
 Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 15(3) 2023, pp Comp. 35–46 1

∗ Corresponding autho : Saad Hussein

Email addresses: shsaadsh2014@gmail.com

Communicated by: Dr. Alaa Taima Albu-Salih

Reusability of Legacy Software Using Microservices: An Online Exam System Example

 Saad Hussein Abed Hamed

 College of Computer Science & Information Technology, Al-Qadisiyah University, Al-Diwaniyah,
Iraq. E-mail: shsaadsh2014@gmail.com.

A R T I C L E I N F O

Article history:

Received: 01 /06/2023

Rrevised form: 10 /07/2023

Accepted : 16 /07/2023

Available online: 30 /09/2023

Keywords:

Microservice Architecture ,
 On line exam, Monolithic
Architecture, reusability.

A B S T R A C T

A new design approach called microservices-based architecture is quickly
emerging as one of the most efficient ways to re-architect aging enterprise systems
and reengineer them into new modern systems . Microservice architecture is
essential for creating high-quality, scalable, high-performance, and easy-to-
maintain software. The newest method of creating new applications or
reorganizing existing systems is the microservice-based architecture. It is thought
to be more efficient in a number of areas than the more traditional service-oriented
design, including: such as maintainability, dependability, scalability, and agility.
Software Engineering developed an architecture with independent and
autonomous components known as the microservice architecture in response to
the requirement to enhance and evolve software architecture design. Online exams
are crucial components of education. It minimizes the vast amount of material
resources and is both quick and effective. However, monolithic design, which was
used to create online exam systems, has more issues and is incompatible with cloud
computing, distribution, or new technologies. This paper presents on evolving and
reusability a legacy enterprise system (Online Exam) using a microservice
architecture. the study's contributions To update a legacy enterprise system,
feature-driven microservice-specific transformation rules are adopted.
Performance, maintainability, scalability, and testability are prioritized when
comparing a historical monolithic architecture to a microservice architecture.

MSC.41A25; 41A35; 41A3

https://doi.org/10.29304/jqcm.2022.14.4.880

1. INTRODUCTION

The most common method of putting an application into action is to create a single executable

program that uses the same machine's resources. The resources here could range anywhere from

hardware-related resources like memory, databases, etc. to more software-related resources like files

and drivers, for instance. This facilitates quick and simple development but creates more problems as

the application expands. It will eventually become too much to handle. Any modifications to the

https://doi.org/10.29304/jqcm.2022.14.4.880

 Saad Hussein Abed Hamed JCM - Vol.15(3) 2023 , pp Comp. 35–46 2

application will necessitate the deployment of a new version, which runs the danger of crashing the

entire program. The development team will also be limited to using the same language that the

program is based on when adding new features. describing a monolithic enterprise program that

typically consists of three components: client-side, server-side, and database. The client-side work,

which serves as the user interface, is primarily constructed using JavaScript for a browser. The server-

side program will take HTTP requests sent from the client-side and carry out the necessary steps to

manage a response sent back to the client. The server-side application's queries are finally managed by

a database management system. This is also known as a three-tier application, where the client-side is

referred to as the presentation tier, the server-side as the application tier, and the database as the data

tier. One could refer to a server-side application as a monolith if it only has one logical executable.

Reusability in software engineering refers to the usage of already-existing software components in the

development of new software[1] .

Increasing the efficiency of software development teams and lowering associated expenses throughout

the lifecycle of a software system are two goals of the long-studied topic of software reusability.

Additionally, the primary function of reusability is to enhance the ability of software applications to be

maintained and to offer mechanisms for data integration between information systems and

interoperability[2].

The vast majority of current educational and academic systems are long-lasting programs that are

frequently created using a monolithic architecture. These architectures deteriorate and degenerate as a

result of intensive maintenance and outdated technologies. Only updating programming languages,

not architecture [3].

Legacy systems impede digital transition, hinder innovation, and consume a lot of resources for

maintenance, diverting funds that could be invested in system evolution, such as creating new

features[4].

By employing architectures that identify its components through services, concerns with software

reusability can be avoided, according to recent research in the field of software engineering[5].

Educational institutions are updating these antiquated, uniform systems in order to remain

competitive[6].

As an approach for updating monolithic legacy systems, microservice architectures are currently in

vogue[7].

