rm \in l_R r_R(m)$. Therefore, $l_R r_R(m) = Rm$.

(2) Let $n \in R$ and $m \in JS(R_R)$ such that $r_R(m) \subseteq r_R(n)$. Thus $n \in l_R r_R(n)$. Since $r_R(m) \subseteq r_R(n)$ (by hypothesis), $l_R r_R(n) \subseteq l_R r_R(m)$ (by [1, Proposition 2.15, p. 37]). So, $n \in l_R r_R(m)$. By (1), $n \in Rm$ and this implies that $Rn \subseteq Rm$. (3) Let $a, m \in R$ such that $am \in JS(R_R)$. If $x \in l_R(m) + Ra$, then $x = x_1 + x_2$ such that $x_1m = 0$ and $x_2 = sa$ for some $s \in R$. For all $b \in mR \cap r_R(a)$, we have b = mr and ab = 0 for some $r \in R$. Since $x_1b = x_1(mr) = (x_1m)r = 0$ and $x_2b = (sa)b = s(ab) = 0$, it is follows that $x \in l_R(mR \cap r_R(a))$ and this implies that $l_R(m) + Ra \subseteq l_R(mR \cap r_R(a))$. Let $y \in l_R(mR \cap r_R(a))$. If $r \in r_R(am)$, then (am)r = 0 and hence a(mr) = 0. Thus $mr \in mR \cap r_R(a)$ and hence (ym)r = y(mr) = 0 and so $ym \in l_R(r_R(am))$. Thus $r_R l_R(r_R(am)) \subseteq r_R(ym)$. By [1, Proposition 2.15, p. 37], $r_R(am) \subseteq r_R(ym)$. By hypothesis, $am \in JS(R_R)$. By (2), $Rym \subseteq Ram$. Thus ym = sam, for some $s \in R$ and hence $l_R(mR \cap r_R(a)) = 0$ and this implies that $y - sa \in l_R(m)$. Thus $y \in l_R(m) + Ra$ and hence $l_R(mR \cap r_R(a)) = l_R(mR \cap r_R(a)) = 0$ and this implies that $y - sa \in l_R(m)$. Thus $y \in l_R(m) + Ra$ and hence $l_R(mR \cap r_R(a)) = l_R(mR \cap r_R(a)) = 0$.

Proposition 2.3. If *R* is a right JS-injective ring, then $l_R(A_1 \cap A_2) = l_R(A_1) + l_R(A_2)$, for all submodules A_1 and A_2 of JS(R_R).

Proof. Let A_1 and A_2 be any two submodules of $JS(R_R)$. Let $r \in l_R(A_1 \cap A_2)$, thus $r.(A_1 \cap A_2) = 0$. Consider the mapping $f: A_1 + A_2 \rightarrow R$ is given by $f(a_1 + a_2) = r.a_1$, for all $a_1 \in A_1$, $a_2 \in A_2$. Thus f is a well-defined right R-homomorphism, since if $a_1 + a_2 = b_1 + b_2$, where $a_1, b_1 \in A_1$, $a_2, b_2 \in A_2$, then $a_1 - b_1 = b_2 - a_2 \in A_1 \cap A_2$. Since $r(A_1 \cap A_2) = 0$, we have that $r(a_1 - b_1) = 0$ and hence $ra_1 = rb_1$, so $f(a_1 + a_2) = f(b_1 + b_2)$ and this implies that f is a well-defined. Also, for every $a_1 + a_2, b_1 + b_2 \in A_1 + A_2$ where $a_1, b_1 \in A_1$, $a_2, b_2 \in A_2$ and $t \in R$, we have $f((a_1 + a_2) + (b_1 + b_2)) = f((a_1 + b_1) + (a_2 + b_2)) = r(a_1 + b_1) = ra_1 + rb_1 = f(a_1 + a_2) + f(b_1 + b_2)$ and $f((a_1 + a_2)t) = f(a_1t + a_2t) = r(a_1t) = (ra_1)t = (f(a_1 + a_2))t$. Thus, f is a well-defined right R-homomorphism. By JS-injectivity of R_R , there is a right R-homomorphism $g: R \to R$ such that $g(a_1 + a_2) = f(a_1 + a_2) = ra_1$, so $ra_1 - g(a_1) = g(a_2) = g(0 + a_2) = r.0 = 0$ and hence $(r - g(1))a_1 = 0$, for all $a_1 \in A_1$. So $r - g(1) \in l_R(A_1)$. Since $g(1) \in l_R(A_2)$ (because $g(1)A_2 = g(A_2) = 0$), we have that $r \in l_R(A_1) + l_R(A_2)$ and hence $l_R(A_1 \cap A_2) \subseteq l_R(A_1) + l_R(A_2)$. The other inclusion is obtained from [1, Proposition 2.16, p. 38]. \Box

