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A B S T R A C T 

Let R be a ring. A right R-module M is called JS-N-injective (where N is any right R-module) if every 

right R-homomorphism from a submodule of J(N)J(RR) into M extends to N [9]. A ring R is called right 

JS-injective if RR  is JS- R -injective. The right JS-injective rings are studied in this paper. Many 

characterizations and properties of this type of  rings are obtained. 
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1. Introduction 

     This paper assumes that 𝑅 is an associative ring with identity 1 ≠ 0 and any module is unitary. By a module (resp. 

homomorphism) we mean a right  𝑅-module (resp. right 𝑅-homomorphism), if not otherwise specified. The class of 

right  𝑅-modules is denoted by Mod-𝑅. We use soc(𝑀) and J(𝑀) to denote, respectively,  the socle and the Jacobson 

radical of a right 𝑅-module 𝑀. We write 𝑍(𝑅𝑅) for the right singular ideal of a ring 𝑅. We denote to J(𝑀)J(𝑅𝑅) by 

JS(𝑀) for any right  𝑅-module 𝑀. For any 𝑎 ∈ 𝑅, we use 𝑙𝑅(𝑎) (resp. 𝑟𝑅(𝑎)) to denote the left (resp. right) annihilator 

of 𝑎 in 𝑅.   

       Injective modules play important role in module theory, and extensively many authors were studied their 

generalizations (see, for example, [5], [6], and [7]). If every 𝑅-homomorphism from a right ideal of 𝑅 into 𝑅𝑅 can be 

extended to 𝑅𝑅, then a  ring  𝑅 is called right self-injective ring [4, p.64]. Let 𝑁 be a right 𝑅-module. A right                 

𝑅-module 𝑀 is called JS-𝑁-injective, if every right 𝑅-homomorphism from a submodule of J(𝑁)J(𝑅𝑅) into 𝑀 extends 

to 𝑁. If a right 𝑅-module 𝑀 is JS-𝑅-injective, then 𝑀 is called JS-injective. A ring 𝑅 is called right JS-injective if the 

right 𝑅-module 𝑅𝑅 is JS-injective [9]. JS-injective rings are studied in this paper. We give many characterizations and 

properties of right JS-injective rings. For examples, we prove that a ring 𝑅 is a right JS-injective if and only if for any 
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𝑁 ∈ Mod-𝑅 and a nonzero 𝑅-monomorphsim 𝑓 from 𝑁 to 𝑅 with 𝑓(𝑁) ⊆ JS(𝑅𝑅), then Hom𝑅(𝑅, 𝑁) = 𝑅𝑓. Also, we 

show that if 𝑅 is a right JS-injective ring, then 𝑙𝑅(𝐴1 ∩ 𝐴2) = 𝑙𝑅(𝐴1) + 𝑙𝑅(𝐴2), for all submodules 𝐴1 and 𝐴2 of JS(𝑅𝑅). 

In Proposition 2.4, we prove that if 𝑅 is a right JS-injective ring, then JS(𝑅𝑅) ⊆ 𝑍(𝑅𝑅). Moreover, we show that if 𝑅𝑎 

is a simple left ideal of a right JS-injective ring 𝑅, then JS(𝑎𝑅) ∩ soc(𝑎𝑅) is zero or simple, for any 𝑎 ∈ 𝑅. Condition 

under which JS-injectivity implies injectivity is given.  We get that if 𝑅 is a ring such that for any right ideal 𝐾 of 𝑅, 

we have 𝐾 = 𝑒𝑅⨁𝐵  for  some right ideal 𝐵 of 𝑅 with 𝐵 ⊆ JS(𝑅𝑅) and an idempotent 𝑒2 = 𝑒 ∈ 𝐾,  then  𝑅 is a right 

JS-injective ring if and only if  𝑅  is a right self-injective ring. Then, we prove that if 𝑅 is a right JS-injective ring, and 

𝑎, 𝑏 ∈ 𝑅 with  𝑏 ∈ JS(𝑅𝑅) and 𝑏𝑅 ≅ 𝑎𝑅, then  𝑅𝑎 ≅ 𝑅𝑏. Finally, we prove that every right 𝑅-module is JS-injective if 

and only if 𝑅 is a  JS-injective ring and every cyclic submodule of JS(𝑅𝑅) is projective. 

2. JS-Injective Rings  

        Let 𝑁 be a right 𝑅-module. A right 𝑅-module 𝑀 is called JS-𝑁-injective, if every right 𝑅-homomorphism from a 

submodule of J(𝑁)J(𝑅𝑅) into 𝑀 extends to 𝑁. A right 𝑅-module 𝑀 is called  JS-injective if 𝑀 is JS-𝑅-injective. A ring 𝑅 

is called right  JS-injective if the right  𝑅-module 𝑅𝑅 is JS-injective [9]. In this section, right  JS-injective rings are 

studied extensively. Many characterizations and properties of this type of rings are given.   

      Recall that a right 𝑅-module 𝑀 is called  multiplication if any submodule 𝑁 of 𝑀 takes the form 𝑀𝐼, for some ideal 

𝐼 of 𝑅 [8, p. 3839].  

      We begin this section with the following theorem, which gives some characterizations of  right JS-injective rings. 

Theorem 2.1. Consider the following statements for a ring 𝑅: 

(1) 𝑅 is a right JS-injective ring.  

(2) If 𝑁 and 𝑀 are finitely generated projective right 𝑅-modules, then 𝑀 is JS-𝑁-injective. 

(3) If 𝑁 ∈ Mod-𝑅 and 𝑓: 𝑁 → 𝑅 is an 𝑅-monomorphsim with 𝑓(𝑁) ⊆ JS(𝑅𝑅), then Hom𝑅(𝑁, 𝑅) = 𝑅𝑓. 

Then (2) ⟹ (1) and (1) ⟺ (3). Moreover, if JS((𝑅𝑅)𝑚) is a multiplication module for any positive integer 𝑚, 

then (1) ⟹ (2). 

Proof. (2) ⟹ (1) Clear. 