These systems typically start out small but eventually expand to accommodate growing corporate

demands. With time and the addition of new functionality, the following issues may start to plague

monolithic applications:

- Because the system's components are closely connected, no one component can be scaled separately.

- Tight coupling and hidden dependencies make it difficult to maintain the code.

- Testing gets more difficult, increasing the chance of introducing vulnerabilities.

- Future development and stability could be hampered by these issues. Teams become hesitant to make

modifications, particularly when the original developers are no longer engaged in the project and the

design documentation is lacking or old.

Academics have become interested in studying software architectural models because it is imperative

to produce software systems that are maintainable and reusable[8].

This paper proposes and applies an evolution framework and a set of feature-driven, microservices-

oriented evolution rules to modernize legacy enterprise systems, with a focus on analyzing the

implications for reusability . In comparison to the previous system, the new one will be faster, more

efficient, and more expandable.

 Saad Hussein Abed Hamed JCM - Vol.15(3) 2023 , pp Comp. 35–46 3

 In this study, we explore the 'OExam' monolithic system, which we assessed and later transformed

into a brand-new microservice-based design. A MS platform was used to fully implement and install

the new system. This section gives a brief overview of the monolithic OExam system's history before

describing how it transformed into a microservices design. Background information on monolithic

systems is presented in the second section, followed by related work in the third, proposed

methodologies in the fourth, and implementation in the fifth.

II. Background
We worked on this study in 2011 on electronic test technology because it aims to automate manual

tasks like preparing questions, printing them, distributing them to students, and then correcting and

monitoring grades. These tasks involve a lot of staff members, and a lot of time and energy are wasted

due to errors. We looked at the manual tasks and the supporting documents and relied on data entry in

this system. Or remove any inaccurate information or objects that surface when examining reports. the

system by Monolithic Architecture.

Monolithic codebases can become complex over time, making it difficult to manage and scale. Vertical

scaling, which adds compute resources, can be expensive and limit the application's vertical scaling

capabilities. Technology limitations and a single point of failure make it difficult to add or change

functionality in monoliths.

Figure 1, shows the scheme of business activities.

 Test and exam results

 Course

registration

Release the

student's score.

New student

 Student

registration

renewal

 Student data

registration

 Send student files

to the scientific

department

 Saad Hussein Abed Hamed JCM - Vol.15(3) 2023 , pp Comp. 35–46 4

Figure 2 shows the scheme of environmental documents.

Figure 3 shows the document flow chart

Figure 3 shows the document flow chart

 Saad Hussein Abed Hamed JCM - Vol.15(3) 2023 , pp Comp. 35–46 5

These systems begin simple but eventually expand to accommodate changing business requirements.

A monolithic program may eventually start to have the following issues as new features are added:

- Tight coupling and hidden dependencies make it difficult to maintain the code and prevent the

system's constituent components from scaling independently.

- Testing gets more difficult, increasing the chance of introducing vulnerabilities.

Future growth and stability may be hampered by these issues. Teams become apprehensive of making

modifications, particularly if the original developers are no longer working on the project and the

design documentation is lacking or old.

Building, debugging, and reasoning about large monoliths frequently get more difficult over time.

This is the time when switching the application over to a microservices design may make sense.

Microservices, in contrast to monoliths, are frequently dispersed, loosely connected execution units.

To prevent failures or overruns, migrating a monolith to a microservice needs a significant amount of

effort and money. It's important to comprehend both the advantages and the difficulties that

microservices provide if you want to make sure that any move is effective. The advantages include:

 - Services can change on their own, depending on user needs.

- Services are scalable on their own to satisfy consumer demand.

- As features are released to the market more quickly, development cycles become shorter over time.

- Services are more resilient to failure and segregated from one another.

- A single service failure won't shut down the program as a whole.

- Testing improves with the use of behavior-driven development.

Microservices offer significant benefits, including scalability, flexibility, and the ability to handle

complex, large-scale applications.

Utilizing the single responsibility and independent deployment of each service is the ultimate purpose

of implementing a microservices architecture. However, we must carefully consider how to design and

construct a microservice in isolation and then test every service simultaneously in the implementation

phase before the final release. The size and scope of each microservice must also be carefully

considered. The system was thoroughly analyzed in order to comprehend the full architecture before

creating a microservices architecture.

