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1. Introduction
Let A denote the class of all functions f(z) of the form

f(2) = Z 47 (e =1j€N={12.)),
=1

(1)

which are analytic in the open unit disk U= {z € C: |z| < 1} in the complex plane. Although function theory was
started in 1851, it emerged as a good area of new research in 1916, due to the conjecture |a, | < n, which was proved

by De-Branges in 1985 and many scholars attempted to prove or disprove this conjecture as a result they discovered
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multiple subfamilies of a class S of univalent functions that are associated with different image domains. The most

basic of these families are th families of starlike and convex functions which are defined by:

S (a) = {f €S: Re(szé—g)) >0,z € U},

zf" (2)
C(a) = {f € S: Re<1 + @ ) >0,z€ U}.

The family §, = §*(e?) was introduced by Mendiratta et al.[6] such that:

zf'(2) }
S, =1f €A ——=<e%z€eUy. 2
e {f 7@ @
Similarly, by using an Alexander type relation the following class was also introduced in [2,12,15]
zf"(z) }
C, = EA: 1+ <efzeU;. 3
e {f f’(Z) ( )

Each of the functions classes described above has a distinct symmetry. We denote by P, the class of analytic functions p

normalized by:

p(z) =14 1z + 2% + cz% + - 4)
and

Re(p(z)) >0, zeU. (5)

Assume that f and g are two analytic functions in U. Then, we say that the function f is subordinate to the function

g, and we can write f(z) < g(2), if there exists a Schwarz function w(z) with the following conditions:
w(0) =0and |w(z)| < 1,(z € U),

such that

f@=gw@) (e

The problem of determining coefficient bounds offers information on a complex valued function’s geometry. In
particular, the second coefficient provides information about the growth and distortion theorems for functions in class

S. Similarly, in the study of singularities and power series with integral coefficients, the Hankel determinants are

particularly useful. In 1976, Noonan and Thomas [15] stated the qth Hankel determinant for ¢ = 1andn > 1 of

function f as follows:
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an Any1 o an+q—1
Any1 Ang2 - an+q
Hq(n) = . . .
an+q—1 an+q an+2q—2

The estimates of H,(n) have been investigated for different subfamilies of univalent functions. For ¢ = 2andn =1,
function H,(1) = a3 — aZ is the well — known Fekete-Szegd functional. The second Hankel determinant H,(2) defined
as H,(2) = aya, — a2 was studied for the classes of bi-starlike and bi-convex functions [1,6,7,8,9,11,19,20,21] ,also
see([2,4,5,6,7,14,15,16,17,18]. For the third Hankel determinant is given as

1 a, ajg
a; 4z Qg
as a4 as

Hy(1) = = —asa? + 2a,a3a, — a3 + azas — a?.

The third Hankel determinant was studied in [10] for a certain subclass of starlike functions. The fourth Hankel
determinant was studied in [3,14,16,17,19] for a certain subclass of starlike functions, convex functions and a new class
of analytic functions is also introduced by means of subordination and estimates are given for the upper bound of the
fourth Hankel determinant for functions in this class. For g = 4 and n = 1, fourth Hankel determinant is given as see
[3,16,17]:

a, a, a3 a4
a, az Q44 Gas
as a4 as Gagl’
a, as ag a

H4(1) = a, = 1)

such that:

Hy(1) = as{azl; — auly + asls} — aglasly — auls + agls} + as{asls — asls + agly} — ag{asls — asly + aglh},  (6)
where

I, = aya, — a3’ L, =a,—aya;, I;=a;—a,?
I, = ayas — azay, Is = as — aya,, I, =azas — a,’.
()
Chebyshev polynomials of the first and second kind are defined in the case of a real variable x on (-1, 1) by:
T, (x) = cos(n arccos x),

and

sin[(n+ 1) arccosx] _ sin[(n + 1) arccos x]

U = =
n(*) sin(arccos x) VI — x2

Respectively.
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We consider the function
1 1
N(t,z)zl— t€<— 1), z€U.

It is well-known that if t = cosa, a € ( ) then

sin[(n + Da
N(tz)—1+z (sm(x) Ln =1+ 2cosaz+ (3cos?a—sin?a)z? + (8cos*a —4cosa)z® +-,z€U.

That is,

1
N(t2) =14 Uy ()2 + Up(£)z2 + Us ()7 + - t € (E' 1),2 ev,

sin[(n+1) arccos t]

where U, (t) = i

,n € N are the second kind Chebyshev polynomials. From

the definition of the second kind Chebyshev polynomials, we easily obtain that U, (t) = 2t.
Also, it is well-known that
Uns1(8) = 2tUp (8) — Up—_»(2).
For all n € N. From here, we can easily obtain
Uy(t) =4t —1, Us(t) =8t3—4t.

In this idea, we introduced a new subclasses of analytic functions by means of subordination and estimates are given for

the upper bound of the fourth Hankel determinant for functions in this class.