(1) ⟹ (2) Suppose that 𝑅 is a right JS-injective ring with JS((𝑅𝑅)𝑚) is a multiplication module, for any 𝑚 ∈  ℤ+. Let 

𝑁 and 𝑀 be finitely generated projective right 𝑅-modules and 𝐾 a submodule of JS(𝑁). Let 𝑓: 𝐾 ⟶ 𝑀 be any                          

𝑅-homomorphism. Since 𝑀 is finitely generated, there exists a right 𝑅-epimorphism 𝛼1: 𝑅𝑛 ⟶ 𝑀 for some positive 

integer number 𝑛. Since 𝑀 is projective, there is a right 𝑅-homomorphism 𝛼2: 𝑀 ⟶ 𝑅𝑛 with 𝛼1𝛼2 = 𝐼𝑀 , where 

𝐼𝑀: 𝑀 ⟶ 𝑀 is the identity homomorphism. Since 𝑅 is a right JS-injective ring, we have from [9, Proposition 2.5 and  

Corollary 2.4]  that 𝑅𝑛 is a right JS-𝑅𝑚-injective 𝑅-module, for any 𝑚 ∈ ℤ+. Since 𝑁 is finitely generated projective, 𝑁 

is a direct summand of 𝑅𝑘  for some 𝑘. By [9, Proposition 2.3(2)], 𝑅𝑛 is a right JS-𝑁-injective 𝑅-module. Then ℎ𝑖 =

𝛼2𝑓, for some ℎ ∈ Hom𝑅(𝑁, 𝑅𝑛). Put 𝑔 = 𝛼1ℎ: 𝑁 ⟶ 𝑀. Then 𝑔𝑖 = (𝛼1ℎ)𝑖 = 𝛼1(ℎ𝑖)  =  𝛼1(𝛼2𝑓) = (𝛼1𝛼2)𝑓 =  𝐼𝑀𝑓 =

 𝑓. Therefore, 𝑔𝑖 = 𝑓 for some  𝑅-homomorphism 𝑔: 𝑁 ⟶ 𝑀.          

(1) ⟹ (3) Suppose that 𝑅 is a right JS-injective ring. Let 𝑁 be any right  𝑅-module and 𝑓: 𝑁 ⟶ 𝑅 be a nonzero            

𝑅-monomorphism with 𝑓(𝑁) ⊆ JS(𝑅𝑅). Define �́�: 𝑁 ⟶ 𝑓(𝑁) by �́�(𝑎) = 𝑓(𝑎), for all 𝑎 ∈ 𝑁. It is clear that �́� is an 

isomorphism.  Let 𝑔 ∈ Hom𝑅(𝑁, 𝑅), then we have 𝑔�́�−1: 𝑓(𝑁) ⟶ 𝑅 is an 𝑅-homomorphism. Since a ring 𝑅 is right    

JS-injective and 𝑓(𝑁) ⊆ JS(𝑅𝑅) , there is 𝑐 ∈ 𝑅 with (𝑔�́�−1)(𝑘) = 𝑐𝑘, for all 𝑘 ∈ 𝑓(𝑁) (by [9, Proposition 2.7]). Let 

𝑛 ∈ 𝑁, then 𝑓(𝑛) ∈ 𝑓(𝑁) and hence (𝑔�́�−1)(𝑓(𝑛)) = 𝑐𝑓(𝑛). Since (𝑔�́�−1)(𝑓(𝑛)) = 𝑔(𝑛), it follows that 𝑔(𝑛) = 𝑐𝑓(𝑛), 

for all 𝑛 ∈ 𝑁. Thus Hom𝑅(𝑁, 𝑅) = 𝑅𝑓. 

(3) ⟹ (1) Let 𝐾 be a submodule of JS(𝑅𝑅), 𝑓: 𝐾 ⟶ 𝑅 a right 𝑅-homomorphism, and 𝑖: 𝐾 ⟶ 𝑅 the inclusion map. 

Then by hypothesis, we have Hom𝑅(𝐾, 𝑅) = 𝑅𝑖 and hence 𝑓 = 𝑐𝑖 for some 𝑐 ∈ 𝑅. Thus there exists 𝑐 ∈ 𝑅 such that 

𝑓(𝑎) = 𝑐𝑎 for all 𝑎 ∈ 𝐾. Then 𝑅 is a right JS-injective ring, by [9, Proposition 2.7]. □ 

 

Theorem 2.2. Let 𝑅 be a right JS-injective ring, then the following statements hold:  
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(1)  𝑙𝑅𝑟𝑅(𝑚) = 𝑅𝑚,   for all  𝑚 ∈ JS(𝑅𝑅). 

(2)  If 𝑟𝑅(𝑚) ⊆ 𝑟𝑅(𝑛),  where  𝑚 ∈ JS(𝑅𝑅)  and 𝑛 ∈ 𝑅, then  𝑅𝑛 ⊆ 𝑅𝑚. 

(3)  𝑙𝑅(𝑚𝑅 ∩ 𝑟𝑅(𝑎)) = 𝑙𝑅(𝑚) + 𝑅𝑎, for all 𝑚 , 𝑎 ∈ 𝑅 with 𝑎𝑚 ∈ JS(𝑅𝑅). 

Proof. (1)  Let  𝑚 ∈ JS(𝑅𝑅) and let 𝑛 ∈ 𝑙𝑅𝑟𝑅(𝑚), By [1, Proposition  2.15, p. 37], 𝑟𝑅(𝑚) = 𝑟𝑅𝑙𝑅𝑟𝑅(𝑚) ⊆ 𝑟𝑅(𝑛). Define 

𝑓: 𝑚𝑅 ⟶ 𝑅 by 𝑓(𝑚𝑟) = 𝑛𝑟  for any 𝑟 ∈ 𝑅, thus 𝑓 is a well-defined right 𝑅-homomorphism. By hypothesis, there 

exists  an endomorphism  𝑔 of 𝑅 such that 𝑔(𝑥) = 𝑓(𝑥), for all 𝑥 ∈ 𝑚𝑅. Then 𝑛 = 𝑛 ∙ 1 = 𝑓(𝑚 ∙ 1) = 𝑓(𝑚) = 𝑔(𝑚) =

𝑔(1)𝑚 ∈ 𝑅𝑚. Hence 𝑙𝑅𝑟𝑅(𝑚) ⊆ 𝑅𝑚. Conversely, let  𝑟𝑚 ∈ 𝑅𝑚, where  𝑟 ∈ 𝑅. Thus 𝑟𝑚𝑘 = 0 for all 𝑘 ∈ 𝑟𝑅(𝑚) and 

hence 𝑟𝑚 ∈ 𝑙𝑅𝑟𝑅(𝑚). Therefore,  𝑙𝑅𝑟𝑅(𝑚) = 𝑅𝑚. 

