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ARTICLEINFO ABSTRACT

Many articles studied best trigonometric approximation and many researchers worked on the
neural network approximation, but no one related the best trigonometric approximation to
neural network approximation. We define trigonometric activation function, then we use it to
obtain neural network, which we use it as a best approximation for functions in L, spaces for

0 < p < 1.That what we shall introduce in our work have.
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1. Introduction

In [6, 7, 10, 13] studied best trigonometric approximation using continuous function. In [8, 9, 11] studied the
approximation using many types of neural networks. No one relate the neural network to trigonometric polynomial

approximation. That is what we do in our work have.

Firstly, let us introduce some basic notations and defines that we need in our work.

Begin with T* is the best approximation of f, where f:R" - R

I; the degree of approximation of f fromY, is defined as
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L=inf|lf =TI ,n=12,..

TEY,

The norm of f define as

Ifll, = ( [ e dx),, - ( [ [ Gl dxax, ---dxm)p.
And
Ly, [—m, m] is the space of all 2t — periodic functions in L,[—m, 7].

The class of all trigonometric polynomials of order at most n denoted by Y,,.

And
G ={fifPel,[-nal}, r>0
WG = e+ h)ha— oL,
Where:
p=r+a
r>0,a € (01)
f € G,

The class of all trigonometric polynomials in s variables is denoted by Y,, ;, and

Lis(f) = inf lIf =TIl
TEYns

And
1 T .

G0 =5 | f@e de
And

6 @ = 5- [ 0wet ar.

1 T
wi(f,x) = I f flx—t) dt Wi (t)dt.
. _ sin(nt/2) sin(3nt/2)

W () = nsin?(t/2)

And

Li[—m, ]* is the space of all 2w — periodic functions in L;[—m, 7], whens > 1.

For f € Liy[—m, ] and j € Z5,
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1

G () = G

f flx)e 9% dx,
[-mm]s

k=0 -n<js<n

The function my ,, s (@, f) € Sy (2N + 1)(2n + 1)%, for N,n = 1.
The neural network here has 3-layers: input layer, hidden layer and output layer.
In general, we can define the neural network mathematically as

Sons (X) = YR_qap @ (Wy.x + by), with a,, b, € Rw, € RS, 1<k <N

Where @ is the activation functionand @ : R — R
Let us now recall example of activation function

B(x) = (1+ e™*)7! [the squashing function]

We can define the sigmodal functions as

P(x) =1, ifx =20
d(x) = 0, other wise.

We write e, (x) = exp(ik.x),k € Z°

The Parseval's identity is

©

lfGI?dx = 2 ICal .
'n]fx x nz

-7 n=-—oo

I, .., = f[

Where C,, is the Fourier coefficients of f are given by

1

C,= —
"2m

f(x)e ™ dx.

[-m.m]

And a Whitney extension theorem in L, is define as:

If k is non-negative integerand k < a < k + 1,f € L, (R") for which the norm

Ifll, = Y [I7fll, < ¢ Y [p/Fell, -

ljl<k ljl<k

Where DY) is the differentiable of functions.
Lemma 1.1

For f € Li[—m, ], w,, is bounded operator

1 T
wy(f,x) = ZJ flx—t) dt W;(t)dt.
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Proof

1T sin(nt/2) sin(3nt/2)
- Ef_nf(x_t) nsin?(t/2) dt

. ||t sin(nt/2) sin(3nt/2)
ith 0y = ||z [ e -0 LTS o,
([l rr sin(nt/2) sin(3nt/2) P %
_U—n Ef_nf(x—t) st dx).

. .. nt . 3nt .t 2t
Since |sm ?| and |sm T| are bounded and sin 3 bounded below by —

Thus

Po\p
Iwi (F, 0l < <f_n<ﬁf_n|f(x— t)lmdt> dx)
w2
LA ] 1
=(f_ (f_ m|f(x—t)|dt)pdx)P

< (f_n(f_an(x)mt)pdx)p

< (| ety

ninm
T T S
= tin(_Ireorany

=— |1l
_nlnﬂf”.

Lemma 1.2

L1 (p S MIf =wa(Dllp < 2P (), -

Proof:

Using definition of I,_; (f),, the first part of the pnality is clear, then the second part of (1) we have

If =waHll, = I =) = wu(F =D,

<227 (If = Tllp + |

wa(f = D)

T
< 27°Y(If = Tll, + mll(f = Dllp)
<m2P7 1 (|If = TID

=m2P"'L,(f), m

M
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2. The Main Results

In this section we will define trigonometric approximation and 2w — Periodic neural network approximation in
L,[—m, m].
p )

Proposition 2.1.