The following steps were taken to break down the system into a microservices architecture:

1. Recognize the code and establish the parameters of the system.

2.Created a class diagram for the current system, which will help understand the connections between

the classes in the system and will be crucial in determining the service.

3. Identify the issues that the architecture of the microservices should address.

4.Applying a domain-driven design (DDD) will help separate the services from the monolith. A

business domain is broken down into smaller functional components using the DDD technique, and the

problem's independent steps are described. A bounded context contains information specific to each

domain, such as the domain model, data model, and application services.

5. Recognize the shared database schema and deconstruct it so that may extract the tables and save

them each in a separate, independent database that will later be used by a microservice.

The use of microservices in software development will not diminish. The following tendencies should

be noted:

Rising Adoption: We can anticipate that the use of microservices will continue to grow as more

businesses realize their advantages. This is especially true for businesses that must manage large,

sophisticated applications or swiftly increase their operations.

 Saad Hussein Abed Hamed JCM - Vol.15(3) 2023 , pp Comp. 35–46 6

Tooling Improvements: As microservices gain popularity, we may anticipate improvements to the

tools and technology that support them. Improved monitoring and container orchestration tools are

included in this.

Server less designs: Server less designs work well with microservices because they let the cloud

provider control the server infrastructure. These two tendencies will likely combine more in the future,

as expected.

III. Related work
This section examines academic works that cover the usage of archetypes in developing of Exam

applications, including services, architectures, and data persistence.

This study [9] offers a comparison of twelve proctoring systems, a fundamental evaluation

methodology for proctoring systems, and many crisis management suggestions for educational

institutions. give a fundamental paradigm for proctoring system evaluation, and suggest some things

to think about while selecting them. The study had no real-world applications; it was just theoretical.

[10] This study examines how online examinations affect students' anxiety and self-efficacy. Anxiety

has a detrimental effect on self-efficacy, according to a cross-sectional survey of 434 university

students. The study discovered that emotion-focused coping techniques and adaptive behavioral coping

techniques are effective in reducing examination-related anxiety.

[11] The goal of this study is to develop and put into practice an intelligent online proctoring system

(IOPS), which is urgently required in online learning environments all over the world, to oversee

online exams. The authors tested this approach in a real university online exam as a pilot application,

and they verified the proctoring outcome.

 IOPS uses the browser/server (B/S) architecture. The server side is constructed using the

programming languages C and Python, and it saves information about each examinee's identification

as well as the status of any significant behavior changes, such as facial expression, eye and mouth

movement, and voice. The examinee writing the online test generates multimodal data, which the

browser side collects, processes locally, and sends the server the most crucial behavior status change

data. With the use of open-source software, real-time facial and voice recognition is implemented. This

study cannot ensure the integrity and equality of all examinees as in conventional classroom tests since

it lacks the functionality to stop students from cheating on online exams.

 Because a monolithic design would not be able to satisfy these needs, the microservices architecture is

chosen, which creates new opportunities. These studies are different from ours in that they concentrate

on particular subjects and issues related to Online exams rather than the general manner in which the

modernization process is carried out. However, they have different goals than we do. Although these

studies offer helpful understandings of the migration process for online exams, they are not concerned

with formulating a general roadmap.

This study organized the workflow and process settings for each phase of the conventional re-

examination, examined the flaws in the traditional or online software architecture, and made the first

attempt to implement the microservices architecture for the online re-examination of students' entrance

exams.

IV. Proposed MS OExam

 The current mainstream microservice architecture for the Internet has the following two advantages .

The modules are highly autonomous, which allows for rapid changes and independent module updates

in Internet applications. - The modules have high scalability, which allows for unpredictable users and

 Saad Hussein Abed Hamed JCM - Vol.15(3) 2023 , pp Comp. 35–46 7

dynamic resource allocation in Internet applications. As a result, microservices are gradually becoming

the dominant architectural model for building Internet applications .[12]

 The microservices platform offers the fundamental infrastructure for utilizing and managing

distributed services. It also offers the potential for integrating multiple technologies during system

construction using a variety of public service components, all while guaranteeing that data standards

and specifications are met. Microservices are loosely connected in terms of their operational logic and

provide data-level support for one another. They operate independently of one another and can be

further integrated to carry out trickier tasks. A multi-tier architecture was used in the design of the

online re-examination system for student exams, as depicted in Fig 4. These comprise the presentation

layer, application service layer, and data management layer.