(2)   Let   𝑛 ∈ 𝑅  and  𝑚 ∈JS(𝑅𝑅) such that  𝑟𝑅(𝑚) ⊆ 𝑟𝑅(𝑛). Thus 𝑛 ∈ 𝑙𝑅𝑟𝑅(𝑛). Since  𝑟𝑅(𝑚) ⊆ 𝑟𝑅(𝑛)  (by hypothesis), 

𝑙𝑅𝑟𝑅(𝑛) ⊆ 𝑙𝑅𝑟𝑅(𝑚) (by [1, Proposition 2.15, p. 37]). So, 𝑛 ∈ 𝑙𝑅𝑟𝑅(𝑚). By (1),  𝑛 ∈ 𝑅𝑚  and this implies that   𝑅𝑛 ⊆ 𝑅𝑚. 

(3)  Let 𝑎, 𝑚 ∈ 𝑅 such that 𝑎𝑚 ∈JS(𝑅𝑅). If  𝑥 ∈ 𝑙𝑅(𝑚) + 𝑅𝑎, then 𝑥 = 𝑥1 + 𝑥2  such that  𝑥1𝑚 = 0 and  𝑥2 = 𝑠𝑎 for 

some 𝑠 ∈ 𝑅. For all 𝑏 ∈ 𝑚𝑅 ∩ 𝑟𝑅(𝑎), we have  𝑏 = 𝑚𝑟 and  𝑎𝑏 = 0 for some 𝑟 ∈ 𝑅. Since  𝑥1𝑏 = 𝑥1(𝑚𝑟) = (𝑥1𝑚)𝑟 = 0  

and  𝑥2𝑏 = (𝑠𝑎)𝑏 = 𝑠(𝑎𝑏) = 0,  it is follows  that  𝑥 ∈ 𝑙𝑅(𝑚𝑅 ∩ 𝑟𝑅(𝑎))  and this implies that 𝑙𝑅(𝑚) + 𝑅𝑎 ⊆

𝑙𝑅(𝑚𝑅 ∩ 𝑟𝑅(𝑎)). Let 𝑦 ∈ 𝑙𝑅(𝑚𝑅 ∩ 𝑟𝑅(𝑎)). If 𝑟 ∈ 𝑟𝑅(𝑎𝑚), then  (𝑎𝑚)𝑟 = 0  and hence 𝑎(𝑚𝑟) = 0.  Thus  𝑚𝑟 ∈ 𝑚𝑅 ∩

𝑟𝑅(𝑎) and hence (𝑦𝑚)𝑟 = 𝑦(𝑚𝑟) = 0 and so 𝑦𝑚 ∈ 𝑙𝑅(𝑟𝑅(𝑎𝑚)). Thus 𝑟𝑅𝑙𝑅(𝑟𝑅(𝑎𝑚))  ⊆ 𝑟𝑅(𝑦𝑚). By [1, Proposition  

2.15,  p. 37], 𝑟𝑅(𝑎𝑚) ⊆ 𝑟𝑅(𝑦𝑚). By hypothesis, 𝑎𝑚 ∈ JS(𝑅𝑅). By (2), 𝑅𝑦𝑚 ⊆ 𝑅𝑎𝑚.  Thus 𝑦𝑚 = 𝑠𝑎𝑚,  for some  𝑠 ∈ 𝑅 

and  hence (𝑦 − 𝑠𝑎)𝑚 = 0 and this implies that 𝑦 − 𝑠𝑎 ∈ 𝑙𝑅(𝑚). Thus  𝑦 ∈ 𝑙𝑅(𝑚) + 𝑅𝑎 and hence  𝑙𝑅(𝑚𝑅 ∩ 𝑟𝑅(𝑎)) =

𝑙𝑅(𝑚) + 𝑅𝑎.       □ 

 

Proposition 2.3. If 𝑅 is a right JS-injective ring, then 𝑙𝑅(𝐴1 ∩ 𝐴2) = 𝑙𝑅(𝐴1) + 𝑙𝑅(𝐴2), for all submodules 𝐴1 and 𝐴2 of  

JS(𝑅𝑅). 

Proof. Let 𝐴1 and 𝐴2 be any two submodules of JS(𝑅𝑅). Let 𝑟 ∈ 𝑙𝑅(𝐴1 ∩ 𝐴2), thus 𝑟. (𝐴1 ∩ 𝐴2) = 0.  Consider the 

mapping 𝑓: 𝐴1 + 𝐴2 ⟶ 𝑅  is  given  by 𝑓(𝑎1 + 𝑎2) = 𝑟. 𝑎1, for all 𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴2. Thus  𝑓 is  a  well-defined right         

𝑅 -homomorphism, since if 𝑎1 + 𝑎2 = 𝑏1 + 𝑏2 ,  where  𝑎1, 𝑏1 ∈ 𝐴1,    𝑎2, 𝑏2 ∈ 𝐴2,  then 𝑎1 − 𝑏1 = 𝑏2 − 𝑎2 ∈ 𝐴1 ∩ 𝐴2. 