Let® € fp[—n, ] and C; (@) # O for any integer N > 1,

H . 1 ZZN " 2ikm 1o 2mk )H _mr 1:(9)
el——M— ex - <— (D).
2N + 1)C. (@) Lo T 2N + 1 AT T @

Proof:

By the definition of C; (@), we get for x € [—, ],

eX = f Q)(t)e‘(" Ddt
2n61(<a)

-1 f(o(x—t)eifdt.
21C;(0) J-n

Now, forany N > 1,

f P(x —t)eltdt = f w; (0, x — t)eltdt.

=T

As a function of t, w; (@, x — t)e' € Y,,, we evaluate the last integral by using

! ZZNT n 1fnTtdt Tey,
n+ 1Ly Gi? = = _,T() ’ "

We get

x ; 1 (" .
x — _ it
Ci(@)e™ = —an_n(b(x t)e'tdt

2ink
2N+

2mk
2N+1

= XL, exp(

Ywi (@, (x — 25,

Now, by using Lemma 1.1 and Lemma 1.2, we get

Ly-a(F) < If = w* (Oll, < m2P L (f)

We obtain for all x € [—m, 7]

H z s, 2km Z )0 2km || < 2P 1 (0
2N +1 PO D@ oy ) TN+t PGNP 2N+1)p—” n(@)m

Theorem 2.2
Lets,n,N = 1beintegersand T € Y, ;, then

@n + 1)%21;(0)

I = Tluns@ DI, < ==

Iils -
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Proof:
By proposition 2.1, we get for -n < k < n,

m2P "y (9)

||ek - HN,n,S(Q' ek)”S < RO

We note that

Muns@T) = D G [uns(@re0)

Hence, by (2) we get

m2P 71 (@)

_— C:(T)|.
RO

[T = Tvms @D, <

Now, we recall the personal identity, which states that

(Z_nsm'cm)'z)l/z(ﬁ [ e an':

[-mm]s

Since T is polynomial, so

1 4 L
Z_nSkSnlc’:(T)lz = G@n? o f (TIPd0) 7 ,p < q

[-mm]s

And

doarmta< Yy

[-m,m]s [-mm]s

So, we obtain
N s * p 1/7’
Z_nsksﬂlc"m' < @n+ 1) {Z_msn|ck(r)| }

1/17
= 2n+ 17 {—(271[)5 f TP dx}

[-mm]
<@n+ D7) =
Theorem 2.3
Let C, be a set of distinct points in [, 7]° and n > 1 be an integer such that
Se, < 7[/(2 —3s+4p)
And there exist numbers {hf}feco
where |h§| < cn~5,¢ € C, then T;; ; be defined by

Tis(fin) = ) he f@WasGx =9, fEL;

§€Co

o)

€)
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AndT;(T) =T forevery T €Y, .

Also, for f € C:, Ty s(f) € Y51 s and we have

Proof:

Letf(&) =t

By using Lemma 1.1, we obtain

Let

. 1
Since hg < S >1,s0

Where C is a positive constant.

Trs(DIl; < CIFI;

In1s() < If=Tas DIl < CLis ()

Tisl) = . he fEWa0c =)

§€Co

TPl <> lrer@wiste=o, -

§€Co

MLy sin (2
: —hef(§)

nsin? (%)

sin(

B ZfECD

s

Tl <.t 1O,

T

Tis(Oll, <€ Il -

ninm

Using the same lines of Lemma 1.2, we get the Lemma 2.4:

Lemma 2.4

Ign—l,s(f) < ”f - Trt,s(f)

LS ChLs(f) . m

For f € Ly[—m, 7], we have W; € Y,,_, and

L1 (F) < lf=wa(Dlp

< CL(D.

C))

)
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Proof:
Since w;(f) € Y,,_1, itis clear that

Lo () < If=waDlp
IfT € Y,, thenw,(T) =T and

If =wa (DIl = I1F=T) = wa(f = DI

SIfF =T + lwa(f = DI

SICE -l =
Theorem 2.5
Let® € Ly,[—m, ] and C; (@) # 0.Lets,n > 1, then for any f € L},[~m,m] and N > 1, we have

(5/2)1* 1)
it/ ) ||f||;} .

IF = Mm@ iD= € 1) +

Proof:

By using Proposition 2.1 and Theorem 2.3 we get
IF = Tvon1s @ Tac O, < IF~TaeOI + [1Ts(H) = Tvonss @ Tis (O,

By using Lemma 2.4:

4(4n — 1)°215(0)

||f - HN,Zn—I,s(Qr T;{s(f)”p < CI’:[,S(f) + |C1*(®)|

Tas(OII.-

By using Theorem 2.3, we get

CR1 (0
”f —[Iv2n-15(@, Trt,s(f)”p < C{Iﬁ,s(f) + %@:’)ﬂ) ||f||;:} -

Lemma 2.6
Let@(x) = (1 +e™)7L,

B(x) = (1+e ®*D)~1 - !

1+ et~
Then
R
1 ix

1B, <5 f Beyerdx %0

Proof:

1B, =

R

; 1 ix

}Q%% fﬂ(x)e dx
-R

p
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sfz

c

R

1 .

