

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Generalized Hom Γ-Derivation of n- BiHom Γ-Lie algebra

Rajaa C. Shaheen^a, Ameer H. Rahman^b

^a Mathematics Department College of Education University of Al-Qadisiyah Al-Qadisiyah , Iraq. Email: raja.chaffat@qu.edu.iq

^b Mathematics Department College of Education University of Al-Qadisiyah Al-Qadisiyah , Iraq. <u>E. mail: edu-math.post29@qu.edu.iq</u>

ARTICLEINFO

Article history: Received: 30 /05/2023 Rrevised form: 12 /07/2023 Accepted : 16 /07/2023 Available online: 30 /09/2023

Keywords:

derivation, Lie Algebra, Centroid.

ABSTRACT

The purpose of this paper, is to introduce a new concepts which are induced n-Bi-Hom Γ -Lie algebra, Γ -Center, $(\theta_1^{\ s}, \theta_2^{\ r})$ Γ -Center, $(\theta_1^{\ s}, \theta_2^{\ r})$ Hom Γ - derivation, $(\theta_1^{\ s}, \theta_2^{\ r})$ Q-Hom Der_{Γ} , $(\theta_1^{\ s}, \theta_2^{\ r})$ Central Hom Γ - derivation, $(\theta_1^{\ s}, \theta_2^{\ r})$ Hom Γ - derivation to construct induced n-Bi-Hom Γ -Lie algebra, studied Generalized Hom Γ -derivations on direct sum of ideals and we studied the relation between Hom $Der_{\lambda}(g)$, Hom $Cen_{\lambda}(g)$ and Q Hom $Der_{\lambda}(g)$, Q Hom $Cen_{\lambda}(g)$, G Hom $Der_{\lambda}(g)$.

MSC2010: 17B01, 16S30.

https://doi.org/ 10.29304/jqcm.2023.15.3.1277

1-INTRODUCTION

Amine, in [1], introduce n- Bi-Hom Lie algebra and custom to studying a *Generalized derivation* on an n-Bi-Hom *Lie algebras*. For several years an algebras of *derivations* and *Generalized derivation* has been topic about the study by many *researchers*. Leger and Luks, in [2], introduced research is more important on the algebras of *Generalized derivation* of *Lie algebras* and those sub algebras, where a writers studied the *structure* and features on an algebras on *Generalized derivation*, Q Cen of limited dimensional *Lie algebras*. The result of Leger and Luks where Generalized by more other researchers on algebras. For instance, Chen and Li, in [3], lesson the *Generalized derivation* of color-*Lie algebras*. Zhou and Fan, in [4,5], cases are considered on Hom Lie Color algebras and n-Hom Lie super algebras. Zhou, Niu and Chen, in [6], investigated *Generalized derivation* on Hom-*Lie algebras*. Kygorodov and Popov, in [7], find they out *Generalized derivation* of *color* n-ary Ω - algebras. For more of a *Generalized derivation* algebras, which is going to be find in [8, 9, 10, 11, 12]. Rezaei and Davvaz, in [13], define Γ - algebra. A. Al-Zaiadi and R. Shaheen, in [14] studied more result on Γ -Lie algebra. The purpose of this paper, is to define n-Bi-Hom Γ -Lie algebra, $(\theta_1^{s}, \theta_2^{r})$ Hom Γ -derivation and generalized Hom Γ -derivation on n-Bi-Hom, We also reached some results, [$Q \text{ Hom } Der_{\Gamma}(g)$, $Q \text{ Hom } Cen_{\Gamma}(g)$] $_{\lambda} \subseteq Q$ Hom $Cen_{\Gamma}(g)$, Studied Generalized derivations on direct sum of ideals.

Now, we will recall the followings concepts which are necessary in this paper.

Definition 1.1:- [1] (n-BiHom Lie-algebra)

An n-Bi-Hom- *Lie algebra* be a *vector space* g equipped a linear-function [.,...,] linear-functions and such that

$$(1) \theta_{1} \circ \theta_{2} = \theta_{2} \circ \theta_{1}$$

$$(2) \left[\theta_{2}(x_{1}), \dots, \theta_{2}(x_{n-1}), \theta_{1}(x_{n})\right] =$$

$$S_{gn}(\sigma) \left[\theta_{2}(x_{\sigma(1)}), \dots, \theta_{2}(x_{\sigma(n-1)}), \theta_{1}(x_{\sigma(n)})\right]$$
for all x_{1} , x_{2} , $x_{3} \in g$ and $\sigma \in S_{3}$

$$(3) \left[\theta_{2}^{2}(x_{1}), \dots, \theta_{2}^{2}(x_{n-1}), \left[\theta_{2}(y_{1}), \dots, \theta_{2}(y_{n-1}), \theta_{1}(y_{n})\right]\right]$$

$$= \sum_{k=1}^{n} (-1)^{n-k} \left[\theta_{2}^{2}(y_{1}), \dots, \widehat{\theta_{2}^{2}}(y_{k}), \dots, \theta_{2}^{2}(y_{n}) \left[\theta_{2}(x_{1}), \theta_{2}(x_{n-1}), \theta_{1}(y_{k})\right]\right]$$

for all x_1 , ..., x_{n-1} , y_1 , ..., $y_n \in g$. If n = 3, then g is called 3-Bi-Hom Lie algebra

Definition 1.2:- [1]

A subset $S \subseteq g$ is a called sub algebra of $(g, [.,.,.], \theta_1, \theta_2)$ if $\theta_1(S) \subseteq S$ and $\theta_2(S) \subseteq S$ and $[S, S, \dots, S] \subseteq S$, and S is an ideal if $\theta_1(S) \subseteq S$, $\theta_2(S) \subseteq S$ and $[S, S, \dots, g] \subseteq S$

Definition 1.3:-[1]

The center of $\left(g \;,\; \left[.,...,.
ight] \;,\; heta_1 \;,\; heta_2
ight)$ is the set of $u\!\in\!g\,$ such that

 $[u, x_1, x_2, \cdots, x_{n-1}] = 0$. For all $x_1, x_2, \cdots, x_{n-1} \in g$. A center is ideal on g which symbolize by Z(g).

Definition 1.4:- [1]

For any x_1 , x_2 , \cdots , $x_{n-1} \in g$

Definition 1.5:-[15] Gamma Algebra

Assume Γ is a groupoid and V is a *vector space* on a field *F*. Therefore, V be named a Γ -algebra on the field *F* if there exist a functioning $V \times \Gamma \times V \to V$ (an image be symbolize by $x\alpha y$ for all $x, y \in V$ and $\alpha \in \Gamma$) such the following *conditions* hold:

- (1) $(x + y)\alpha z = x\alpha z + y\alpha z, \ x\alpha(y + z) = x\alpha y + x\alpha z,$
- (2) $x(\alpha + \beta)y = x\alpha y + x\beta y$,
- (3) $(cx)\alpha y = c(x\alpha y) = x\alpha(cy),$
- (4) $0\alpha y = y\alpha 0 = 0$, for all x, y, $z \in V$, $c \in F$ and $\alpha \in \Gamma$. Furthermore it, a Γ algebra is named associative if
- (5) $(x\alpha y)\beta z = x\alpha(y\beta z).$

Definition 1.6 :- [14] (Γ-Lie algebra)

Assume *V* is the associative Γ – *algebra* on a field *F*. Therefore, for all $\lambda \in \Gamma$ one can create the Γ – *Lie algebra* $L_{\lambda}(V)$. Like a *vector space*, $L_{\lambda}(V)$ be a same *V*. A Lie Γ - arch of 2-elements on $L_{\lambda}(V)$ be defined to be them reflector in *V*, $[x, y]_{\lambda} = x \cdot_{\lambda} y - y \cdot_{\lambda} x$. Note that $[x, y]_{\lambda} = -[y, x]_{\lambda}$.

