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1. Introduction

This paper assumes that R is an associative ring with identity 1 # 0 and any module is unitary. By a module (resp.
homomorphism) we mean a right R-module (resp. right R-homomorphism), if not otherwise specified. The class of
right R-modules is denoted by Mod-R. We use soc(M) and J(M) to denote, respectively, the socle and the Jacobson
radical of a right R-module M. We write Z(Ry) for the right singular ideal of a ring R. We denote to J(M)]J(Ry) by
JS(M) for any right R-module M. For any a € R, we use [ (a) (resp. rz(a)) to denote the left (resp. right) annihilator
ofainR.

Injective modules play important role in module theory, and extensively many authors were studied their
generalizations (see, for example, [5], [6], and [7]). If every R-homomorphism from a right ideal of R into Ry can be
extended to Ry, then a ring Ris called right self-injective ring [4, p.64]. Let N be a right R-module. A right
R-module M is called ]S-N-injective, if every right R-homomorphism from a submodule of J(N)]J(RR) into M extends
to N. If a right R-module M is JS-R-injective, then M is called ]JS-injective. A ring R is called right ]JS-injective if the
right R-module Ry, is ]S-injective [9]. ]S-injective rings are studied in this paper. We give many characterizations and
properties of right JS-injective rings. For examples, we prove that a ring R is a right ]S-injective if and only if for any
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N € Mod-R and a nonzero R-monomorphsim f from N to R with f(N) € JS(Rg), then Homg(R,N) = Rf. Also, we
show that if R is a right JS-injective ring, then lz(4; N 4,) = [x(A,) + [z (A4,), for all submodules A; and 4, of JS(Rg).
In Proposition 2.4, we prove that if R is a right JS-injective ring, then JS(Rg) € Z(Ry). Moreover, we show that if Ra
is a simple left ideal of a right JS-injective ring R, then JS(aR) N soc(aR) is zero or simple, for any a € R. Condition
under which JS-injectivity implies injectivity is given. We get that if R is a ring such that for any right ideal K of R,
we have K = eR®B for some right ideal B of R with B € JS(Rg) and an idempotent e? = e € K, then R is a right
JS-injective ring if and only if R is a right self-injective ring. Then, we prove that if R is a right ]S-injective ring, and
a,b € Rwith b €]S(Rg) and bR = aR, then Ra = Rb. Finally, we prove that every right R-module is ]S-injective if
and only if R is a JS-injective ring and every cyclic submodule of JS(Ry) is projective.

2. JS-Injective Rings

Let N be a right R-module. A right R-module M is called ]JS-N-injective, if every right R-homomorphism from a
submodule of J(N)]J(Rg) into M extends to N. A right R-module M is called ]S-injective if M is JS-R-injective. A ring R
is called right ]S-injective if the right R-module Ry is ]S-injective [9]. In this section, right ]S-injective rings are
studied extensively. Many characterizations and properties of this type of rings are given.

Recall that a right R-module M is called multiplication if any submodule N of M takes the form MI, for some ideal
I of R [8, p. 3839].
We begin this section with the following theorem, which gives some characterizations of right JS-injective rings.
Theorem 2.1. Consider the following statements for a ring R:
(1) R isaright]S-injective ring.
(2) If N and M are finitely generated projective right R-modules, then M is ]JS-N-injective.
(3) If N €Mod-R and f: N — R is an R-monomorphsim with f(N) € JS(Rg), then Homy (N, R) = Rf.
Then (2) = (1) and (1) & (3). Moreover, if J[S((Rz)™) is a multiplication module for any positive integer m,
then (1) = (2).
Proof. (2) = (1) Clear.

(1) = (2) Suppose that R is a right JS-injective ring with JS((Rg)™) is a multiplication module, for any m € Z*. Let
N and M be finitely generated projective right R-modules and K a submodule of JS(N). Let f:K — M be any
R-homomorphism. Since M is finitely generated, there exists a right R-epimorphism a,: R* — M for some positive
integer number n. Since M is projective, there is a right R-homomorphism a,: M — R" with a;a, = I);, where
Iyt M — M is the identity homomorphism. Since R is a right JS-injective ring, we have from [9, Proposition 2.5 and
Corollary 2.4] that R™ is a right JS-R™-injective R-module, for any m € Z*. Since N is finitely generated projective, N
is a direct summand of R* for some k. By [9, Proposition 2.3(2)], R" is a right JS-N-injective R-module. Then hi =
a,f, for some h € Homgz(N,R™). Put g = a;h: N — M. Then gi = (a h)i = ay(hi) = a,(ayf) = (qqa,)f = Iyf =
f. Therefore, gi = f for some R-homomorphism g:N — M.