Since  𝑟(𝐴1 ∩ 𝐴2) = 0,  we  have  that  𝑟(𝑎1 − 𝑏1) = 0  and hence 𝑟𝑎1 =  𝑟𝑏1,  so  𝑓(𝑎1 + 𝑎2) = 𝑓(𝑏1 + 𝑏2) and this 

implies that 𝑓 is a well-defined.  Also, for every 𝑎1 + 𝑎2, 𝑏1 + 𝑏2  ∈ 𝐴1 + 𝐴2 where 𝑎1, 𝑏1 ∈ 𝐴1, 𝑎2, 𝑏2 ∈ 𝐴2 and 𝑡 ∈ 𝑅, 

we have 𝑓((𝑎1 + 𝑎2) + (𝑏1 + 𝑏2)) = 𝑓((𝑎1 + 𝑏1) + (𝑎2 + 𝑏2)) =  𝑟(𝑎1 + 𝑏1) = 𝑟𝑎1 + 𝑟𝑏1 = 𝑓(𝑎1 + 𝑎2) + 𝑓(𝑏1 +

𝑏2) and 𝑓((𝑎1 + 𝑎2)𝑡) = 𝑓(𝑎1𝑡 + 𝑎2𝑡) = 𝑟(𝑎1𝑡)  =  (𝑟𝑎1)𝑡 =  (𝑓(𝑎1 + 𝑎2))𝑡 . Thus, 𝑓  is a well-defined  right                                   

𝑅-homomorphism. By JS-injectivity of 𝑅𝑅, there is a right 𝑅-homomorphism 𝑔: 𝑅 ⟶ 𝑅 such that  𝑔(𝑎1 + 𝑎2) =

𝑓(𝑎1 + 𝑎2),  for all 𝑎1 ∈ 𝐴1 , 𝑎2 ∈ 𝐴2.  Thus 𝑔(𝑎1 + 𝑎2) = 𝑟𝑎1 , so 𝑟𝑎1 − 𝑔(𝑎1) = 𝑔(𝑎2) = 𝑔(0 + 𝑎2) = 𝑟. 0 = 0  and 

hence  (𝑟 − 𝑔(1))𝑎1 = 0, for all 𝑎1 ∈ 𝐴1. So 𝑟 − 𝑔(1) ∈ 𝑙𝑅(𝐴1). Since  𝑔(1)  ∈ 𝑙𝑅(𝐴2) (because 𝑔(1)𝐴2 = 𝑔(𝐴2) = 0), 

we have that  𝑟 ∈  𝑙𝑅(𝐴1) + 𝑙𝑅(𝐴2) and hence 𝑙𝑅(𝐴1 ∩ 𝐴2) ⊆ 𝑙𝑅(𝐴1) + 𝑙𝑅(𝐴2). The other inclusion is obtained from [1, 

Proposition 2.16, p. 38].  □ 

 

Proposition 2.4. If 𝑅 is a right JS-injective ring, then JS(𝑅𝑅) ⊆ 𝑍(𝑅𝑅). 

Proof. Let 𝑎 ∈ JS(𝑅𝑅) =J(𝑅𝑅)J(𝑅𝑅) and  𝑏𝑅 ∩ 𝑟𝑅(𝑎) = 0 for any 𝑏 ∈ 𝑅. By Theorem 2.2(3), we have that 𝑙𝑅(𝑏) + 𝑅𝑎 =

𝑙𝑅(𝑏𝑅 ∩ 𝑟𝑅(𝑎)) = 𝑙𝑅(0) = 𝑅, it follows that  𝑙𝑅(𝑏) + 𝑅𝑎 = 𝑅. Since 𝑎 ∈JS(𝑅𝑅) ⊆  𝐽(𝑅𝑅), it follows from [3, Corollary 

9.1.3, p. 214] that 𝑙𝑅(𝑏) = 𝑅 and hence that 𝑏 = 0. So, 𝑟𝑅(𝑎) is an essential in 𝑅𝑅 and hence 𝑎 ∈ 𝑍(𝑅𝑅). Therefore, 

JS(𝑅𝑅) ⊆ 𝑍(𝑅𝑅). □   

      A ring 𝑅 is called reduced if 𝑅 has no nonzero nilpotent elements [4, p.249]. 

Corollary 2.5. If 𝑅 is a JS-injective reduced ring, then every right 𝑅-module is JS-injective.  

Proof. Let 𝑅 be a JS-injective reduced ring. By [4, Lemma 7.8, p. 249], 𝑍(𝑅𝑅) = 0. Since 𝑅 is a right JS-injective ring, it 

follows from Proposition 2.4 that JS(𝑅𝑅) ⊆ 𝑍(𝑅𝑅) and hence JS(𝑅𝑅) = 0. By [9, Corollary 2.9], every right 𝑅-module 

is JS-injective.       □ 
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         A subset 𝐾 of a ring 𝑅 is said to be right 𝑡-nilpotent if for each sequence  𝑎1, 𝑎2, 𝑎3, …   of elements of 𝐾, 

𝑎𝑛  … 𝑎2𝑎1 = 0, for some 𝑛 ∈ ℕ [2, p.239]. 

 

Proposition 2.6. Let 𝑅 be a right JS-injective ring. If the ascending chain 𝑟𝑅(𝑎1) ⊆ 𝑟𝑅(𝑎2𝑎1) ⊆ ⋯ ⊆ 𝑟𝑅(𝑎𝑛 … 𝑎2𝑎1) ⊆

⋯ terminates for any sequence 𝑎1, 𝑎2, … in J(𝑅𝑅) ∩ 𝑍(𝑅𝑅), then J(𝑅𝑅) ∩ 𝑍(𝑅𝑅) is a right 𝑡-nilpotent and JS(𝑅𝑅) ⊆

J(𝑅𝑅) ∩ 𝑍(𝑅𝑅). 

Proof. Let  𝑎1, 𝑎2, … be any sequence in J(𝑅𝑅) ∩ 𝑍(𝑅𝑅), then we have 𝑟𝑅(𝑎1) ⊆ 𝑟𝑅(𝑎2𝑎1) ⊆ ⋯. By hypothesis, there 

exists 𝑚 ∈ ℕ such that 𝑟𝑅(𝑎𝑚 … 𝑎2𝑎1) = 𝑟𝑅(𝑎𝑚+1𝑎𝑚 … 𝑎2𝑎1). Assume that 𝑎𝑚 … 𝑎2𝑎1 ≠ 0. Since 𝑟𝑅(𝑎𝑚+1) ⊆𝑒𝑠𝑠 𝑅𝑅 , 

then (𝑎𝑚 … 𝑎2𝑎1)𝑅 ∩ 𝑟𝑅(𝑎𝑚+1) ≠ 0 and hence 0 ≠ 𝑎𝑚 … 𝑎2𝑎1𝑟 ∈ 𝑟𝑅(𝑎𝑚+1) for some 𝑟 ∈ 𝑅. Then 𝑎𝑚+1𝑎𝑚 … 𝑎2𝑎1𝑟 =

0 and this means that 𝑎𝑚 … 𝑎2𝑎1𝑟 = 0 and this is a contradiction. Hence   J(𝑅𝑅) ∩ Z(𝑅𝑅) is a right 𝑡-nilpotent. Since  

JS(𝑅𝑅) ⊆ 𝑍(𝑅𝑅) by Proposition 2.4 and JS(𝑅𝑅) ⊆ J(𝑅𝑅), we have that JS(𝑅𝑅) ⊆ J(𝑅𝑅) ∩ 𝑍(𝑅𝑅).  □   

Proposition 2.7. If 𝑅𝑎 is a simple left ideal of a right JS-injective ring 𝑅, then JS(𝑎𝑅) ∩ 𝑠𝑜𝑐(𝑎𝑅) is zero or simple, for 

any 𝑎 ∈ 𝑅. 