2- Main Results

In this section, we will define n-Bi-Hom Γ -Lie algebra, Hom Γ -derivations, $(\theta_1^{\ s}, \theta_2^{\ r})$ Hom Γ - derivations and (θ_1, θ_2) Γ -center, $(\theta_1^{\ s}, \theta_2^{\ r})$ Q-Hom Der_{λ} , Generalized $(\theta_1^{\ s}, \theta_2^{\ r})$ -Hom $Der_{\lambda}, (\theta_1^{\ s}, \theta_2^{\ r})$ Central Hom Der_{λ} and $(\theta_1^{\ s}, \theta_2^{\ r})$ Hom Γ - Centroid. We will use the notation Hom Γ -derivation (Hom Der_{Γ}), Quasi Hom Γ -derivation (Q Hom Der_{Γ}), Generalized Hom Γ -derivation (Gen Hom Der_{Γ}), Hom Γ - centroid (Hom Cen_{Γ}), Quasi Hom Γ - centroid (Q Hom Cen_{Γ}) and Generalized Hom Γ -derivation (Gen Hom Der_{Γ}).

Definition 2.1.:- (n-Bi-Hom Γ-Iie algebra)

An n-Bi-Hom *\Gamma*- Lie algebra be a vector-space g equipped n-linear function

[., ...,] and 2-linear functions θ_1 and θ_2 such $(1)\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$

(2)
$$[\theta_2(x_1), ..., \theta_2(x_{n-1}), \theta_1(x_n)]_{\lambda} =$$

 $S_{gn}(\sigma) [\theta_2(x_{\sigma(1)}), ..., \theta_2(x_{\sigma(n-1)}), \theta_1(x_{\sigma(n)})]_{\lambda}$

for all x_1 , x_2 , $x_3 \in g$ and $\sigma \in S_3$

$$(3) \left[\theta_{2}^{2}(x_{1}), \dots, \theta_{2}^{2}(x_{n-1}), \left[\theta_{2}(y_{1}), \dots, \theta_{2}(y_{n-1}), \theta_{1}(y_{n})\right]\right]_{\lambda}$$

= $\sum_{k=1}^{n} (-1)^{n-k} \left[\theta_{2}^{2}(y_{1}), \dots, \widehat{\theta_{2}}^{2}(y_{k}), \dots, \theta_{2}^{2}(y_{n})\left[\theta_{2}(x_{1}), \theta_{2}(x_{n-1}), \theta_{1}(y_{k})\right]\right]_{\lambda}$

for all x_1 , ..., x_{n-1} , y_1 , ..., $y_n \in g$.

If n=3, then called (3- Bi-Hom Γ -Lie algebra)

Proposition 2.2 :-

Assume $(g, [.,..,.]_{\lambda})$ is n- Γ -Lie algebra and let θ_1 , θ_2 maps on g that commute with every other. For x_1 , \cdots , $x_n \in g$. Define $[x_1, \cdots, x_n]_{\lambda \ \theta_1 \theta_2} = [\theta_1(x_1), \cdots, \theta_1(x_{n-1}), \theta_2(x_n)]_{\lambda}$ Then $(g, [.,..,.]_{\lambda \ \theta_1 \theta_2}, \theta_1, \theta_2)$ is an n-Bi-Hom Γ -Lie algebra, which is called induced n-Bi-Hom Γ -Lie algebra.

Proof:-

The functions θ_1 , θ_2 commute, by hypothesis, we have a prove θ_1 , θ_2 are algebra morphisms, for every x_1 , \cdots , $x_n \in g$, we have:

$$\theta_1\big([x_1,\ldots,x_n]_{\lambda\theta_1\theta_2}\big) = \theta_1([\theta_1(x_1),\ldots,\theta_1(x_{n-1}),\theta_2(x_n))]_{\lambda}$$

$$= \left[\theta_1^{2}(x_1), \dots, \theta_1^{2}(x_{n-1}), \theta_1 \circ \theta_2(x_n)\right]_{\lambda} = \left[\theta_1^{2}(x_1), \dots, \theta_1^{2}(x_{n-1}), \theta_2 \circ \theta_1(x_n)\right]_{\lambda}$$
$$= \left[\theta_1(x_1), \dots, \theta_1(x_n)\right]_{\lambda\theta_1\theta_2}.$$

Can a prove that, in a similar way, we can a prove that θ_2 like that a morphism. Also we have