(1) = (3) Suppose that R is a right JS-injective ring. Let N be any right R-module and f: N — R be a nonzero
R-monomorphism with f(N) € JS(Rg). Define f: N — f(N) by f(a) = f(a), for alla € N. It is clear that f is an
isomorphism. Let g € Homg(N, R), then we have gf~': f(N) — R is an R-homomorphism. Since a ring R is right
JS-injective and f(N) € JS(Rg) , there is ¢ € R with (gf ~1) (k) = ck, for all k € f(N) (by [9, Proposition 2.7]). Let

n € N, then f(n) € f(N) and hence (gf ") (f(n)) = cf(n). Since (gf "D (f(n)) = g(n), it follows that g(n) = cf (n),
foralln € N. Thus Homg(N, R) = Rf.

(3) = (1) Let K be a submodule of JS(RR), f: K — R a right R-homomorphism, and i: K — R the inclusion map.
Then by hypothesis, we have Homg (K, R) = Ri and hence f = ci for some ¢ € R. Thus there exists ¢ € R such that
f(a) = caforall a € K. Then R is a right JS-injective ring, by [9, Proposition 2.7]. o

Theorem 2.2. Let R be a right JS-injective ring, then the following statements hold:
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(1) lgrg(m) = Rm, forall m €]JS(RR).

(2) If rg(m) S rgx(n), where m € JS(Rg) and n € R, then Rn € Rm.

(3) lR(mR n rR(a)) = lz(m) + Ra, forallm,a € R with am € JS(Rg).

Proof. (1) Let m €]JS(Rg) and letn € lzrz(m), By [1, Proposition 2.15, p. 37], rg(m) = rglgrg(m) S rg(n). Define
f:mR — R by f(mr) = nr for any r € R, thus f is a well-defined right R-homomorphism. By hypothesis, there
exists an endomorphism g of R such that g(x) = f(x),forallx e mR.Thenn=n-1=f(m-1) = f(m) = g(n) =
g(1)m € Rm. Hence lzrz(m) € Rm. Conversely, let rm € Rm, where r € R.Thus rmk = 0 for all k € rz(m) and
hence rm € lgrg(m). Therefore, lzrgx(m) = Rm.

(2) Let m €R and m €]JS(Rg) such that rz(m) € rz(n). Thus n € lzrz(n). Since rz(Mm) S rz(n) (by hypothesis),
[grr(n) € Igrr(m) (by [1, Proposition 2.15, p. 37]). So, n € Izrz(m). By (1), n € Rm and this implies that Rn S Rm.
(3) Leta,m € R such thatam €]JS(Rg).If x € l[z(m) + Ra, thenx = x; + x, such that x;m = 0and x, = sa for
some s € R.Forall b € mR N rz(a), we have b = mr and ab = 0 for some r € R. Since x;b = x;(mr) = (xym)r =0
and x,b = (sa)b = s(ab) =0, it is follows that x € lR(mR n rR(a)) and this implies that [z(m) + Ra S
g (mR n rR(a)). Lety € lR(mR n rR(a)). If r € rg(am), then (am)r = 0 and hence a(mr) = 0. Thus mr € mR n
rz(a) and hence (ym)r = y(mr) = 0and so ym € l(rz(am)). Thus rzlz(rzg(am)) S rg(ym). By [1, Proposition
2.15, p. 37], rg(am) < rx(ym). By hypothesis, am € JS(Rg). By (2), Rym € Ram. Thus ym = sam, for some s € R
and hence (y — sa)m = 0 and this implies that y — sa € lz(m). Thus y € lz(m) + Ra and hence I (mR N1y (a)) =
lgm)+Ra. @O

Proposition 2.3. If R is a right JS-injective ring, then [z (4; N A4,) = [z(4;) + [x(A4,), for all submodules 4, and A, of
JS(Rg).