2. Lemmas and definition:

Lemma(1) [13]: If a function f € §;* is of the form (2) then:

<1 lasl<o,  lal<sl,  lasl<1
a,| <1, asl < 7, al <7, as| <1,
where S, denote the class of analytic functions to third Hankel determinant.
Lemma(2) [16]: If the function f € S, and of the form (1) then:
<1 lasl<o, oyl < Jas| < lag| < lay] < 22T
Gl=L 0 lasl=sg lal=sgg 18s1S50 1%l =5 1471 =360,
Lemma(3) [16]: If the function f € ¢ and of the form (1), then:
wl<s, lasl<a, oyl < las| < g < o las] < o>
=5 lGl=g dl=Zy 0 1&1=555 1%l =3600 3600
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Now; we discuss a new subclass of analytic functions using the subordination.

Definition(1): A function f € A given by (1) is said to be in the class F (8, z,t) if the following conditions are satisfied
holds:

S @ + 21" < 26,2, (®)

where £(t,z) = 1+ Uy (O)z + Uy ()2 + Us()2° + -+ t € G 1),z €U,§>0.

Theorem (1): Let f be a function given by (1) which belongs to the subclass F (8, z,t). Then:

368 27 1086 484
|a2| 546; |a3|326: |a4-| SE; |a5| Sl_oé‘i |a6| ST; |a7| SE6! (9)

where 6 > 0.

Proof: If f € F(8,z,t), then there exists an analytic function ¢ in U with @(z) < 1 and we can write

z " " o_
%[f (@) +zf""] = B(t,g(z)).

Using the definition of subordination, there exists £ a Schwarz function of the form:
E(z) = ijzj zeU
i=1
and following can be written as:

B(z) = =1+2p;z+2(p, +pP)z* + 2[p3 + p1 (2 p, + pD)12* + 2[ps + 05 + PI B p. + 1) + 2 py p3l2*

+2[ ps + 2 po(ps + 203) + 3p1 (P10 + P2) + (1 (2ps + p1))]2°
+2[ ps + i (4 p3 + p3) + pE(Bps + 5p2pF) + 2p1 (D5 + 3p2p3) + 5 + i (P, + 6pF) + 2 p, palz®
o (10)

Since f € S, then:
z 1
%5 [f"(2) + zf""] = g[azz + 6a;z% + 18a,z% + 40asz* + 75a4z° + 126a,z% + 1. (11)

Using (10) with (11) comparing the coefficients of z/ for j = 1,2,3, ... we obtain:

1
Saz =2p;

6 2
3%~ 2(p, + i),
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18

Faat =2[p;s + P12, +P12)].

fgazz[ +p5+pi(Bp, +pP)+2 ]
5 s Ps T P2 TP OP2 TP P1 D3l

75

5 % = 2[ ps + 2 p2(ps + 2p3) + 3p,(P1ps + p3) + (P (2ps + PD))),

126
é

By Lemma 1, we get relations (9).m
In the following theorem, estimates on H,(1) are determined for f € F(§,z,t)
Theorem(2): If function f of the form (1) belong to the subclass F (6, z, t), then:

Ha(D) < 123022754 N 1067929 52
4= 1875 45000 '’

where 6 >0 .

Proof: The fourth Hankel determinant can be written as (6) and (7), and we can write it by:

|Hy(D)| = lazng — agn, + asng — ayngl,
where
l74| = lasly — asl; + asls|, |12| = lagly — asls + agls],
|n3| = lasls — asls + agly|, |714] = lagls — asly + agly|,
where [, 15, 15,1, Isand 4 as (7).
If we use (9) in n,, n,, 5 and n,, then
|n|<———83+z<‘32
=5 5’
< 2288, TSt
M2l =758 25 O
<25 2
M3l = 75 200
] < 43 53
4/L < —
=25

Using (13), (14), (15) and (16) in (12), we get:

——ay; = 2[ ps + pi (4 p3 + p3) + P Bps + 5pop7) + 2p; (ps + 3p,p3) + 5 + P53 (P2 + 6p7) + 2 p, pal.

(12)

(13)

(14)

(15)

(16)
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) < 1230227 s 1067929 52
HOE 1875 45000

In case § = 1, we get the following corollary:
Corollary (1): If f function of the form (1) belongs to the subclass F (8, z, t), then:

H,(1) <~ 679.8528222.

Theorem (3): If f € F(§, z,t), with § = 0, then,

[Hy (D] = R1(8) = R2(8) + R3(8) — R4 (8).

Proof: We can rewrite fourth Hankel determinant as (12) and by applying Lemma (1)

336 7
RO = la| (287 + £ 62)

5 5
Ro(0)] = lagl (ag-8° + oo ?)
20N = 146l 25 ° )

(Ra(0)] = las] (g 8+ 20.5%)
T 20° )

R0 = lasl (536°).

By using |a,|, |agl, |as| and |a,| from Theorem (1) in fourth Hankel determinant (12), we get:

Re(®)] < 7744 5+ 484 52
1 = 15 45 '

R ()] < —106704 54+ —5832 52
2 = 625 625 '

Ra(8)] < 3429 54 729 52
3 =~ 125 200

25 '

[Hy (D] < Ry (8) = R2(8) + R3(8) — R4 (8),

where

(17)

(18)

(19)

(20)

(21)
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6] < 7744 5t 4 484 53
1 = 15 45 "’

R (8)] < —106704 5t 4 —5832 53
2 = 625 625
(8] < 3429 5 4 729 53
3 =~ 125 200’

|R (zs)|<8654
4 =25
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