Client layer

 --

Input Layer

application

 Layer

--

Tools Layer

--

Data base layer

 PC or laptop Mobile device

Student
Registration

Prof. registration

Question Answer
question

 Automat
correction

Result and reports

Gatewa
y

 Data
analysi
s

 Tool
service

Student
DB

Prof.
DB

Questions
DB

Admin.
DB

Result
DB

 Saad Hussein Abed Hamed JCM - Vol.15(3) 2023 , pp Comp. 35–46 8

Figure 4, shows the Architecture diagram of OExam system

The display layer, which is also known as the client layer, enables a variety of access techniques,

including desktop and mobile browsers, WeChat, and mobile apps. Through a simple communication

protocol, the presentation layer can be linked to the application service layer. API Gateway: At the

system boundary, the API gateway, which is a crucial component of the microservice architecture,

offers centralized powerful control services for the serial APIs.

The API gateway implemented an outer layer and gave the front-end uniform access rules in terms of

design patterns. Additionally, the API gateway in this system offers functions like load balancing,

service routing, and request filtering that keep the inside and outside of the system separate, assuring

the security of back-end services. The application service layer, which makes up the heart of MSA,

uses a service-oriented strategy to call and combine "decentralized services" to satisfy the functional

needs of various modules. Microservices for video chat, file sending and receiving, payments, data

analysis, and messaging were all used in the construction of this layer.

Proposed migration decision model for OExam

1. Investigate the motivating factors.. Initiation

2. Recognize the legacy system. ---------------------------------------

3. Break down the old system Planning

4. The microservice architecture should be defined.

5. Implement the modernization.

6. Sync the traditional systems with the microservices -----------------------

7. Check and confirm the microservices Execution

8. the infrastructure and microservices should be watched. Monitoring

V. IMPLEMENTATION

Flexible application of the aforementioned online re-examination system for student admissions is

possible to fulfill the requirements of many operational processes, including interviews, written exams,

and admissions. Users can submit information and complete written tests in many categories after

logging in. Additionally, the outcomes can be calculated and imported to provide students with

answers. The back-end administrator has access to import student lists, troubleshoot written test

equipment, speak with specialists, and view student data. The entire system has a microservice design

and is split up into numerous application microservices, including qualification reviews.

 Saad Hussein Abed Hamed JCM - Vol.15(3) 2023 , pp Comp. 35–46 9

 Each microservice is separately deployed and has the flexibility to be modified to meet the needs of an

application that is constantly developing. The system utilizes a microservices design that divides the

front- and back-end, increasing development productivity and enhancing code maintainability.

The primary motive for developing and implementing online tests in a large course was to eliminate a

lot of paperwork and the time and effort of grading assignments and exams in a large classroom. This

system aims to maintain the integrity of exams by providing real-time monitoring.

The first step is to identify both functional and non-functional needs and requirements. List and rank

the chosen criteria. needing to Analyze the resources that are at disposal, including the size of the

development team, the knowledge and experience of the team members, and the tools and technologies

that are at disposal.

Microservices are a suitable fit for the project's requirements for complexity and adaptability as well as

high availability and performance. The team possesses the necessary abilities for developing

microservices, and their large budget allows them to invest in an infrastructure that can meet their

strict reliability and resilience standards.

VI. Conclusion

Any organization that wants to increase business agility must modernize its current systems and

services. According to research, services and functions could be moved to take use of cloud computing

and Internet of Things (IOT) characteristics. Cloud computing and IOT are challenging to implement

in legacy systems. The primary drawbacks of monolithic applications are to the maintenance,

upgrading, and scale due to the difficulty of adopting new frameworks or technologies. Compared to

monolith (limited architecture), microservices architecture are more dependable. This paper suggests

a plan to develop an online re-examination system for student tests in light of the pressing need to

reform online assessments within the context of the microservice architecture.

We suggest adopting a common microservice architecture for the online re-examination after looking

into the operational mode and workflow settings of each operational procedure of re-examination for

student exams and looking into the shortcomings of conventional software architecture. We suggest

using a common microservice architecture for the online re-examination of student examinations after

examining the operational mode and workflow settings of each operational procedure of re-

examination and examining the flaws in traditional software architecture. Every online retest and

admission function that has been suggested for students To lessen the coupling between processes, a

multi-layer architecture was used in the design and divided into the presentation, application service,

and data layers.The adoption of a microservices architecture during development increases

maintainability and development efficiency.