Proof. Suppose that JS(𝑎𝑅) ∩ 𝑠𝑜𝑐(𝑎𝑅) is a nonzero. Assume that JS(𝑎𝑅) ∩ 𝑠𝑜𝑐(𝑎𝑅) is not simple. Thus there exist 

simple submodules 𝑥1𝑅  and 𝑥2𝑅  of JS (𝑎𝑅)  with 𝑥𝑖 ∈ 𝑎𝑅 , 𝑖 = 1, 2 . Thus 𝑥1𝑅 ∩ 𝑥2𝑅 = 0 . By Proposition 2.3, 

 𝑙𝑅(𝑥1𝑅 ∩ 𝑥2𝑅) = 𝑙𝑅(𝑥1𝑅) + 𝑙𝑅(𝑥2𝑅). Since 𝑙𝑅(0)= 𝑅, it implies 𝑙𝑅(𝑥1𝑅) + 𝑙𝑅(𝑥2𝑅) = 𝑅. Since 𝑥1, 𝑥2 ∈ 𝑎𝑅, we have 

𝑥𝑖 = 𝑎𝑟𝑖  for some 𝑟𝑖 ∈ 𝑅, 𝑖 = 1, 2 and hence 𝑙𝑅(𝑎) ⊆ 𝑙𝑅(𝑎𝑟𝑖) = 𝑙𝑅(𝑥𝑖), 𝑖 = 1, 2. Since 𝑅𝑎 is a simple (by assumption), 

𝑙𝑅(𝑎) is a maximal left ideal in 𝑅, that is 𝑙𝑅(𝑥1𝑅) = 𝑙𝑅(𝑥2𝑅) = 𝑙𝑅(𝑎) (because 𝑙𝑅(𝑥𝑖) ⊊ 𝑅) and hence 𝑙𝑅(𝑎) = 𝑅. 

Therefore, 𝑎 = 0 and this is a contradiction with minimality of 𝑅𝑎. Hence  JS(𝑎𝑅) ∩ 𝑠𝑜𝑐(𝑎𝑅) is simple.  □   

Proposition 2.8. Let 𝑅 be a right JS-injective ring with JS(𝑅𝑅) is a semisimple module. Then 𝑟𝑅𝑙𝑅(JS(𝑅𝑅)) = JS(𝑅𝑅) if 

and only if  𝑟𝑅𝑙𝑅(𝐾) = 𝐾 for all submodule 𝐾  of JS(𝑅𝑅). 

Proof. (⇒) Suppose that 𝑟𝑅𝑙𝑅(JS(𝑅𝑅)) =JS(𝑅𝑅) and let 𝐾  be a submodule of JS(𝑅𝑅). First, we have 𝐾 ⊆ 𝑟𝑅𝑙𝑅(𝐾) by    

[1, Proposition 2.15, p.37]. We will prove that 𝐾 is essential in  𝑟𝑅𝑙𝑅(𝐾). If 𝐾 ∩ 𝑥𝑅 = 0 for some 𝑥 ∈ 𝑟𝑅𝑙𝑅(𝐾), then by 

Proposition 2.3, 𝑙𝑅(𝐾 ∩ 𝑥𝑅) = 𝑙𝑅(𝐾) + 𝑙𝑅(𝑥𝑅) = 𝑙𝑅(0) = 𝑅, since 𝑥 ∈ 𝑟𝑅𝑙𝑅(𝐾) ⊆ 𝑟𝑅𝑙𝑅(JS(𝑅𝑅)) =JS(𝑅𝑅). Now, let  𝑎 ∈

𝑙𝑅(𝐾), then 𝑎𝑥 = 0. Thus 𝑎(𝑥𝑟) = 0 for any 𝑟 ∈ 𝑅 and so  𝑎 ∈ 𝑙𝑅(𝑥𝑅). Hence 𝑙𝑅(𝐾) ⊆ 𝑙𝑅(𝑥𝑅). Thus 𝑙𝑅(𝑥𝑅) = 𝑙𝑅(0) =

𝑅 and hence 𝑥 = 0 and this implies that 𝐾 is essential in  𝑟𝑅𝑙𝑅(𝐾). Since 𝑟𝑅𝑙𝑅(𝐾) ⊆ 𝑟𝑅𝑙𝑅(JS(𝑅𝑅)) = JS(𝑅𝑅) and JS(𝑅𝑅) 

is semisimple (by hypothesis), we have 𝑟𝑅𝑙𝑅(𝐾) is semisimple and hence 𝐾 = 𝑟𝑅𝑙𝑅(𝐾).                    

(⇐) Suppose that  𝑟𝑅𝑙𝑅(𝐾) = 𝐾, for all right submodule 𝐾 of JS(𝑅𝑅). Thus 𝑟𝑅𝑙𝑅(JS(𝑅𝑅)) =  JS(𝑅𝑅).  □ 

Proposition 2.9. Let  𝐾 be a right ideal of 𝑅 such that 𝐾 = 𝑒𝑅⨁𝐵  for  some right ideal 𝐵 of 𝑅 with 𝐵 ⊆ JS(𝑅𝑅) and 

an idempotent 𝑒2 = 𝑒 ∈ 𝐾.  If  𝑅 is a right JS-injective ring, then each  𝑅-homomorphism from  𝐾 into  𝑅  is extended 

to 𝑅. 