$$\begin{split} &\left[\theta_{2}(x_{\sigma(1)}), \dots, \theta_{2}(x_{\sigma(n-1)}), \theta_{1}(x_{\sigma(n)})\right]_{\lambda \theta_{1} \theta_{2}} \\ &=\left[\theta_{1} \circ \theta_{2}(x_{\sigma(1)}), \dots, \theta_{1} \circ \theta_{2}(x_{\sigma(n-1)}), \theta_{2} \circ \theta_{1}(x_{\sigma(n)})\right]_{\lambda} \\ &= \theta_{1} \circ \theta_{2}(\left[(x_{\sigma(1)}), \dots, (x_{\sigma(n)})\right]_{\lambda}) = S_{gn}(\sigma) \left[\theta_{1} \circ \theta_{2}(x_{(1)}), \dots, \theta_{1} \circ \theta_{2}(x_{(n-1)}), \theta_{2} \circ \theta_{1}(x_{(n)})\right]_{\lambda} \\ &= S_{gn}(\sigma) \left[\theta_{1} \circ \theta_{2}(x_{(1)}), \dots, \theta_{1} \circ \theta_{2}(x_{(n-1)}), \theta_{2} \circ \theta_{1}(x_{(n)})\right]_{\lambda} \\ &= S_{gn}(\sigma) \left[\theta_{2}(x_{1}), \dots, \theta_{2}(x_{n-1}), \theta_{1}(x_{n})\right]_{\lambda \theta_{1} \theta_{2}} \text{ for every } x_{1} , \cdots , x_{n-1} \in g , y_{1}, \dots, y_{n} \in g, \text{we have:} \\ &\left[\theta_{2}^{-2}(x_{1}), \dots, \theta_{2}^{-2}(x_{n-1}), [\theta_{2}(y_{1}), \dots, \theta_{2}(y_{n-1}), \theta_{1}(y_{n})]_{\lambda \theta_{1} \theta_{2}} \right]_{\lambda \theta_{1} \theta_{2}} \\ &= \left[\theta_{1} \circ \theta_{2}^{-2}(x_{1}), \dots, \theta_{1} \circ \theta_{2}^{-2}(x_{n-1}), \theta_{2}(\left[\theta_{1} \circ \theta_{2}(y_{1}), \dots, \theta_{1} \circ \theta_{2}(y_{n-1}), \theta_{2} \circ \theta_{1}(y_{n})]_{\lambda}\right]_{\lambda} \\ &= \theta_{1} \circ \theta_{2}^{-2}([x_{1}, \dots, x_{n-1}, y_{n}]_{\lambda}]_{\lambda} \\ &= \sum_{k=1}^{n} \qquad \theta_{1} \circ \theta_{2}^{-2}([y_{1}, \dots, x_{n-1}, y_{k}]_{\lambda}, \dots, y_{n}]_{\lambda} \\ &= \sum_{k=1}^{n} \left(-1\right)^{n-k} \left(\theta_{1} \circ \theta_{2}^{-2}(y_{1}), \dots, \theta_{1} \circ \theta_{2}^{-2}(y_{k}), \dots, \theta_{1} \circ \theta_{2}^{-2}(y_{n}), \theta_{1} \circ \theta_{2}^{-2}([(x_{1}), \dots, (x_{n-1}), (y_{k})]_{\lambda})\right]_{\lambda} \\ &= \sum_{k=1}^{n} \left(-1\right)^{n-k} \left(\left[\theta_{1} \circ \theta_{2}^{-2}(y_{1}), \dots, \theta_{1} \circ \theta_{2}^{-2}(y_{k}), \dots, \theta_{1} \circ \theta_{2}^{-2}(y_{n}), \theta_{2}(\left[\theta_{1} \circ \theta_{2}(x_{1}), \dots, \theta_{1} \circ \theta_{2}(y_{k})\right]_{\lambda}\right)\right]_{\lambda} \\ &= \sum_{k=1}^{n} \left(-1\right)^{n-k} \left(\left[\theta_{1} \circ \theta_{2}^{-2}(y_{1}), \dots, \theta_{1} \circ \theta_{2}^{-2}(y_{n}), (\left[\theta_{2}(x_{1}), \dots, \theta_{2}(x_{n-1}), \theta_{1}(y_{k})\right]_{\lambda \theta_{1}\theta_{2}}}\right]_{\lambda \theta_{2}\theta_{2}} \right]_{\lambda \theta_{1}\theta_{2}} \end{aligned}$$

Example 2.3:-

Let *g* is the 4-dimensional vector-space with the *basis* $[e_1, e_2, e_3, e_4]$. Define the next arch:

$$[e_1, e_2, e_3]_{\lambda} = -e_4; [e_1, e_2, e_4]_{\lambda} = e_3;$$

$$[e_1, e_3, e_4]_{\lambda} = -e_2; [e_2, e_3, e_4]_{\lambda} = e_1$$

in this bracket, $(g, [.,.,.]_{\lambda})$ be the 3- Γ -Lie algebra. Assume θ_1 and θ_2 be 2- linear functions of g defined:

$$\theta_{1}(e_{1}) = -e_{2} ; \ \theta_{1}(e_{2}) = -e_{1} ;$$

$$\theta_{1}(e_{3}) = -e_{4} ; \ \theta_{1}(e_{4}) = -e_{3} \text{ and } \theta_{2} = -\theta_{1}$$

Let $[x_{1}, x_{2}, x_{3}]_{\lambda \ \theta_{1}\theta_{2}} = [\theta_{1}(x_{1}), \ \theta_{1}(x_{2}), \ \theta_{2}(x_{3})]_{\lambda}$

be the twisted bracket defined on g. Then $(g, [.,.,.]_{\lambda \ \theta_1 \theta_2}, \theta_1, \theta_2)$ is the 3-Bi-Hom Γ -lie algebra **Definition 2.4:**-

The G-center of $(g \;,\; [.,..,.]_{\lambda} \;,\; heta_1 \;,\; heta_2)$ is the set of $u\!\in\!g\,$ such that

 $[u, x_1, x_2, \dots, x_{n-1}]_{\lambda} = 0$. For all $x_1, x_2, \dots, x_{n-1} \in g$. The Γ -center be an ideal of g which we will symbolize by $Z_{\lambda}(g)$.

Definition 2.5 :-

A (θ_1, θ_2) Γ - center on $(g, [.,..,.]_{\lambda}, \theta_1, \theta_2)$ is the set $Z_{\lambda(\theta_1, \theta_2)}(g) = \{u \in g, [u, \theta_1 \theta_2(x_1), \cdots, \theta_1 \theta_2(x_{n-1})]_{\lambda} = 0\},$

for any x_1 , x_2 , \cdots , $x_{n-1} \!\in \! g$

Definition 2.6:-

Let $(g, [.,..,.]_{\lambda}, \theta_1, \theta_2)$ is the n-Bi-Hom Γ -Lie algebra. The linear function $D: g \longrightarrow g$ $(\theta_1^{s}, \theta_2^{r})$ be Hom Der_{Γ} if for every $x, y, z \in g$. There exist $\delta: A \longrightarrow A$ is a Homomorphism,

define $({\theta_1}^s \ , \ {\theta_2}^r)$ Hom \textit{Der}_{λ} on n-Bi-Hom Γ -Lie algebra

$$D[x_{1}, \dots, x_{n}]_{\lambda} = [D(x_{1}), \theta_{1}^{s} \theta_{2}^{r}(x_{2}), \dots, \theta_{1}^{s} \theta_{2}^{r}(x_{n})]_{\lambda}$$

+ $\sum_{i=1}^{n} [\theta_{1}^{s} \theta_{2}^{r}(x_{1}), \dots, \theta_{1}^{s} \theta_{2}^{r}(x_{i-1}), D(x_{i}), \theta_{1}^{s} \theta_{2}^{r}(x_{i+1}), \dots, \theta_{1}^{s} \theta_{2}^{r}(x_{n})]_{\lambda}$
+ $\delta[x_{1}, \dots, x_{n}]_{\lambda}$

Let Hom Der_{λ} $(\theta_1^{s}, \theta_2^{r})$ (g) be the set of $(\theta_1^{s}, \theta_2^{r})$ -Hom Γ -derivation of g and set Hom $Der_{\lambda}(g) = \bigoplus_{S \ge 0} \bigoplus_{r \ge 0}$ Hom $Der_{\lambda}(\theta_1^{s}, \theta_2^{r})$ (g). We show it Hom $Der_{\lambda}(g)$ be equipped with a Γ -

lie algebra structure. In effect, for all $D \in$ Hom Der $_{\lambda}(\theta_1^{s}, \theta_2^{r})(g)$ and $D' \in$ Hom $Der_{\lambda}(\theta_1^{s}, \theta_2^{r})(g)$ we have $[D, D']_{\lambda} \in$ Hom $Der_{\lambda}(\theta_1^{s+s'}, \theta_2^{r+r'})(g)$, where $[D, D']_{\lambda}$ us the standard commutation defined by $[D, D']_{\lambda} = D \circ D' - D' \circ D$.