Proposition 2.4. If *R* is a right JS-injective ring, then $JS(R_R) \subseteq Z(R_R)$.

Proof. Let $a \in JS(R_R) = J(R_R)J(R_R)$ and $bR \cap r_R(a) = 0$ for any $b \in R$. By Theorem 2.2(3), we have that $l_R(b) + Ra = l_R(bR \cap r_R(a)) = l_R(0) = R$, it follows that $l_R(b) + Ra = R$. Since $a \in JS(R_R) \subseteq J(R_R)$, it follows from [3, Corollary 9.1.3, p. 214] that $l_R(b) = R$ and hence that b = 0. So, $r_R(a)$ is an essential in R_R and hence $a \in Z(R_R)$. Therefore, $JS(R_R) \subseteq Z(R_R)$. \Box

A ring *R* is called reduced if *R* has no nonzero nilpotent elements [4, p.249].

Corollary 2.5. If *R* is a JS-injective reduced ring, then every right *R*-module is JS-injective.

Proof. Let *R* be a JS-injective reduced ring. By [4, Lemma 7.8, p. 249], $Z(R_R) = 0$. Since *R* is a right JS-injective ring, it follows from Proposition 2.4 that $JS(R_R) \subseteq Z(R_R)$ and hence $JS(R_R) = 0$. By [9, Corollary 2.9], every right *R*-module is JS-injective.

A subset *K* of a ring *R* is said to be right *t*-nilpotent if for each sequence $a_1, a_2, a_3, ...$ of elements of *K*, $a_n ... a_2 a_1 = 0$, for some $n \in \mathbb{N}$ [2, p.239].

Proposition 2.6. Let *R* be a right JS-injective ring. If the ascending chain $r_R(a_1) \subseteq r_R(a_2a_1) \subseteq \cdots \subseteq r_R(a_n \dots a_2a_1) \subseteq \cdots$ terminates for any sequence a_1, a_2, \dots in $J(R_R) \cap Z(R_R)$, then $J(R_R) \cap Z(R_R)$ is a right *t*-nilpotent and $JS(R_R) \subseteq J(R_R) \cap Z(R_R)$.

Proof. Let $a_1, a_2, ...$ be any sequence in $J(R_R) \cap Z(R_R)$, then we have $r_R(a_1) \subseteq r_R(a_2a_1) \subseteq ...$ By hypothesis, there exists $m \in \mathbb{N}$ such that $r_R(a_m ... a_2a_1) = r_R(a_{m+1}a_m ... a_2a_1)$. Assume that $a_m ... a_2a_1 \neq 0$. Since $r_R(a_{m+1}) \subseteq e^{ss} R_R$, then $(a_m ... a_2a_1)R \cap r_R(a_{m+1}) \neq 0$ and hence $0 \neq a_m ... a_2a_1r \in r_R(a_{m+1})$ for some $r \in R$. Then $a_{m+1}a_m ... a_2a_1r = 0$ and this means that $a_m ... a_2a_1r = 0$ and this is a contradiction. Hence $J(R_R) \cap Z(R_R)$ is a right *t*-nilpotent. Since $JS(R_R) \subseteq Z(R_R)$ by Proposition 2.4 and $JS(R_R) \subseteq J(R_R)$, we have that $JS(R_R) \subseteq J(R_R) \cap Z(R_R)$. \Box

Proposition 2.7. If *Ra* is a simple left ideal of a right JS-injective ring *R*, then $JS(aR) \cap soc(aR)$ is zero or simple, for any $a \in R$.