Proof.   Let  𝐾 be a right ideal of 𝑅 such that 𝐾 = 𝑒𝑅⨁𝐵  for  a right ideal 𝐵 of 𝑅 with 𝐵 ⊆ JS(𝑅𝑅) and an idempotent 

𝑒2 = 𝑒 ∈ 𝐾.  Let 𝑓: 𝐾 ⟶ 𝑅   be a homomorphism. We will prove that 𝐾 = 𝑒𝑅⨁(1 − 𝑒)𝐵.  It is clear that                         

𝑒𝑅 + (1 − 𝑒)𝐵  is direct sum, since if  𝑥 ∈ 𝑒𝑅 ∩ (1 − 𝑒)𝐵, then 𝑥 = 𝑒𝑟 and 𝑥 = (1 − 𝑒)𝑏,  for some  𝑏 ∈ 𝐵 and hence 

𝑏 = 𝑒𝑟 + 𝑒𝑏 ∈ 𝑒𝑅 ∩ 𝐵 = 0. Thus 𝑏 = 0 and hence 𝑥 = 0, so 𝑒𝑅 ∩ (1 − 𝑒)𝐵 = 0. Let 𝑥 ∈ 𝐾, then 𝑥 = 𝑎 + 𝑏, for some 

𝑎 ∈ 𝑒𝑅, 𝑏 ∈ 𝐵, we can write  𝑥 = 𝑎 + 𝑒𝑏 + (1 − 𝑒)𝑏 and so  𝑥 ∈  𝑒𝑅⨁(1 − 𝑒)𝐵. The converse, if  𝑥 ∈  𝑒𝑅⨁(1 − 𝑒)𝐵, 

then 𝑥 = 𝑎 + (1 − 𝑒)𝑏,  for some 𝑎 ∈  𝑒𝑅  and  (1 − 𝑒)𝑏 ∈ (1 − 𝑒)𝐵,  we obtain 𝑥 = 𝑎 + (1 − 𝑒)𝑏 = 𝑎 − 𝑒𝑏 + 𝑏 ∈

𝑒𝑅⨁𝐵.  Hence 𝐾 = 𝑒𝑅⨁(1 − 𝑒)𝐵. It is  obvious that (1 − 𝑒)𝐵 ⊆ JS(𝑅𝑅) and (1 − 𝑒)𝐵 is a right ideal of 𝑅. Let  𝑓′ 

: (1 − 𝑒)𝐵 ⟶ 𝑅  be a  right   𝑅-homomorphism defined by 𝑓′(𝑥) = 𝑓(𝑥), for all 𝑥 ∈ (1 − 𝑒)𝐵. JS-injectivity of a ring 𝑅 

implies that there exists a right  𝑅-homomorphism  𝑔: 𝑅 ⟶ 𝑅 with  𝑔((1 − 𝑒)𝑏) = 𝑓′((1 − 𝑒)𝑏) for all (1 − 𝑒)𝑏 ∈

(1 − 𝑒)𝐵.  Define 𝛼: 𝑅 ⟶ 𝑅  by 𝛼(𝑦) = 𝑓(𝑒𝑦) + 𝑔((1 − 𝑒)𝑦),  for any 𝑦 ∈ 𝑅 . Then 𝛼  is a well-defined                                  

𝑅 -homomorphism. If 𝑥 ∈ 𝐾,  then 𝑥 = 𝑎 + 𝑏  where 𝑎 ∈ 𝑒𝑅 and 𝑏 ∈ (1 − 𝑒)𝐵.  So  𝛼(𝑥) = 𝑓(𝑒𝑥) + 𝑔((1 − 𝑒)𝑥) =

𝑓(𝑎)+𝑓(𝑏) = 𝑓(𝑎) + 𝑔(𝑏) = 𝑓(𝑎 + 𝑏) = 𝑓(𝑥). Then we get the result. □          
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Corollary 2.10. Let 𝑅 be a ring such that for any right ideal 𝐾 of 𝑅, we have 𝐾 = 𝑒𝑅⨁𝐵  for  some right ideal 𝐵 of 𝑅 

with 𝐵 ⊆ JS(𝑅𝑅) and an idempotent 𝑒2 = 𝑒 ∈ 𝐾.  Then 𝑅 is a right JS-injective ring if and only if  𝑅  is a right               

self-injective ring. 

Proof. Let 𝑅 be a ring in which any right ideal 𝐾 of 𝑅, we have 𝐾 = 𝑒𝑅⨁𝐵  for  some right ideal 𝐵 of 𝑅 with 𝐵 ⊆

JS(𝑅𝑅) and an idempotent 𝑒2 = 𝑒 ∈ 𝐾.          

(⟹)  Suppose that  𝑅 is a right JS-injective ring.  Let 𝐼 be a right ideal of 𝑅, 𝑖: 𝐼 ⟶ 𝑅  an inclusion mapping and  

𝑓: 𝐼 ⟶ 𝑅 any right  𝑅-homomorphism. By hypothesis, 𝐼 = 𝑒𝑅⨁𝐵 for some right ideal 𝐵 of 𝑅 with 𝐵 ⊆ JS(𝑅𝑅)  and an 

idempotent 𝑒2 = 𝑒 ∈ 𝐾. By Proposition 2.9, there is a right  𝑅-homomorphism 𝑔: 𝑅 ⟶ 𝑅 with 𝑔(𝑎) = 𝑓(𝑎), for all  

𝑎 ∈ 𝐼. Thus  𝑅 is a right injective ring. 

(⟸)  It is clear. □ 

Theorem 2.11. Let 𝑅 be a right JS-injective ring, and let 𝑎, 𝑏 ∈ 𝑅 with  𝑏 ∈ JS(𝑅𝑅). 

(1)  If 𝑏𝑅 embeds in 𝑎𝑅, then  𝑅𝑏 is an image of 𝑅𝑎. 

(2)  If 𝑎𝑅 is an image of 𝑏𝑅, then  𝑅𝑎 embeds in 𝑅𝑏. 

(3)  If 𝑏𝑅 ≅ 𝑎𝑅, then  𝑅𝑎 ≅ 𝑅𝑏. 