Note that if $(g, [.,..,.]_{\lambda})$ be the n- Γ -Lie algebra and $(g, [.,..,.]_{\lambda \ \theta_1 \theta_2}, \theta_1, \theta_2)$ the induced n-Bi-Hom Γ -Lie algebra where θ_1 , θ_2 are 2-morphism used to this induction.

Definition 2.7:-

The endo-morphism D on the n-Bi-Hom Γ -*Lie algebra* g be called (θ_1^s, θ_2^r) Q-Hom Der_{λ} if there exist an endomorphism D' of g such that

$$D \circ \theta_1 = \theta_1 \circ D$$
; $D \circ \theta_2 = \theta_2 \circ D$, $D' \circ \theta_1 = \theta_1 \circ D'$; $D' \circ \theta_2 = \theta_2 \circ D'$

, There exist $\delta{:}A \longrightarrow A$ is a homomorphism

$$D'[x_1, \dots, x_n]_{\lambda} = \sum_{i=1}^n \left[\theta_1^{s} \theta_2^{r}(x_1), \dots, \theta_1^{s} \theta_2^{r}(x_{i-1}), D(x_i), \theta_1^{s} \theta_2^{r}(x_{i+1}), \dots, \theta_1^{s} \theta_2^{r}(x_n)\right]_{\lambda} + \delta[x_1, \dots, x_n]_{\lambda}.$$
 For any $x_1, \dots, x_n \in g$. Then we define

Q Hom $\textit{Der}_{\lambda}(g) = \bigoplus_{s \ge 0} \bigoplus_{r \ge 0}$ Q Hom $\textit{Der}_{\lambda}(\theta_1^{s}, \theta_2^{r})$

Definition 2.8:-

Let $(g, [.,..,.]_{\lambda}, \theta_1, \theta_2)$ is the n-Bi-Hom Γ -Lie algebra and suppose D is endo morphism on g. A linear function D be named the Gen $(\theta_1^{s}, \theta_2^{r})$ -Hom Der_{λ} on g if there exists $D^{(i)}, i \in \{1, ..., n\}$ family of endomorphism of g such that $D \circ \theta_1 = \theta_1 \circ D$; $D \circ \theta_2 = \theta_2 \circ D$

$$D^{(i)} \circ \theta_1 = \theta_1 \circ D^{(i)}$$
; $D^{(i)} \circ \theta_2 = \theta_2 \circ D^{(i)}$

For any, where
$$\delta: A \longrightarrow A$$
 is a Homomorphism and
 $D^{(n)}[x_1, \dots, x_n]_{\lambda} = [D(x_1), \theta_1^s \theta_2^r(x_2), \dots, \theta_1^s \theta_2^r(x_n)]_{\lambda}$
 $+ \sum_{i=2}^n [\theta_1^s \theta_2^r(x_1), \dots, \theta_1^s \theta_2^r(x_{i-1}), D^{(i-1)}(x_i), \theta_1^s \theta_2^r(x_{i+1}), \dots, \theta_1^s \theta_2^r(x_n)]_{\lambda}$
 $+ \delta[x_1, \dots, x_n]_{\lambda}$, for all $x_1, \dots, x_n \in g$

The set of generalized (θ_1^s, θ_2^r) - Hom Der_{λ} of g is Gen Hom $Der_{\lambda}(\theta_1^s, \theta_2^r)(g)$ and as for Gen Hom $Der_{\lambda}(g)$, we denote

Gen Hom $\textit{Der}_{\lambda}(g) = \bigoplus_{S \geqslant 0} \bigoplus_{r \geqslant 0}$ Gen Hom $\textit{Der}_{\lambda}(\theta_1^{s}, \theta_2^{r})$ (g)

Proposition 2.9:-

Let $(g, [.,.,.]_{\lambda}, \theta_1, \theta_2)$ is the regular n-Bi-Hom Γ -Lie algebra in trivial Hom Γ -Center. Assume $g = I \oplus J$; such I and J are ideals on g, then

Gen Hom $Der_{\lambda}(g) =$ Gen Hom $Der_{\lambda}(I) \oplus$ Gen Hom $Der_{\lambda}(J)$, such that there exist $\delta: A \longrightarrow A$ is an isomorphism.

Proof:-

We will prove this for any $D \in$ Gen Hom $Der_{\lambda}(g)$, we have $D(I) \subset I$ and $D(J) \subset J$, therefore it follows a restriction of D to I (resp. J) be the Gen Hom Der_{λ} of I (resp. J).

Assume $u \in I$ and suppose D(u) = a + b, $a \in I$, $b \in J$ be the decomposition of D(u). For any $y_1, \dots, y_{n-1} \in g$, we have $[b, y_1, \dots, y_{n-1}]_{\lambda} \in J$. On the other hand, $[b, y_1, \dots, y_{n-1}]_{\lambda} = [D(u) - a, y_1, \dots, y_{n-1}]_{\lambda}$ $= [D(u), y_1, \dots, y_{n-1}]_{\lambda} - [a, y_1, \dots, y_{n-1}]_{\lambda}.$

Since I is an ideal and $a \in I$, so $[a, y_1, \cdots, y_{n-1}]_{\lambda} \in I$. Moreover, for each $1 \leq i \leq n-1$, let $v_i = \theta_1^s \theta_2^r (x_i)$ then $[D(u), y_1, \cdots, y_{n-1}]_{\lambda} = [D(u), \theta_1^{s} \theta_2^{r}(x_1), \cdots, \theta_1^{s} \theta_2^{r}(x_{n-1})]_{\lambda}$ $= D^{(n)} [u, x_1, \cdots, x_{n-1}]_{\lambda} \sum_{i=1}^{n-1} \left[\theta_1^{s} \theta_2^{r}(u) , \theta_1^{s} \theta_2^{r}(x_1), \dots, D^{(i)}(x_i) , \theta_1^{s} \theta_2^{r}(x_{i+1}) , \cdots , \theta_1^{s} \theta_2^{r}(x_{n-1}) \right]_{\lambda}$ $+\delta[u, x_1, \cdots, x_n]$. For every *I*, where, $\delta: A \longrightarrow A$ is an isomorphism $[\theta_1^{s}\theta_2^{r}(u), \theta_1^{s}\theta_2^{r}(x_1), \cdots, D^{(i)}(x_i), \theta_1^{s}\theta_2^{r}(x_{i+1}), \cdots, \theta_1^{s}\theta_2^{r}(x_{n-1})] \in I,$ so $[\theta_{1}^{s}\theta_{2}^{r}(u), \theta_{1}^{s}\theta_{2}^{r}(x_{1}), \cdots, D^{(i)}(x_{i}), \theta_{1}^{s}\theta_{2}^{r}(x_{i+1}), \cdots, \theta_{1}^{s}\theta_{2}^{r}(x_{n-1})]_{\lambda} \in I$ \sum $x_i = a_i + b_i$ be the decomposition Now let of χ_i i=1,..., n-1 $[u, x_1, \dots, x_{n-1}]_{\lambda} = [u, a_1 + b_1, \dots, a_{n-1} + b_{n-1}]_{\lambda}$ $= [u, a_1 + b_1, \cdots, a_{n-1}]_{\lambda} + [u, a_1 + b_1, \cdots, b_{n-1}]_{\lambda}$ but $[u, a_1 + b_1, \cdots, b_{n-1}] \in I \cap J = \{0\}$, so $[u, x_1, \dots, x_{n-1}]_{2} = [u, a_1 + b_1, \dots, a_{n-2} + b_{n-2}, a_{n-1}].$