Proof. Suppose that $JS(aR) \cap soc(aR)$ is a nonzero. Assume that $JS(aR) \cap soc(aR)$ is not simple. Thus there exist simple submodules x_1R and x_2R of JS(aR) with $x_i \in aR$, i = 1, 2. Thus $x_1R \cap x_2R = 0$. By Proposition 2.3, $l_R(x_1R \cap x_2R) = l_R(x_1R) + l_R(x_2R)$. Since $l_R(0) = R$, it implies $l_R(x_1R) + l_R(x_2R) = R$. Since $x_1, x_2 \in aR$, we have $x_i = ar_i$ for some $r_i \in R$, i = 1, 2 and hence $l_R(a) \subseteq l_R(ar_i) = l_R(x_i)$, i = 1, 2. Since Ra is a simple (by assumption), $l_R(a)$ is a maximal left ideal in R, that is $l_R(x_1R) = l_R(x_2R) = l_R(a)$ (because $l_R(x_i) \subseteq R$) and hence $l_R(a) = R$. Therefore, a = 0 and this is a contradiction with minimality of Ra. Hence $JS(aR) \cap soc(aR)$ is simple. \Box

Proposition 2.8. Let *R* be a right JS-injective ring with $JS(R_R)$ is a semisimple module. Then $r_R l_R(JS(R_R)) = JS(R_R)$ if and only if $r_R l_R(K) = K$ for all submodule *K* of $JS(R_R)$.

Proof. (\Rightarrow) Suppose that $r_R l_R(JS(R_R)) = JS(R_R)$ and let K be a submodule of $JS(R_R)$. First, we have $K \subseteq r_R l_R(K)$ by [1, Proposition 2.15, p.37]. We will prove that K is essential in $r_R l_R(K)$. If $K \cap xR = 0$ for some $x \in r_R l_R(K)$, then by Proposition 2.3, $l_R(K \cap xR) = l_R(K) + l_R(xR) = l_R(0) = R$, since $x \in r_R l_R(K) \subseteq r_R l_R(JS(R_R)) = JS(R_R)$. Now, let $a \in l_R(K)$, then ax = 0. Thus a(xr) = 0 for any $r \in R$ and so $a \in l_R(xR)$. Hence $l_R(K) \subseteq l_R(xR)$. Thus $l_R(xR) = l_R(0) = R$ and hence x = 0 and this implies that K is essential in $r_R l_R(K)$. Since $r_R l_R(K) \subseteq r_R l_R(JS(R_R)) = JS(R_R)$ and $JS(R_R)$ is semisimple (by hypothesis), we have $r_R l_R(K)$ is semisimple and hence $K = r_R l_R(K)$.

(⇐) Suppose that $r_R l_R(K) = K$, for all right submodule K of $JS(R_R)$. Thus $r_R l_R(JS(R_R)) = JS(R_R)$. \Box

Proposition 2.9. Let *K* be a right ideal of *R* such that $K = eR \oplus B$ for some right ideal *B* of *R* with $B \subseteq JS(R_R)$ and an idempotent $e^2 = e \in K$. If *R* is a right JS-injective ring, then each *R*-homomorphism from *K* into *R* is extended to *R*.