Proof. Let A; and A, be any two submodules of JS(Rg). Letr € [z(A; N A,), thusr.(A; N A;) = 0. Consider the
mapping f: A, + A, — R is given by f(a, + a,) =r.ay, for alla; € Ay, a, € 4,. Thus fis a well-defined right
R -homomorphism, since if a; + a, = b; + b, , where a;,b; € A;, a,, b, € A,, then a; —b; = b, —a, € 4; N 4,.
Since r(4; N A,) =0, we have that r(a; —b;) =0 and hencera, = rb;, so f(a; + a,) = f(b; + b,) and this
implies that f is a well-defined. Also, for every a; + a,, b, + b, € A; + A, where a,,b, € 4;, a,, b, € A,andt ER,
we have f((a;+ay)+ (by+by))=f((ay+b)+(ay+by))=r(a;+b) =ra; +rb; = fla; +a,) + f(by +
b,) and f((a1 + az)t) = f(a t + ayt) =r(a;t) = (ra)t = (f(a; + a))t. Thus, f is a well-defined  right
R-homomorphism. By ]S-injectivity of Rg, there is a right R-homomorphism g: R — R such that g(a; + a,) =
f(a; + ay), for all a; € 44, a, € A,. Thus g(a, + a,) =ra,, sora; —g(a;) =g(a,) =g(0+a,) =r.0=0 and
hence (r - g(l))a1 =0, for alla; € A;.Sor — g(1) € Iz(A,).Since g(1) € Iz(A,) (because g(1)A4, = g(A,) = 0),
we have that r € [z(4;) + [zx(A,) and hence [R(4; N 4,) € [x(A,) + [g(A;). The other inclusion is obtained from [1,
Proposition 2.16, p. 38]. o

Proposition 2.4. If R is a right JS-injective ring, then JS(Rz) € Z(Rg).

Proof. Let a € JS(Rg) =J(Rg)J(Rg) and bR N rg(a) = 0 for any b € R. By Theorem 2.2(3), we have that lz(b) + Ra =
g (bR Nrg (a)) = [x(0) = R, it follows that lz(b) + Ra = R.Since a €JS(Rg) S J(Rg), it follows from [3, Corollary
9.1.3, p. 214] that [z(b) = R and hence that b = 0. So, rz(a) is an essential in Rz and hence a € Z(Rg). Therefore,
JS(RR) € Z(Rg). D

A ring R is called reduced if R has no nonzero nilpotent elements [4, p.249].
Corollary 2.5. If R is a JS-injective reduced ring, then every right R-module is |S-injective.

Proof. Let R be a |S-injective reduced ring. By [4, Lemma 7.8, p. 249], Z(Rg) = 0. Since R is a right JS-injective ring, it
follows from Proposition 2.4 that JS(R;) S Z(Rg) and hence JS(Rg) = 0. By [9, Corollary 2.9], every right R-module
is JS-injective. O
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A subset K of a ring R is said to be right t-nilpotent if for each sequence ay,a,,as, .. of elements of K,
a, .. aya, =0, forsomen € N|[2,p.239].

Proposition 2.6. Let R be a right JS-injective ring. If the ascending chain 1z (a;) S rz(aya,) € - € rx(a, ...a,a,) <
--- terminates for any sequence ay, a,, ...in J(Rg) N Z(Rg), then J(Rg) N Z(Rg) is a right t-nilpotent and JS(Rg) <
J(Rr) N Z(Rg).

Proof. Let a4, a,, ... be any sequence in J(Rg) N Z(Ry), then we have rz(a,) € rz(a,a;) S ---. By hypothesis, there
exists m € Nsuch thatrgz(a,, ...a,a,) = 12 (@n41am - A20,). Assume thata,, ...a,a; # 0. Since rg(an41) S°° Ry,
then (a,, ...a,a;)R N 1g(@;y41) # 0 and hence 0 # a,, ...a,a,7 € rz(ay41) for somer € R. Then a,yq1ay, ... G0 7 =
0 and this means that a,, ...a,a,;7 = 0 and this is a contradiction. Hence J(Ry) N Z(Ry) is a right t-nilpotent. Since
JS(RR) € Z(Rg) by Proposition 2.4 and JS(Rg) € J(Rg), we have that JS(Rg) S J(Rg) N Z(Rg). O

Proposition 2.7. If Ra is a simple left ideal of a right JS-injective ring R, then JS(aR) N soc(aR) is zero or simple, for
any a € R.