References

[1] R. Prieto-Diaz, "Status report: software reusability," in IEEE Software, vol. 10, no. 3, pp. 61-66,
May 1993. Doi: 10.1109/52.210605.

 Saad Hussein Abed Hamed JCM - Vol.15(3) 2023 , pp Comp. 35–46 10

[2] N. Padhy, R. Panigrahi, and S. Baboo, "A Systematic Literature Review of an Object Oriented
Metric: Reusability," 2015 Int. Conf. on Computational Intelligence and Networks, Bhubaneshwar,
2015, pp. 190-191. DOI: 10.1109/CINE.2015.44.

[3] Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis. 2003. Modernizing Legacy Systems:
Software Technologies, Engineering Process and Business Practices.Addison-Wesley Longman
Publishing Co., Inc., USA.

[4] Jason Miller. 2018. Spending on legacy IT continues to grow, but there is light at the end of the
tunnel. https://federalnewsnetwork.com/ask-the-cio/2018/08/spendingon-legacy-it-continues-to-
grow-but-there-is-light-at-the-end-of-the-tunnel/.

[5] F. Mohr, T. Lettmann, E. Hüllermeier, "Planning with Independent Task Networks, " in Kern-
Isberner G., Fürnkranz J., Thimm M. (eds)

[6] KI 2017: Advances in Artificial Intelligence. KI 2017. Lecture Notes in Computer Science, vol
10505. Springer, Cham.

[7] H. Knoche and W. Hasselbring. 2018. Using Microservices for Legacy Software Modernization.
IEEE Software 35, 3 (2018), 44–49.

[8] Yingying Wang, Harsha Kadyala, and Julia Rubin. 2020. Promises and Challenges of Microservices:
an Exploratory Study. Empirical Software Engineering (2020), 1–45.

[9] M. Agarwal and R. Majumdar,” Software Maintainability and Usability in Agile Environment,”, Int.
J. of Computer Application, Vol.68, No. 4, 2013, pp. 30-36.

[10] Cai, Haiyan.” Education Technology for Online Learning in Times of Crisis”, IEEE TALE2020 – An
International Conference on Engineering, Technology and Education Page 758. Authorized licensed
use limited to: University of Canberra. Downloaded on May 23,2021 at 14:19:38 UTC from IEEE
Xplore. Restrictions apply.

[11] Arora, S., Chaudhary, P. and Singh, R.K. (2021), "Impact of coronavirus and online exam anxiety
on self-efficacy: the moderating role of coping strategy", Interactive Technology and Smart Education,
Vol. 18 No. 3, pp. 475-492. https://doi.org/10.1108/ITSE-08-2020-0158.

[12]- Y.W. Luo, J.W. Yao, B. Xu, et al, “Clinical medical teaching management system based on micro-
service framework,” China Medical Education Technology, vol. 33, no. 6, pp. 738-741, 2019.

[13] Jia, J. and He, Y. (2022), "The design, implementation and pilot application of an intelligent online
proctoring system for online exams", Interactive Technology and Smart Education, Vol. 19 No. 1, pp.
112-120. https://doi.org/10.1108/ITSE-12-2020-0246.

[14] J. Zhao, Z.H. Chen, Z.H. Gao, “Design and implementation of integrated scientific research
management platform based on microservice architecture,” Radio Engineering, vol. 49, no. 05, pp.
436-441, 2019.

[15] S. Prathish, A. N. S and K. Bijlani, "An Intelligent System For Online Exam Monitoring," in 2016
International Conference on Information Science (ICIS)

https://federalnewsnetwork.com/ask-the-cio/2018/08/spendingon-legacy-it-continues-to-grow-but-there-is-light-at-the-end-of-the-tunnel/
https://federalnewsnetwork.com/ask-the-cio/2018/08/spendingon-legacy-it-continues-to-grow-but-there-is-light-at-the-end-of-the-tunnel/
https://doi.org/10.1108/ITSE-08-2020-0158
https://doi.org/10.1108/ITSE-12-2020-0246