—T[fﬁ(x)e dx|dx .
-R

R
_|1t 1 1 g
IBI = 2m J-(1+e‘("+1)_1+e1"‘)e *
“R
R
<if| 1 — 1 ||eix|d
2w ) [14+e-GD 1 4el-x|
“R

R
1

1 1

-1
f — 1 ||eu|dx — Jll
[1+e-C+D " 1+ el*| 1+
R -R

=L+

-1
1

e—G+D)

| ix | 1 _ ix
1+e1‘x||e e + [14e-G+D 1+e1"‘||e |dx
-1

1

e G+ T 1+

_ (]
fh+
-R

IA

[+ bt

-1
f |ei"|dx
-R

-1

f |cos x + isinx|dx

IA

-1
f Vcos?x + sin’xdx
-R

=-1+4R=R-1

R

1

52,[h+e%ﬂﬂ_1+
1

R
< f(1+1)|ei"|dx
- 2 2
-1
R
= f|e""|dx
-1

R

= flcosx + isinx|dx
el

el—x||e

el xl |ezx| dx

ixldx

R
< f\/coszx+sin2xdx =R+1
21
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Rl 1 _ 1 ||eix|dx
f [14e @D 1 4etl-x| =L+
-R

<R—-14+R+1=2R m

Lemma 2.7
Let@(x) = (1 +eX)71,

B = (o)t T
Then

S0 (x) = Z B(x — 21k)

KEeZ

Proof:

Lete > 0, then

<2

Z B(x — 21k)

K€L

Zﬁ(x —2mk) — Z B(x — 21k)
»

<2
KEL |K|<H P

Since Y.xez B(x — 2mk) is uniformly convergent series, so

s[ql—KZEZ/z(x—an) pSe .
Foragivene > 0. m
Example 2.8
Let@(x) = (1 +e7*)71,
B = (14 eyt - =

Then g is integrable. The Fourier transform of § can be computed by Contour integration, which clear that
R
1 .
B = e fﬂ(x) e™dx, #0
-R

We construct a periodization of § by

S1sa] (x) = Z B(x — 21k)

KeZ

(6)

Since [|B()l, < (e — e He ¥, for x € R, the series in (6) converge uniformly in compact subsets of Rand the
function S is clearly 2 —Periodic, one can compute easily that C; (S©9) = (1) # 0. There exist @ > 0 such that:

LSty <e ™, N=12,.....

Now, let f € Ly[—m,m]®, f: [-1,1]° > R.
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According to Whitney extension theorem, there exist an extension of f, g: [-4,4]° = R, such that

Y lpigel, <¢ Y sl

0sjs<s 0sjs<s

Now, let ¥ € L,,[—m, 7]*, such that

1 if x e [-1,1)°
Y(x) = {O, if x outside [— H/Z'H/Z ]s

Then, the function ¥, has the properties that ¥ (x)g(x) = f(x), for x € [-1,1]° and

il <c Y el

0sjss 0sjss

Further, since ¥ (x)g(x) = 0 outside [— ”/2,”/2 ]S, we may extend ¥, as a function on RS that is 2 —Periodic in
each of its variables. Denoting this extension by f*, f*(x) = f(x), x € [-1,1]° and

S
Soir,
j=1

By using Theorem (2.5) and theorem [letr = 1be an integer, for integern > 1and f € L, we have I, ;(f) <

cxialloys ;)
And taking

c<C Y D@, 0<dp<i
0sjss

(r+s) ;
E=——"2)
p ogn

We obtain that

[If () = Bran-1,s (ST, T s (FN, x|, < [If7 = BN,Zn-l,s(S[s‘“,Trf,s(f*))||;

; n'/2I;, 1)
< 4 * * * *
< C(q){ ns(f1) + RG] If Ilq}

< C@ +n’e ) Y DI,

0s<jss

<cns Z Iireoll, %)

0<j<s
We observe that

Shsal(x) — Z B(x —2mk)|| < Ce”MUH-ID, yeR:f

|K|zH I3

If we choose H = 2n and replace each ocurrence of Sksal (j.x — (an)/(ZN " 1)) in Ty zn-15(S%, T (£ ), X) by its
partial sum, we get a network V(f) having cn>*! neurons.
Using the proof of Theorem 2.2, we can proof that

[T 2n-1s (ST Ts(F ), 0) = V£, )|, < Cn¥2en < Cyecom
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Thus, (7) leads to a network V (f) with n¥*! neurons such that:

IFG) = V£l < cn > [DIf@)) -

0<jss

3. Conclusions

We define a new type of neural network such as trigonometric neural network. Then, we using it to approximate
functions in L, quasi normed space for 0 <p < 1. This paper shows that we relate the neural network to
trigonometric polynomial approximation.

This leads to that our approximation in this neural network is strong.
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