Proof. Suppose that J[S(aR) N soc(aR) is a nonzero. Assume that JS(aR) N soc(aR) is not simple. Thus there exist
simple submodules x;R and x,R of ]JS(aR) with x; €aR,i=1,2. Thus x;RNx,R =0. By Proposition 2.3,
lg(x;R N x3R) =Ilzg(xyR) + Iz (x,R). Since lzx(0)=R, it implies Iz (x;R) + [g(x,R) = R. Since x;,x, € aR, we have
x; = ar; for somer; € R,i = 1,2 and hence ly(a) S lz(ar;) = [g(x;), i = 1,2. Since Ra is a simple (by assumption),
lz(a) is a maximal left ideal in R, that islz(x;R) = [z(x,R) = lz(a) (because lz(x;) & R) and hence [z(a) = R.
Therefore, a = 0 and this is a contradiction with minimality of Ra. Hence JS(aR) N soc(aR) is simple. O

Proposition 2.8. Let R be a right |S-injective ring with JS(Ry) is a semisimple module. Then 1zl (JS(RR)) =JS(RR) if
and only if rzlz(K) = K for all submodule K of JS(Rg).

Proof. (=) Suppose that rxlz (JS(Rg)) =JS(Rg) and let K be a submodule of JS(Rg). First, we have K C 1zl (K) by
[1, Proposition 2.15, p.37]. We will prove that K is essential in 131z (K). If K N xR = 0 for some x € rzlz(K), then by
Proposition 2.3, [z (K N xR) = [z(K) + g (xR) = lg(0) = R, since x € rxlz(K) S rxlz(JS(RR)) =JS(Rg). Now, let a €
lz(K), then ax = 0. Thus a(xr) = 0 for any r € R and so a € lz(xR). Hence Iz (K) < lz(xR). Thus lg(xR) = Iz(0) =
R and hence x = 0 and this implies that K is essential in rzl; (K). Since rzlz(K) S 1zl (JS(Rg)) =JS(RR) and JS(Rg)
is semisimple (by hypothesis), we have rzlz (K) is semisimple and hence K = rzl; (K).

(<) Suppose that 1z1z(K) = K, for all right submodule K of JS(Rg). Thus rzlz (JS(Rz)) = JS(Rg). O

Proposition 2.9. Let K be a right ideal of R such that K = eR@®B for some right ideal B of R with B € JS(Ry) and
an idempotent e? = e € K. If R is a right JS-injective ring, then each R-homomorphism from K into R is extended
to R.

Proof. Let K be a right ideal of R such that K = eR@®B for a right ideal B of R with B € JS(Ry) and an idempotent
e?=e€K.Let f:K— R be a homomorphism. We will prove that K =eR®(1—¢e)B. It is clear that
eR + (1 —e)B is direct sum, since if x € eR N (1 —e)B, thenx = er and x = (1 — e)b, for some b € B and hence
b=er+eb€eRNB=0.Thush=0and hencex =0,s0eRN (1 —e)B =0.Letx € K,thenx = a+ b, for some
a € eR,b € B,we can write x =a+eb+ (1 —e)band so x € eR®(1 — e)B. The converse, if x € eRB®(1 — e)B,
then x =a+ (1 —e)b, for some a € eR and (1—e)be(1—e)B, we obtain x=a+(1—e)b=a—eb+be€E
eR®B. Hence K = eR®(1 —e)B.It is obvious that (1 —e)B < JS(Rg) and (1 — e)B is a right ideal of R. Let f’
:(1—e)B — R bea right R-homomorphism defined by f’'(x) = f(x), for all x € (1 — e)B. ]JS-injectivity of a ring R
implies that there exists a right R-homomorphism g:R — Rwith g((1—e)b) = f'((1 — e)b) for all (1 —e)b €
(1 —e)B. Define a:R — R by a(y) =f(ey)+g((1 —e)y), for any yeER . Then a is a well-defined
R -homomorphism. If x € K, then x =a+ b where a € eR and b € (1 —e)B. So a(x) = f(ex) + g((l - e)x) =
f(a)+f(b) = f(a) + g(b) = f(a + b) = f(x). Then we get the result. o
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Corollary 2.10. Let R be a ring such that for any right ideal K of R, we have K = eR@®B for some right ideal B of R
with B € JS(Rg) and an idempotente? = e € K. ThenRis a right JS-injective ring if and only if R is a right
self-injective ring.