Similarly, $[u \ , \ a_1 + b_1 \ , ... \ , \ b_{n-2} \ , \ a_{n-1}]_{\lambda} = 0$

Thus $[u, x_1, \cdots, x_{n-1}]_{\lambda} = [u, a_1, \cdots, a_{n-2}, a_{n-1}]_{\lambda}$.

Therefore,
$$D^{(n)}[u, x_1, \cdots, x_{n-1}]_{\lambda} = D^n[u, a_1, \cdots, a_{n-1}]_{\lambda}$$

$$= [D(u), \theta_{1}^{s} \theta_{2}^{r}(a_{1}), \cdots, \theta_{1}^{s} \theta_{2}^{r}(a_{n-1})]_{\lambda}$$

+ $\sum_{i=1}^{n-1} [\theta_{1}^{s} \theta_{2}^{r}(u), \theta_{1}^{s} \theta_{2}^{r}(a_{1}), \cdots, D^{(i)}(a_{i}), \theta_{1}^{s} \theta_{2}^{r}(a_{i+1}), \cdots, \theta_{1}^{s} \theta_{2}^{r}(a_{n-1})]_{\lambda} \in I$

Then $[D(u), y_1, \dots, y_{n-1}]_{\lambda} \in I$ and so is $[b, y_1, \dots, y_{n-1}]_{\lambda}$.

Hence $[b\ ,\ y_1\ ,\ \cdots\ ,\ y_{n-1}]_\lambda\!\in\!I\cap J$. We can conclude that $b\!\in\!Z_\lambda(g)=\{0\}$ and so $D(I)\!\subseteq\!I$

Remark 2.10:-

Since any Hom Der_{λ} and quasi Hom Der_{λ} is a Generalized Hom Der_{λ} .

Hom $Der_{\lambda}(g) \subseteq Q$ Hom $Der_{\lambda}(g) \subseteq Gen$ Hom $Der_{\lambda}(g)$.

Hence proposition 2.9 holds of Q Hom $Der_{\lambda}(g)$ and Hom $Der_{\lambda}(g)$ as well, that Hom $Der_{\lambda}(g) = \text{Hom } Der_{\lambda}(I)$ \oplus Hom $Der_{\lambda}(J)$ and

Q Hom $Der_{\lambda}(g) = Q$ Hom $Der_{\lambda}(I) \oplus Q$ Hom $Der_{\lambda}(J)$

Definition 2.11:-

The linear function *D* be called (θ_1^s, θ_2^r) central-Hom *Der*_{λ} on *g* if it satisfies

$$D([x_1, \dots, x_n]_{\lambda}) = [\theta_1^s \theta_2^r(x_1), \dots, \theta_1^s \theta_2^r(x_{i-1}), D(x_i), \theta_1^s \theta_2^r(x_{i+1}), \dots, \theta_1^s \theta_2^r(x_n)]_{\lambda} + \delta[x_1, \dots, x_n]_{\lambda} = 0,$$

for all $i \in \{1, \dots, n\}$

The set of (θ_1^s, θ_2^r) central Der_{λ} is denoted by Z Hom $Der_{\lambda}(\theta_1^s, \theta_2^r)$ and we set

$$Z \operatorname{Hom} \operatorname{Der}_{\lambda}(g) = \bigoplus_{s \ge 0} \bigoplus_{r \ge 0} Z \operatorname{Hom} \operatorname{Der}_{\lambda}(\theta_{1}^{s}, \theta_{2}^{r})(g).$$

Definition 2.12:-

The (θ_1^s, θ_2^r) Hom Γ - *Centroid* of $(g, [.,.,.]_{\lambda}, \theta_1, \theta_2)$ denoted by Hom $Cen_{\Gamma}(\theta_1^s, \theta_2^r)(g)$ be a set of linear functions *D* satisfying

$$D([x_{1}, \dots, x_{n}]_{\lambda}) = [\theta_{1}^{s} \theta_{2}^{r}(x_{1}), \dots, \theta_{1}^{s} \theta_{2}^{r}(x_{i-1}), D(x_{i}), \theta_{1}^{s} \theta_{2}^{r}(x_{i+1}), \dots, \theta_{1}^{s} \theta_{2}^{r}(x_{n})]_{\lambda} + \delta[x_{1}, \dots, x_{n}]_{\lambda},$$

there exist $\delta: A \longrightarrow A$ is a Homomorphism for all $i \in \{1, ..., n\}$. We set

Hom $Cen_{\Gamma}(g) = \bigoplus_{s \ge 0} \bigoplus_{r \ge 0}$ Hom $Cen_{\Gamma}(\theta_1^{s}, \theta_2^{r})(g)$.

Proposition 2.13:-

For any S, r. we have

 $Z \operatorname{Hom} \operatorname{Der}_{\lambda}\left(\theta_{1}^{s}, \theta_{2}^{r}\right)(g) = \operatorname{Hom} \operatorname{Der}_{\lambda}(\theta_{1}^{s}, \theta_{2}^{r})(g) \cap \operatorname{Hom} \operatorname{Cen}_{\lambda}(\theta_{1}^{s}, \theta_{2}^{r})(g).$

Proof:-

It is clear that $Z \operatorname{Hom} \operatorname{Der}_{\lambda}(\theta_{1}^{s}, \theta_{2}^{r})(g) \subseteq \operatorname{Hom} \operatorname{Der}_{\lambda}(\theta_{1}^{s}, \theta_{2}^{r})(g)$ and $Z \operatorname{Hom} \operatorname{Der}_{\lambda}(\theta_{1}^{s}, \theta_{2}^{r})(g) \subseteq \operatorname{Hom} \operatorname{Cen}_{\lambda}(\theta_{1}^{s}, \theta_{2}^{r})(g)$ Conversely, Let $D \in \operatorname{Hom} \operatorname{Der}_{\lambda}(\theta_{1}^{s}, \theta_{2}^{r})(g) \cap \operatorname{Hom} \operatorname{Cen}_{\lambda}(\theta_{1}^{s}, \theta_{2}^{r})(g)$, so for each I, there exist, $\delta: A \longrightarrow A$ is a homomorphism we have $D([x_{1}, \cdots, x_{n}]_{\lambda}) = [\theta_{1}^{s} \theta_{2}^{r}(x_{1}), \cdots, \theta_{1}^{s} \theta_{2}^{r}(x_{i-1}), D(x_{i}), \theta_{1}^{s} \theta_{2}^{r}(x_{i+1}), \cdots, \theta_{1}^{s} \theta_{2}^{r}(x_{n})]_{\lambda} + \delta[x_{1}, \cdots, x_{n}]_{\lambda}$