Proof. Let *K* be a right ideal of *R* such that $K = eR \oplus B$ for a right ideal *B* of *R* with $B \subseteq JS(R_R)$ and an idempotent $e^2 = e \in K$. Let $f: K \to R$ be a homomorphism. We will prove that $K = eR \oplus (1 - e)B$. It is clear that eR + (1 - e)B is direct sum, since if $x \in eR \cap (1 - e)B$, then x = er and x = (1 - e)b, for some $b \in B$ and hence $b = er + eb \in eR \cap B = 0$. Thus b = 0 and hence x = 0, so $eR \cap (1 - e)B = 0$. Let $x \in K$, then x = a + b, for some $a \in eR, b \in B$, we can write x = a + eb + (1 - e)b and so $x \in eR \oplus (1 - e)B$. The converse, if $x \in eR \oplus (1 - e)B$, then x = a + (1 - e)b, for some $a \in eR$ and $(1 - e)b \in (1 - e)B$, we obtain $x = a + (1 - e)b = a - eb + b \in eR \oplus B$. Hence $K = eR \oplus (1 - e)B$. It is obvious that $(1 - e)B \subseteq JS(R_R)$ and (1 - e)B is a right ideal of *R*. Let f': $(1 - e)B \to R$ be a right *R*-homomorphism defined by f'(x) = f(x), for all $x \in (1 - e)B$. JS-injectivity of a ring *R* implies that there exists a right *R*-homomorphism $g: R \to R$ with g((1 - e)b) = f'((1 - e)b) for all $(1 - e)b \in (1 - e)B$. Define $\alpha: R \to R$ by $\alpha(y) = f(ey) + g((1 - e)y)$, for any $y \in R$. Then α is a well-defined *R*-homomorphism. If $x \in K$, then x = a + b where $a \in eR$ and $b \in (1 - e)B$. So $\alpha(x) = f(ex) + g((1 - e)x) = f(a) + f(b) = f(a) + g(b) = f(a + b) = f(x)$. Then we get the result. \Box

Corollary 2.10. Let *R* be a ring such that for any right ideal *K* of *R*, we have $K = eR \oplus B$ for some right ideal *B* of *R* with $B \subseteq JS(R_R)$ and an idempotent $e^2 = e \in K$. Then *R* is a right JS-injective ring if and only if *R* is a right self-injective ring.

Proof. Let *R* be a ring in which any right ideal *K* of *R*, we have $K = eR \oplus B$ for some right ideal *B* of *R* with $B \subseteq JS(R_R)$ and an idempotent $e^2 = e \in K$.

(⇒) Suppose that *R* is a right JS-injective ring. Let *I* be a right ideal of *R*, *i*: *I* → *R* an inclusion mapping and $f: I \rightarrow R$ any right *R*-homomorphism. By hypothesis, $I = eR \oplus B$ for some right ideal *B* of *R* with $B \subseteq JS(R_R)$ and an idempotent $e^2 = e \in K$. By Proposition 2.9, there is a right *R*-homomorphism $g: R \rightarrow R$ with g(a) = f(a), for all $a \in I$. Thus *R* is a right injective ring.

 (\Leftarrow) It is clear. \Box

Theorem 2.11. Let *R* be a right JS-injective ring, and let $a, b \in R$ with $b \in JS(R_R)$.

- (1) If *bR* embeds in *aR*, then *Rb* is an image of *Ra*.
- (2) If *aR* is an image of *bR*, then *Ra* embeds in *Rb*.

(3) If $bR \cong aR$, then $Ra \cong Rb$.

Proof. Let $a, b \in R$ with $b \in JS(R_R)$ and let $f \in Hom_R(bR, aR)$. Since $b \in JS(R_R)$ (by hypothesis), it follows from JS-injectivity of R that there is a right R-homomorphism $g: R \to R$ with $gi_1 = i_2 f$, where $i_1: bR \to R$ and $i_2: aR \to R$ are the inclusion maps. Thus f(b) = g(b) = g(1)b = vb, where v = g(1). Since $f(b) \in aR$, it follows that $vb \in aR$ and hence there is $u \in R$ with vb = au. Define $\theta: Ra \to Rb$ by $\theta(ra) = (ra)u = r(vb)$, for all $r \in R$. Thus θ is a well-defined left R-homomorphism.