Proof. Let R be a ring in which any right ideal K of R, we have K = eR@®B for some right ideal B of R with B C
JS(Rg) and an idempotent e? = e € K.

(=) Suppose that Ris a right JS-injective ring. Let! be a right ideal of R,i:] — R an inclusion mapping and
f:1 — R any right R-homomorphism. By hypothesis, I = eR@®B for some right ideal B of R with B € JS(Rg) and an
idempotent e? = e € K. By Proposition 2.9, there is a right R-homomorphism g: R — R with g(a) = f(a), for all
a € I. Thus R is a right injective ring.

(&) Itisclear. o

Theorem 2.11. Let R be aright JS-injective ring, and let a, b € R with b € JS(Rg).
(1) If bR embeds in aR, then Rb is an image of Ra.

(2) If aR is an image of bR, then Ra embeds in Rb.

(3) If bR = aR, then Ra = Rb.

Proof. Leta,b € R with b € ]S(Rg) and let f € Homg (bR, aR). Since b € JS(Rg) (by hypothesis), it follows from
JS-injectivity of R that there is a right R-homomorphism g:R — R with gi; = i,f, where i;: bR - R and i,:aR = R
are the inclusion maps. Thus f(b) = g(b) = g(1)b = vb, where v = g(1). Since f(b) € aR, it follows that vb € aR
and hence there isu € R with vb = au. Define 8: Ra — Rb by 0(ra) = (ra)u = r(vb), for allr € R.Thus 6 is a
well-defined left R-homomorphism.

(1) If f is a right monomorphism, we have rz(vb) € rz(b). By Theorem 2.2(2), Rb € Rvb. Thus b = r(vh) = 6(ra)
(for some r € R). Hence 6 is aleft R-epimorphism.

(2) If fis an epimorphism, then there iss € R with f(bs) = a and hence a = f(b)s = vbs. We will prove
ker(6) = 0. Let x € ker(0),thus 0(x) = 0.Since x € Ra, we have x = ra, for some r € R.Thus 8(ra) = 0 and
hence r(vb) = 0. So,x = ra = r(bvs) = (rvb)s = 0 and hence ker(8) = 0. Therefore, 0 is a left R-monomorphism.

(3) If f is an isomorphism, then by the proofs of (1) and (2), we have that 8 is a left R-isomorphism. o
The class of JS-injective right R-modules is denoted by JSIj.
Proposition 2.12. The following two statements are equivalent for a ring R:

(1) Mod-R = JSIy.

(2)(i) R is a JS-injective ring;

(ii) every cyclic submodule of J[S(Ry) is projective.

Proof. (1) = (2).Suppose that every right R-module is ]S-injective. Thus Ry is a ]S-injective module and every
epimorphic image of ]JS-injective module is ]S-injective. By [9, Corollary 2.19], every submodule of JS(Ry) is
projective.

(2) = (1). Let aR be a cyclic submodule of JS(Rg). By (2)(ii), aR is projective. Define h: R — aR by h(r) = ar, for
any r € R. It is clear that h is a right epimorohism. By projectivity of aR, there is a homomorphism f:aR — R such
that (hf)(x) = x, for all x € aR. Thus (hf)(a) = a and hence af (a) = a. Since Ry is ]JS-injective (by hypothesis),
there is a homomorphism g: R — R such that g(x) = f(x), for all x € aR. Thus a = af(a) = ag(a) = ag(1)a =
aba, where b = g(1). Pute = ab. Thus e? = abab = ab = e and ea = aba = a. Let x € aR, then x = ar, for some
r € R. Thus x = ar = ear € eR and hence aR C eR. Lety € eR, thus y = et for some t € R and hence y = abt € aR.
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Thus eR = aR. Since R = eR®(1 — e)R, it follows that aR is a direct summand of Rg. Since Ry, is JS-injective module,
we have from [9, Corollary 2.4] that aR is a ]JS-injective module. By [9, Theorem 2.15], every right R-module is
]JS-injective. ]