In addition,

$$D([x_1, \dots, x_n]_{\lambda}) =$$

$$\sum_{i=1}^{n} [\theta_1^{s} \theta_2^{r}(x_1), \dots, \theta_1^{s} \theta_2^{r}(x_{i-1}), D(x_i), \theta_1^{s} \theta_2^{r}(x_{i+1}), \dots, \theta_1^{s} \theta_2^{r}(x_n)]_{\lambda}$$

$$+\delta[x_1, \dots, x_n]_{\lambda}$$
Then $D([x_1, \dots, x_n]_{\lambda}) = nD([x_1, \dots, x_n]_{\lambda})$.
Thus $D([x_1, \dots, x_n]_{\lambda}) = 0$ and $D \in Z$ Hom $Der_{\lambda}(\theta_1^{s}, \theta_2^{r})(g)$.

Definition 2.14:-

 $Q \operatorname{Hom} \operatorname{Cen}_{\lambda}(\theta_{1}^{s}, \theta_{2}^{r})(g) \text{ be a set of linear functions } D \operatorname{such} \\ [D(x_{1}), \theta_{1}^{s}\theta_{2}^{r}(x_{2}), \cdots, \theta_{1}^{s}\theta_{2}^{r}(x_{n})]_{\lambda} = [\theta_{1}^{s}\theta_{2}^{r}(x_{1}), \cdots, \theta_{1}^{s}\theta_{2}^{r}(x_{i-1}), \\ D(x_{i}), \theta_{1}^{s}\theta_{2}^{r}(x_{i+1}), \cdots, \theta_{1}^{s}\theta_{2}^{r}(x_{n})]_{\lambda} + \delta[x_{1}, \cdots, x_{n}]_{\lambda} \\ \operatorname{For all} i \in \{1, \cdots, n\}, \text{ there exist, } \delta: A \longrightarrow A \text{ is a Homomorphism. We set} \\ Q \operatorname{Hom} \operatorname{Cen}_{\lambda}(g) = \bigoplus_{s \ge 0} \bigoplus_{r \ge 0} Q \operatorname{Hom} \operatorname{Cen}_{\lambda}(\theta_{1}^{s}, \theta_{2}^{r})(g) \\ \operatorname{Hom} \operatorname{Cen}_{\lambda}(f_{1}) = 0 \\ \operatorname{Cen}_{\lambda}(f_{1}) = 0$

Lemma 2.15:-

Let $(g, [.,.,.]_{\lambda}, \theta_1, \theta_2)$ is n-Bi-Hom Γ -Lie algebra. (1) [Hom $\operatorname{Der}_{\lambda}(\theta_1^{s}, \theta_2^{r})(g)$, Hom $\operatorname{Cen}_{\lambda}(\theta_1^{s}, \theta_2^{r})(g)]_{\lambda} \subseteq \operatorname{Hom} \operatorname{Cen}_{\lambda}(\theta_1^{s}, \theta_2^{r})(g)$;

(2) Hom $Cen_{\lambda}(\theta_1^{s}, \theta_2^{r})(g) \oplus Hom Der_{\lambda}(\theta_1^{s}, \theta_2^{r})(g) \subseteq Hom Der_{\lambda}(\theta_1^{s}, \theta_2^{r})(g).$

Proof:-

Let $D \in \operatorname{Hom} \operatorname{Der}_{\lambda}(\theta_{1}^{s}, \theta_{2}^{r})(g)$ and $D' \in \operatorname{Hom} \operatorname{Cen}_{\lambda}(\theta_{1}^{s'}, \theta_{2}^{r'})(g)$ for some s, s', r, r'. Let x_1 , \cdots , $x_n \in g$. There exist $\delta: A \longrightarrow A$ is a homomorphism (1) Compute $\begin{bmatrix} DD'(x_1) & \theta_1^{s+s'} \theta_2^{r+r'}(x_2) & \cdots & \theta_1^{s+s'} \theta_2^{r+r'}(x_n) \end{bmatrix}$ $= D([D'(x_1), \theta_1^{s'}\theta_2^{r'}(x_2), \cdots, \theta_1^{s'}\theta_2^{r'}(x_n)]_{\lambda}$ $-\sum_{n=1}^{n} \left[\theta_1^{s} \theta_2^{r} D'(x_1), \cdots, D(x_i), \dots, \theta_1^{s} \theta_2^{r}(x_n)\right]_{\lambda}$ $-\delta[x_1, \cdots, x_n]$ $=DD'([x_{1}, \dots, x_{n}]_{\lambda}) - \sum_{i=1}^{n} [\theta_{1}{}^{s}\theta_{2}{}^{r}(x_{1}), \dots, D'D(x_{i}), \dots, \theta_{1}{}^{s}\theta_{2}{}^{r}(x_{n})]_{\lambda}$ $-\delta[x_1, \cdots, x_n]_{\lambda}$ On the other hand, $[D'D(x_1), \theta_1^{s+s'}\theta_2^{r+r'}(x_2), \cdots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]_{2}$ $= D'([D(x_1), \theta_1^s \theta_2^r(x_2), \cdots, \theta_1^s \theta_2^r(x_n)]_{\lambda}) - \delta[x_1, \cdots, x_n]_{\lambda}$ $= DD'([x_1, \cdots, x_n])$ $-D'\left(\sum_{i=1}^{n}\left[\theta_{1}^{s}\theta_{2}^{r}(x_{1}), \cdots, D(x_{i}), \cdots, \theta_{1}^{s}\theta_{2}^{r}(x_{n})\right]_{\lambda} - \delta[x_{1}, \cdots, x_{n}]_{\lambda}\right)$ but since for each *i*, $D'(\left[\theta_1^s \theta_2^r(x_1), \cdots, D(x_i), \cdots, \theta_1^s \theta_2^r(x_n)\right]_i) - \delta[x_1, \cdots, x_n]_i$ $= \left[\theta_1^{s} \theta_2^{r}(x_1), \cdots, D' D(x_i), \cdots, \theta_1^{s} \theta_2^{r}(x_n)\right]_{\lambda} - \delta[x_1, \cdots, x_n]_{\lambda},$ so $D'\left(\sum_{i=1}^{n} \left[\theta_1^{s} \theta_2^{r}(x_1), \cdots, D(x_i), \cdots, \theta_1^{s} \theta_2^{r}(x_n)\right]_{\lambda} - \delta[x_1, \cdots, x_n]_{\lambda}\right)$ $=\sum_{i=1}^{n}\left[\theta_{1}{}^{s}\theta_{2}{}^{r}(x_{1}), \cdots, D'D(x_{i}), \cdots, \theta_{1}{}^{s}\theta_{2}{}^{r}(x_{n})\right]_{\lambda} - \delta[x_{1}, \cdots, x_{n}]_{\lambda}$ Hence $\left[\left[D,D'\right]_{\lambda}(x_{1}), \theta_{1}^{s+s'}\theta_{2}^{r+r'}(x_{2}), \cdots, \theta_{1}^{s+s'}\theta_{2}^{r+r'}(x_{n})\right]_{\lambda}$ $= [D, D']_{\lambda} ([x_1, \cdots, x_n]_{\lambda})$ The same proof holds for any $i \in \{1, \dots, n\}$ Thus, $[D,D']_{\lambda} \in Hom \ C_{\lambda}(\theta_1^{s+s'}, \theta_2^{r+r'})(g)$ (2) Now $D'D([x_1, \dots, x_n]_{\lambda}) = D'([D(x_1), \theta_1^{s} \theta_2^{r}(x_2), \dots, \theta_1^{s} \theta_2^{r}(x_n)]_{\lambda})$