Proof. Let 𝑎, 𝑏 ∈ 𝑅 with  𝑏 ∈ JS(𝑅𝑅) and let 𝑓 ∈ Hom𝑅(𝑏𝑅, 𝑎𝑅). Since  𝑏 ∈ JS(𝑅𝑅)  (by hypothesis), it follows from       

JS-injectivity of 𝑅 that there is a right  𝑅-homomorphism 𝑔: 𝑅 ⟶ 𝑅  with  𝑔𝑖1 = 𝑖2𝑓, where 𝑖1: 𝑏𝑅 → 𝑅 and 𝑖2: 𝑎𝑅 → 𝑅   

are  the inclusion maps. Thus 𝑓(𝑏) = 𝑔(𝑏) = 𝑔(1)𝑏 = 𝑣𝑏, where 𝑣 = 𝑔(1). Since 𝑓(𝑏) ∈ 𝑎𝑅, it follows that 𝑣𝑏 ∈ 𝑎𝑅 

and hence there is 𝑢 ∈ 𝑅 with 𝑣𝑏 = 𝑎𝑢. Define 𝜃: 𝑅𝑎 ⟶ 𝑅𝑏  by  𝜃(𝑟𝑎) = (𝑟𝑎)𝑢 = 𝑟(𝑣𝑏), for all 𝑟 ∈ 𝑅. Thus 𝜃 is a 

well-defined left  𝑅-homomorphism. 

(1) If 𝑓 is a right monomorphism, we have  𝑟𝑅(𝑣𝑏) ⊆ 𝑟𝑅(𝑏). By Theorem 2.2(2), 𝑅𝑏 ⊆ 𝑅𝑣𝑏. Thus  𝑏 = 𝑟(𝑣𝑏) =  𝜃(𝑟𝑎) 

(for some 𝑟 ∈ 𝑅). Hence  𝜃  is a left  𝑅-epimorphism. 

(2)  If  𝑓 is  an epimorphism, then  there is 𝑠 ∈ 𝑅 with 𝑓(𝑏𝑠) = 𝑎  and hence  𝑎 = 𝑓(𝑏)𝑠 = 𝑣𝑏𝑠.  We will prove  

ker(𝜃) = 0.  Let  𝑥 ∈ ker(𝜃), thus  𝜃(𝑥) = 0. Since 𝑥 ∈ 𝑅𝑎, we have  𝑥 = 𝑟𝑎, for some  𝑟 ∈ 𝑅. Thus  𝜃(𝑟𝑎) = 0 and 

hence  𝑟(𝑣𝑏) = 0.  So, 𝑥 = 𝑟𝑎 = 𝑟(𝑏𝑣𝑠) = (𝑟𝑣𝑏)𝑠 = 0 and hence  ker(𝜃) = 0. Therefore, 𝜃 is a left 𝑅-monomorphism. 

(3)  If  𝑓  is an isomorphism, then by the proofs of (1) and (2),  we have that 𝜃 is a  left 𝑅-isomorphism.     □ 

           The class of JS-injective right 𝑅-modules is denoted by 𝐽𝑆𝐼𝑅 .  

Proposition 2.12. The following two statements are equivalent for a ring 𝑅: 

(1)  Mod-𝑅 = 𝐽𝑆𝐼𝑅 . 

(2) (𝑖) 𝑅 is a JS-injective ring; 

(𝑖𝑖) every cyclic submodule of JS(𝑅𝑅) is projective. 

𝐏𝐫𝐨𝐨𝐟. (1)  ⇒  (2). Suppose that every right 𝑅-module is JS-injective. Thus 𝑅𝑅 is a JS-injective module and every 

epimorphic image of JS-injective module is  JS-injective. By [9, Corollary 2.19], every submodule of JS(𝑅𝑅) is 

projective. 

(2) ⟹ (1). Let 𝑎𝑅 be a cyclic submodule of JS(𝑅𝑅). By (2)(𝑖𝑖), 𝑎𝑅 is projective. Define ℎ: 𝑅 ⟶ 𝑎𝑅 by ℎ(𝑟) = 𝑎𝑟, for 

any 𝑟 ∈ 𝑅. It is clear that ℎ is a right epimorohism. By projectivity of 𝑎𝑅, there is a homomorphism 𝑓: 𝑎𝑅 ⟶ 𝑅 such 

that (ℎ𝑓)(𝑥) = 𝑥, for all 𝑥 ∈ 𝑎𝑅. Thus (ℎ𝑓)(𝑎) = 𝑎 and hence 𝑎𝑓(𝑎) = 𝑎. Since 𝑅𝑅 is JS-injective (by hypothesis), 

there is a homomorphism 𝑔: 𝑅 ⟶ 𝑅 such that 𝑔(𝑥) = 𝑓(𝑥), for all 𝑥 ∈ 𝑎𝑅. Thus 𝑎 = 𝑎𝑓(𝑎) = 𝑎𝑔(𝑎) = 𝑎𝑔(1)𝑎 =

𝑎𝑏𝑎, where 𝑏 = 𝑔(1). Put 𝑒 = 𝑎𝑏. Thus 𝑒2 = 𝑎𝑏𝑎𝑏 = 𝑎𝑏 = 𝑒 and 𝑒𝑎 = 𝑎𝑏𝑎 = 𝑎. Let 𝑥 ∈ 𝑎𝑅, then 𝑥 = 𝑎𝑟, for some 

𝑟 ∈ 𝑅. Thus 𝑥 = 𝑎𝑟 = 𝑒𝑎𝑟 ∈ 𝑒𝑅 and hence 𝑎𝑅 ⊆ 𝑒𝑅. Let 𝑦 ∈ 𝑒𝑅, thus 𝑦 = 𝑒𝑡 for some 𝑡 ∈ 𝑅 and hence 𝑦 = 𝑎𝑏𝑡 ∈ 𝑎𝑅. 
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Thus 𝑒𝑅 = 𝑎𝑅. Since 𝑅 = 𝑒𝑅⨁(1 − 𝑒)𝑅, it follows that 𝑎𝑅 is a direct summand of 𝑅𝑅. Since 𝑅𝑅 is JS-injective module, 

we have from [9, Corollary 2.4] that 𝑎𝑅 is a JS-injective module. By [9, Theorem 2.15], every right  𝑅-module is           

JS-injective.         □ 

Lemma 2.13.  Let  𝑅 be a ring, then  𝐷(𝑅) = {𝑎 ∈ 𝑅│𝑟𝑅(𝑎) ∩ 𝑚𝑅 ≠ 0 for each 0 ≠ 𝑚 ∈ 𝐽𝑆(𝑅𝑅)} is  a left ideal of 𝑅. 