Lemma 2.13. Let R be aring, then D(R) ={a €R |rR(a) NnmR # 0foreach 0 # m € JS(Rg)}is aleftideal of R.
Proof. It is obviously that D(R) is a non-empty set, since 0 € D(R).If a € D(R) and 0 # m € JS(Rg), thusmb €
rz(a) N mR, for some b € R and so a(mb) = 0. Since (—a)(mb) = —(amb) = 0, then mb € rz(—a) and hence
rgr(—a) N mR # 0. Thus —a € D(R).Now, let a;,a, € D(R) and 0 # m € JS(Rg). We have that 0 # mb € 1z(a,) N
mR for some b € R.Since a, € D(R), it follows that - a, € D(R) and hence 0 # mbc € rz(—a,) N mR for some c €
R. Therefore, 0 # mbc € rz(a;) N rg(—a,) N mR. Since rz(a;) Nrg(—a,) = rR(a1 + (—az)) =rg(a; —ay) (by [1,
Proposition 2.16, p. 38]), we have 1z (a; — a,) N mR # 0 forall 0 # m € JS(Rg) and hence a; — a, € D(R). Also, let
x € Rand a € D(R).Since rz(a) S rz(xa), it follows thatrz(xa) NmR # 0 for all 0 # m € JS(Rg), that is xa €
D(R). Thus D(R) is a left ideal of R. o

Proposition 2.14. Let R be a right JS-injective ring. Then 1z (a) & rzx(a — axa), forall a € D(R) and for some x € R.
Proof. For all a € D(R), we can find 0 # m € JS(Rg) such that rz(a) N mR = 0. Clearly, rg(am) = ry(in), so Rm =
Ram by Theorem 2.2(2). Thusm = xam for some x € R and this implies that m —xam = 0 and hence (1 —
xa)(m) = 0. Thus a. (1 — xa)(m) = a.0 and so (a — axa)m = 0. Therefore, m € rz(a — axa), but m & rz(a) because
1z(a) N mR = 0 and hence the inclusion is strictly. o

Proposition 2.15. Let R be a right JS-injective ring, then the set {a € R | (1 —sa) = 0 for all s € R}is contained
in D(R).

Proof. We will prove that by contradiction. Assume that there is a such that rz(1 —sa) =0 for all s € R with
a &€ D(R). Then there exists 0 # m € JS(Rg) with rz(a) N mR = 0. If r € rz(am), then (am)r =0 and hence
a(mr) = 0and so mr € rgz(a). Since rz(a) N mR = 0, it follows thatmr = 0 and sor € rz(m). Hence rz(am) <
1r(m). By Theorem 2.2(2), Rm S Ram. Thus m = sam, for some s € R. Therefore, (1 —sa)m =0 and hencem €
1R(1 —sa) = 0 som = 0 and this is a contradiction. Thus the statement is hold. o

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules. New York: Springer-Verlag, (1974).

[2] P.E.Bland, Rings and Their Modules. Berlin:Walter de Gruyter & Co., ( 2011).

[3] F. Kasch, Modules and Rings. London: Academic Press, (1982).

[4] T.Y.Lam, Lectures on Modules and Rings. New York: Springer-Verlag, (1999).

[5] A.R.Mehdi, “On L-injective modules,” Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28(2) (2018), pp. 176-192.

[6] E. A. Naim and A. R. Mehdi, “On gs-pseudo-injective modules,” Journal of Discrete Mathematical Sciences, vol. 25, no. 5 (2022) , pp. 1535-1545.
[7] L. Shen and J. Chen, “New characterizations of quasi-Frobenius rings,” Comm. Algebra, vol. 34 (2006), pp. 2157-2165.

[8] A. A. Tuganbaev, “Muitiplication Modules,” J. Mathimatical sciences, 123 (2004), pp. 3839-3905.

[9] Z. A. Zone and A. R. Mehdi, “On a generalization of small-injective modules,” Iragi Journal of Science, to appear.