(1) If *f* is a right monomorphism, we have $r_R(vb) \subseteq r_R(b)$. By Theorem 2.2(2), $Rb \subseteq Rvb$. Thus $b = r(vb) = \theta(ra)$ (for some $r \in R$). Hence θ is a left *R*-epimorphism.

(2) If *f* is an epimorphism, then there is $s \in R$ with f(bs) = a and hence a = f(b)s = vbs. We will prove $ker(\theta) = 0$. Let $x \in ker(\theta)$, thus $\theta(x) = 0$. Since $x \in Ra$, we have x = ra, for some $r \in R$. Thus $\theta(ra) = 0$ and hence r(vb) = 0. So, x = ra = r(bvs) = (rvb)s = 0 and hence $ker(\theta) = 0$. Therefore, θ is a left *R*-monomorphism.

(3) If *f* is an isomorphism, then by the proofs of (1) and (2), we have that θ is a left *R*-isomorphism. \Box

The class of JS-injective right *R*-modules is denoted by JSI_R .

Proposition 2.12. The following two statements are equivalent for a ring *R*:

(1) Mod- $R = JSI_R$.

(2)(*i*) *R* is a JS-injective ring;

(*ii*) every cyclic submodule of $JS(R_R)$ is projective.

Proof. (1) \Rightarrow (2). Suppose that every right *R*-module is JS-injective. Thus R_R is a JS-injective module and every epimorphic image of JS-injective module is JS-injective. By [9, Corollary 2.19], every submodule of $JS(R_R)$ is projective.

 $(2) \Rightarrow (1)$. Let aR be a cyclic submodule of $JS(R_R)$. By (2)(ii), aR is projective. Define $h: R \to aR$ by h(r) = ar, for any $r \in R$. It is clear that h is a right epimorohism. By projectivity of aR, there is a homomorphism $f: aR \to R$ such that (hf)(x) = x, for all $x \in aR$. Thus (hf)(a) = a and hence af(a) = a. Since R_R is JS-injective (by hypothesis), there is a homomorphism $g: R \to R$ such that g(x) = f(x), for all $x \in aR$. Thus a = af(a) = ag(a) = ag(1)a = aba, where b = g(1). Put e = ab. Thus $e^2 = abab = ab = e$ and ea = aba = a. Let $x \in aR$, then x = ar, for some $r \in R$. Thus $x = ar = ear \in eR$ and hence $aR \subseteq eR$. Let $y \in eR$, thus y = et for some $t \in R$ and hence $y = abt \in aR$.

Thus eR = aR. Since $R = eR \oplus (1 - e)R$, it follows that aR is a direct summand of R_R . Since R_R is JS-injective module, we have from [9, Corollary 2.4] that aR is a JS-injective module. By [9, Theorem 2.15], every right *R*-module is JS-injective.