$$+ D' \Biggl\{ \sum_{i=2}^{n} \left[\theta_{1}^{s} \theta_{2}^{r}(x_{1}), \cdots, D(x_{i}), \cdots, \theta_{1}^{s} \theta_{2}^{r}(x_{n}) \right]_{\lambda} + \delta [x_{1}, \cdots, x_{n}]_{\lambda} \\ = \left[D' D(x_{1}), \theta_{1}^{s+s'} \theta_{2}^{r+r'}(x_{2}), \ldots, \theta_{1}^{s+s'} \theta_{2}^{r+r'}(x_{n}) \right]_{\lambda} \\ + \sum_{i=2}^{n} \left[\theta_{1}^{s+s'} \theta_{2}^{r+r'}(x_{1}), \cdots, D' D(x_{i}), \cdots, \theta_{1}^{s+s'} \theta_{2}^{r+r'}(x_{n}) \right]_{\lambda} \\ + [x_{1}, \cdots, x_{n}]_{\lambda}$$
The proof of them per $(\theta_{1}^{s+s'} - \theta_{1}^{r+r'})(\alpha_{1})$

Thus $D'D \in Hom \operatorname{Der}_{\lambda}(\theta_1^{s+s}, \theta_2^{r+r})(g)$

Theorem 2.16:-

Let $(g, [.,.,.]_{\lambda}, \theta_1, \theta_2)$ is the multiplicative n-Bi-Hom Γ - Lie algebra.

- (1) $[Q \text{ Hom } \text{Der}_{\lambda}(g), Q \text{ Hom } Cen_{\lambda}(g)]_{\lambda} \subseteq Q \text{ Hom } Cen_{\lambda}(g)$
- (2) Hom $Cen_{\lambda}(g) \subseteq Q$ Hom $Der_{\lambda}(g)$;
- (3) $[Q \text{ Hom } Cen_{\lambda}(g), Q \text{ Hom } Cen_{\lambda}(g)]_{\lambda} \subseteq Q \text{ Hom } Der_{\lambda}(g)$
- (4) Q Hom $\text{Der}_{\lambda}(g) + Q$ Hom $Cen_{\lambda}(g) \subseteq Gen$ Hom $\text{Der}_{\lambda}(g)$

Proof:-

 $D \in Q$ Hom Der_{$i} <math>(\theta_1^{s}, \theta_2^{r})(g)$ </sub> and $D' \in Q$ Hom $Cen_{\lambda}(\theta_1^{s'}, \theta_2^{r'})(g)$ Let for some s, s', r, r'. Let $\delta: A \longrightarrow A$ is a homomorphism. (1) Compute $\begin{bmatrix} DD'(x_1) \\ 0 \end{bmatrix}, \theta_1^{s+s'} \theta_2^{r+r'}(x_2), \cdots, \theta_1^{s+s'} \theta_2^{r+r'}(x_n) \end{bmatrix}_{2}$ $= D([D'(x_1), \theta_1^{s'} \theta_2^{r'}(x_2), \dots, \theta_1^{s'} \theta_2^{r'}(x_n)]_{\lambda}) \sum_{i=1}^{n} \left[\theta_{1}{}^{s}\theta_{2}{}^{r}D'(x_{1}), \cdots, D(x_{i}), \cdots, \theta_{1}{}^{s}\theta_{2}{}^{r}(x_{n})\right]_{\lambda} - \delta[x_{1}, \cdots, x_{n}]_{\lambda}$ $=DD'([x_{1},...,x_{n}]_{\lambda})-\sum_{i=2}^{n}[\theta_{1}{}^{s}\theta_{2}{}^{r}(x_{1}), \cdots, \theta_{1}{}^{s'}\theta_{2}{}^{r'}(x_{i-1}), D'D(x_{i}), \cdots, \theta_{1}{}^{s}\theta_{2}{}^{r}(x_{n})]_{\lambda}$ $-\delta[x_1, \cdots, x_n]_{\lambda}$ On the other hand, $[D'D(x_1), \theta_1^{s+s'}\theta_2^{r+r'}(x_2), \cdots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]$ $= D'([D(x_1), \theta_1^s \theta_2^r(x_2), \cdots, \theta_1^s \theta_2^r(x_n)]_{\lambda}) - \delta[x_1, \cdots, x_n]_{\lambda}$ $= DD'([x_1, ..., x_n]_{\lambda}) - D'\left(\sum_{i=1}^{n} [\theta_1^{s} \theta_2^{r}(x_1), ..., D(x_i), ..., \theta_1^{s} \theta_2^{r}(x_n)]_{\lambda}\right) - \delta[x_1, ..., x_n]_{\lambda},$ but since for each $i, D'([\theta_1^{s}\theta_2^{r}(x_1), \cdots, D(x_i), \cdots, \theta_1^{s}\theta_2^{r}(x_n)]_{\lambda})$ $= \left[\theta_1^{s} \theta_2^{r}(x_1), \cdots, D' D(x_i), \cdots, \theta_1^{s} \theta_2^{r}(x_n)\right]_{\lambda} + \delta \left[x_1, \cdots, x_n\right]_{\lambda}$

$$D'\left(\sum_{i=2}^{n} \left[\theta_{1}^{s}\theta_{2}^{r}(x_{1}), \cdots, D(x_{i}), \cdots, \theta_{1}^{s}\theta_{2}^{r}(x_{n})\right]_{\lambda}\right) + \delta[x_{1}, \cdots, x_{n}]_{\lambda}$$

$$= \sum_{i=2}^{n} \left[\theta_{1}^{s}\theta_{2}^{r}(x_{1}), \cdots, D'D(x_{i}), \cdots, \theta_{1}^{s}\theta_{2}^{r}(x_{n})\right]_{\lambda} + \delta[x_{1}, \cdots, x_{n}]_{\lambda}$$
Hence
$$[[D,D']_{\lambda}(x_{1}), \theta_{1}^{s+s'}\theta_{2}^{r+r'}(x_{2}), \cdots, \theta_{1}^{s+s'}\theta_{2}^{r+r'}(x_{n})]_{\lambda} - \delta[x_{1}, \cdots, x_{n}]_{\lambda}$$