Proof.  It is obviously that 𝐷(𝑅) is a non-empty set, since 0 ∈ 𝐷(𝑅). If  𝑎 ∈ 𝐷(𝑅) and 0 ≠ 𝑚 ∈ 𝐽𝑆(𝑅𝑅), thus 𝑚𝑏 ∈

𝑟𝑅(𝑎) ∩ 𝑚𝑅, for some  𝑏 ∈ 𝑅  and so 𝑎(𝑚𝑏) = 0. Since (−𝑎)(𝑚𝑏) = −(𝑎𝑚𝑏) = 0,  then 𝑚𝑏 ∈ 𝑟𝑅(−𝑎)  and hence 

𝑟𝑅(−𝑎) ∩ 𝑚𝑅 ≠ 0. Thus −𝑎 ∈ 𝐷(𝑅). Now, let  𝑎1, 𝑎2  ∈ 𝐷(𝑅)  and 0 ≠ 𝑚 ∈ 𝐽𝑆(𝑅𝑅). We have that  0 ≠ 𝑚𝑏 ∈ 𝑟𝑅(𝑎1) ∩

𝑚𝑅   for some 𝑏 ∈ 𝑅. Since  𝑎2 ∈ 𝐷(𝑅),  it follows that – 𝑎2 ∈ 𝐷(𝑅) and hence 0 ≠ 𝑚𝑏𝑐 ∈ 𝑟𝑅(−𝑎2) ∩ 𝑚𝑅 for some 𝑐 ∈

𝑅.  Therefore, 0 ≠ 𝑚𝑏𝑐 ∈ 𝑟𝑅(𝑎1) ∩ 𝑟𝑅(−𝑎2) ∩ 𝑚𝑅.  Since 𝑟𝑅(𝑎1) ∩ 𝑟𝑅(−𝑎2) = 𝑟𝑅(𝑎1 + (−𝑎2)) = 𝑟𝑅(𝑎1 − 𝑎2)  (by [1, 

Proposition 2.16, p. 38]), we have 𝑟𝑅(𝑎1 − 𝑎2) ∩ 𝑚𝑅 ≠ 0  for all  0 ≠ 𝑚 ∈ 𝐽𝑆(𝑅𝑅) and hence 𝑎1 − 𝑎2 ∈  𝐷(𝑅). Also, let  

𝑥 ∈ 𝑅 and  𝑎 ∈ 𝐷(𝑅). Since 𝑟𝑅(𝑎) ⊆ 𝑟𝑅(𝑥𝑎), it follows that 𝑟𝑅(𝑥𝑎) ∩ 𝑚𝑅 ≠ 0 for all  0 ≠ 𝑚 ∈ 𝐽𝑆(𝑅𝑅), that is  𝑥𝑎 ∈

𝐷(𝑅). Thus 𝐷(𝑅) is a left ideal of 𝑅. □ 

 

Proposition 2.14. Let 𝑅 be a right JS-injective ring. Then 𝑟𝑅(𝑎) ⊊ 𝑟𝑅(𝑎 − 𝑎𝑥𝑎), for all 𝑎 ∉ 𝐷(𝑅) and  for some  𝑥 ∈ 𝑅. 

Proof. For all 𝑎 ∉ 𝐷(𝑅), we can find   0 ≠ 𝑚 ∈ 𝐽𝑆(𝑅𝑅) such that 𝑟𝑅(𝑎) ∩ 𝑚𝑅 = 0. Clearly, 𝑟𝑅(𝑎𝑚) = 𝑟𝑅(𝑚), so 𝑅𝑚 =

𝑅𝑎𝑚 by Theorem 2.2(2). Thus 𝑚 = 𝑥𝑎𝑚   for some 𝑥 ∈ 𝑅 and this implies that  𝑚 − 𝑥𝑎𝑚 = 0 and hence (1 −

𝑥𝑎)(𝑚) = 0. Thus 𝑎. (1 − 𝑥𝑎)(𝑚) = 𝑎. 0 and so (𝑎 − 𝑎𝑥𝑎)𝑚 = 0. Therefore, 𝑚 ∈ 𝑟𝑅(𝑎 − 𝑎𝑥𝑎), but 𝑚 ∉ 𝑟𝑅(𝑎) because  

𝑟𝑅(𝑎) ∩ 𝑚𝑅 = 0  and hence the inclusion is strictly. □ 

Proposition 2.15.  Let 𝑅 be a right JS-injective ring, then the set {𝑎 ∈ 𝑅│𝑟𝑅(1 − 𝑠𝑎) = 0  for all  𝑠 ∈ 𝑅} is contained 

in  𝐷(𝑅). 

Proof.  We will prove that by contradiction. Assume that  there is  𝑎  such that  𝑟𝑅(1 − 𝑠𝑎) = 0  for all  𝑠 ∈ 𝑅  with  

𝑎 ∉ 𝐷(𝑅) . Then there exists  0 ≠ 𝑚 ∈ 𝐽𝑆(𝑅𝑅)  with 𝑟𝑅(𝑎) ∩ 𝑚𝑅 = 0.  If 𝑟 ∈ 𝑟𝑅(𝑎𝑚) , then  (𝑎𝑚)𝑟 = 0  and hence 

𝑎(𝑚𝑟) = 0 and  so  𝑚𝑟 ∈ 𝑟𝑅(𝑎). Since 𝑟𝑅(𝑎) ∩ 𝑚𝑅 = 0, it follows that 𝑚𝑟 = 0  and so 𝑟 ∈ 𝑟𝑅(𝑚).  Hence 𝑟𝑅(𝑎𝑚) ⊆

𝑟𝑅(𝑚). By Theorem 2.2(2), 𝑅𝑚 ⊆ 𝑅𝑎𝑚. Thus 𝑚 = 𝑠𝑎𝑚, for some 𝑠 ∈ 𝑅. Therefore,  (1 − 𝑠𝑎)𝑚 = 0  and hence 𝑚 ∈

𝑟𝑅(1 − 𝑠𝑎) = 0  so 𝑚 = 0  and this is a contradiction. Thus the statement is hold. □ 
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