Lemma 2.13. Let *R* be a ring, then $D(R) = \{a \in R \mid r_R(a) \cap mR \neq 0 \text{ for each } 0 \neq m \in JS(R_R)\}$ is a left ideal of *R*. **Proof.** It is obviously that D(R) is a non-empty set, since $0 \in D(R)$. If $a \in D(R)$ and $0 \neq m \in JS(R_R)$, thus $mb \in r_R(a) \cap mR$, for some $b \in R$ and so a(mb) = 0. Since (-a)(mb) = -(amb) = 0, then $mb \in r_R(-a)$ and hence $r_R(-a) \cap mR \neq 0$. Thus $-a \in D(R)$. Now, let $a_1, a_2 \in D(R)$ and $0 \neq m \in JS(R_R)$. We have that $0 \neq mb \in r_R(a_1) \cap mR$ for some $b \in R$. Since $a_2 \in D(R)$, it follows that $-a_2 \in D(R)$ and hence $0 \neq mbc \in r_R(-a_2) \cap mR$ for some $c \in R$. Therefore, $0 \neq mbc \in r_R(a_1) \cap r_R(-a_2) \cap mR$. Since $r_R(a_1) \cap r_R(-a_2) = r_R(a_1 + (-a_2)) = r_R(a_1 - a_2)$ (by [1, Proposition 2.16, p. 38]), we have $r_R(a_1 - a_2) \cap mR \neq 0$ for all $0 \neq m \in JS(R_R)$ and hence $a_1 - a_2 \in D(R)$. Also, let $x \in R$ and $a \in D(R)$. Since $r_R(a) \subseteq r_R(xa)$, it follows that $r_R(xa) \cap mR \neq 0$ for all $0 \neq m \in JS(R_R)$, that is $xa \in D(R)$. Thus D(R) is a left ideal of R.

Proposition 2.14. Let *R* be a right JS-injective ring. Then $r_R(a) \subsetneq r_R(a - axa)$, for all $a \notin D(R)$ and for some $x \in R$. **Proof.** For all $a \notin D(R)$, we can find $0 \ne m \in JS(R_R)$ such that $r_R(a) \cap mR = 0$. Clearly, $r_R(am) = r_R(m)$, so Rm = Ram by Theorem 2.2(2). Thus m = xam for some $x \in R$ and this implies that m - xam = 0 and hence (1 - xa)(m) = 0. Thus a. (1 - xa)(m) = a. 0 and so (a - axa)m = 0. Therefore, $m \in r_R(a - axa)$, but $m \notin r_R(a)$ because $r_R(a) \cap mR = 0$ and hence the inclusion is strictly.

Proposition 2.15. Let *R* be a right JS-injective ring, then the set $\{a \in R \mid r_R(1 - sa) = 0 \text{ for all } s \in R\}$ is contained in *D*(*R*).

Proof. We will prove that by contradiction. Assume that there is *a* such that $r_R(1 - sa) = 0$ for all $s \in R$ with $a \notin D(R)$. Then there exists $0 \neq m \in JS(R_R)$ with $r_R(a) \cap mR = 0$. If $r \in r_R(am)$, then (am)r = 0 and hence a(mr) = 0 and so $mr \in r_R(a)$. Since $r_R(a) \cap mR = 0$, it follows that mr = 0 and so $r \in r_R(m)$. Hence $r_R(am) \subseteq r_R(m)$. By Theorem 2.2(2), $Rm \subseteq Ram$. Thus m = sam, for some $s \in R$. Therefore, (1 - sa)m = 0 and hence $m \in r_R(1 - sa) = 0$ so m = 0 and this is a contradiction. Thus the statement is hold. \Box

References

- [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules. New York: Springer-Verlag, (1974).
- [2] P. E. Bland, Rings and Their Modules. Berlin: Walter de Gruyter & Co., (2011).
- [3] F. Kasch, Modules and Rings. London: Academic Press, (1982).
- [4] T. Y. Lam, Lectures on Modules and Rings. New York: Springer-Verlag, (1999).
- [5] A. R. Mehdi, "On L-injective modules," Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28(2) (2018), pp. 176–192.
- [6] E. A. Naim and A. R. Mehdi, "On gs-pseudo-injective modules," Journal of Discrete Mathematical Sciences, vol. 25, no. 5 (2022), pp. 1535-1545.
- [7] L. Shen and J. Chen, "New characterizations of quasi-Frobenius rings," Comm. Algebra, vol. 34 (2006), pp. 2157-2165.
- [8] A. A. Tuganbaev, "Muitiplication Modules," J. Mathimatical sciences, 123 (2004), pp. 3839-3905.
- [9] Z. A. Zone and A. R. Mehdi, "On a generalization of small-injective modules," Iraqi Journal of Science, to appear.