 $= [D,D']_{\lambda} ([x_1, \cdots, x_n]_{\lambda}), i \in \{1, \cdots, n\}$ Thus $[D,D']_{\lambda} \in Q$ Hom $C_{\lambda} (\theta_1^{s+s'}, \theta_2^{r+r'})$ (g)

(2) It be the immediate consequence on a definition on the Q-Hom Der_{Γ} . If $D \in \text{Hom } Cen_{\lambda}(\theta_1^{s}, \theta_2^{r})$, then

$$\sum_{i=1}^{n} \left[\theta_{1}^{s} \theta_{2}^{r}(x_{1}), \cdots, D(x_{i}), \cdots, \theta_{1}^{s} \theta_{2}^{r}(x_{n})\right]_{\lambda} + n\delta[x_{1}, \cdots, x_{n}]_{\lambda}$$
$$= nD\left(\left[x_{1}, \cdots, x_{n}\right]_{\lambda}\right) + \delta[x_{1}, \cdots, x_{n}]_{\lambda}$$
(3)

Let
$$D \in Q$$
 Hom $Cen_{\lambda}(\theta_1^{s}, \theta_2^{r})(g)$ and $D' \in Q$ Hom $Cen_{\lambda}(\theta_1^{s'}, \theta_2^{r'})(g)$

For any
$$x_1, \dots, x_n \in g$$
 we have

$$\begin{bmatrix} DD'(x_1), \theta_1^{s+s'}\theta_2^{r+r'}(x_1), \dots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n) \end{bmatrix}_{\lambda} = [\theta_1^{s}\theta_2^r D'(x_1), D\theta_1^{s'}\theta_2^{r'}(x_2), \dots, \theta_2^{s+s'}\theta_2^{r+r'}(x_n)]_{\lambda} + \delta[x_1, \dots, x_n]_{\lambda} = [\theta_1^{s+s'}\theta_2^{r+r'}(x_1), D\theta_1^{s'}\theta_2^{r'}(x_2), D'\theta_1^{s}\theta_2^r(x_3), \dots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]_{\lambda} + 2\delta[x_1, \dots, x_n]_{\lambda} = [D\theta_1^{s'}\theta_2^{r'}(x_1), \theta_1^{s+s'}\theta_2^{r+r'}(x_2), D'\theta_1^{s}\theta_2^r(x_3), \dots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]_{\lambda} + 3\delta[x_1, \dots, x_n]_{\lambda} = [D'D(x_1), \theta_1^{s+s'}\theta_2^{r+r'}(x_2), \theta_1^{s+s'}\theta_2^{r+r'}(x_3), \dots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]_{\lambda} + n\delta[x_1, \dots, x_n]_{\lambda}$$
Then $[[D,D']_{\lambda}(x_1), \theta_1^{s+s'}\theta_2^{r+r'}(x_2), \dots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]_{\lambda} = 0.$
In the same way we have
 $[\theta_1^{s+s'}\theta_2^{r+r'}(x_1), \dots, [D,D'](x_i), \dots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]_{\lambda} = 0.$
For all *i*. Hence
 $\sum_{i=1}^{n} [\theta_1^{s+s'}\theta_2^{r+r'}(x_1), \dots, [D,D'](x_i), \dots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]_{\lambda} = 0.$

(4)

By Remark 2.10 we have Q Hom $Der_{\lambda}(g) \subseteq Gen$ Hom $Der_{\lambda}(g)$, by definition Q Hom $Cen_{\lambda}(g) \subseteq$ Hom $Cen_{\lambda}(g)$ and by above (2) we have

Hom $Cen_{\lambda}(g) \subseteq Q$ Hom $Der_{\lambda}(g)$, then Q Hom $Cen_{\lambda}(g) \subseteq Q$ Hom $Der_{\lambda}(g) \subseteq Gen$ Hom $Der_{\lambda}(g)$, thus Q Hom $Cen_{\lambda}(g) \subseteq$ Gen Hom $Der_{\lambda}(g)$. Hence Q. Hom $Der_{\lambda}(g) + Q$ Hom $Cen_{\lambda}(g) \subseteq Gen$ Hom $Der_{\lambda}(g)$

References

[1] Amine Ben Abdeljelill., Generalized derivations of ternary Lie Algebras and n-Bi-Hom Lie Algebras, University of South Florida, (2019).

[2] Leger, G. F., Luks, E. M., Generalized derivation of Lie algebras, Algebra, 228, 1, 165-203, (2000).

[3] Chen L., Ma Y., Ni L., Generalized derivations of Lie Color algebras, Results in math-ematics, 63 ,3-4, 923-936, (2013).

[4] Zhou J., Fan G., Generalized derivations of Hom-Lie Color algebra (Chinese), Pure Mathematics, 6 (2016), 3, 182-189.

[5] Zhou J., Fan G., Generalized derivations of n-Hom-Lie super algebras, Mathematica Aeterna, 6, 4, 533-550,(2016).

[6] Zhou J., Niu Y., Chen L., Generalized derivations of Hom-Lie algebras (Chinese), Acta Math. Sinica (Chin. Ser.), 58, 4, 551-558, (2015).

[7] Kaygorodov I., Popov Yu., Generalized derivations of (Color) n-ary algebras, Linear multilinear Algebra, 64, 6, 1086-1106, (2016).

[8] Zhang R., Zhang Y., Generalized derivations of Lie super algebras, Communications in Algebra, 38, 10, 3737-375, (2010).

[9] Komatsu H., Nakajima A., Generalized derivations of associative algebras, Quaestiones Mathematica, 26, 2, 213-235. (2003).

[10] Zhou J., Chen L., Ma Y., Generalized derivations of Lie triple systems, Open Mathematics, 14, 260-271,(2016).

[11] Zhou J., Chen L., Ma Y., Generalized derivations of Hom-Lie triple systems, Bulletin of the Malaysian Mathematical Sciences Society, 39 (2016).

[12] Beites P.D., Kaygorodov I., Popov Yu., Generalized derivations of multiplicative n-ary Hom-Ω Color algebras, Bull. Malays. Math. Sci., 42, 1, 315-115. (2019).

[13] A. Rezaei and B. Davvaz, "Construction of Γ –Lie algebra and Γ –Lie Admissible," *Korean Jornal of Mathematics*, vol. 26, no. 3, pp. 175-189, (2018).

[14] A. Alzaiad and R. Shaheen, "Involutive Gamma Derivations on n-Gamma Lie Algebra and 3- Pre Gamma-Lie Algebra," *Iraqi Journal of Science*, vol. 63, no. 3, pp. 1146-1157, (2022).

[15] A.H. Rezaei, , B. Davvaz, S. and O. Dehkordi , *Fundamentals of* Γ - *Algebra and* Γ - *Dimension*, UPB Scientific Bulletin, Series A: applied Mathematics and Physics vol.76,no.2, pp.111-122 , (2014).