

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-OADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Generalized Hom Γ-Derivation of n- BiHom Γ-Lie algebra

Rajaa C. Shaheen ^a , Ameer H. Rahman ^b

^a Mathematics Department College of Education University of Al-Qadisiyah Al-Qadisiyah , Iraq. Email: raja.chaffat@qu.edu.iq

^b Mathematics Department College of Education University of Al-Qadisiyah Al-Qadisiyah , Iraq. E. mail: [edu-math.post29@qu.edu.iq](mailto:wissamhsse12@gmail.com)

ARTICLE INFO

Article history: Received: 30 /05/2023 Rrevised form: 12 /07/2023 Accepted : 16 /07/2023 Available online: 30 /09/2023

Keywords:

derivation, Lie Algebra, Centroid.

A B S T R A C T

 The purpose of this paper, is to introduce a new concepts which are induced n-Bi-Hom Γ-Lie algebra, Γ-Center, (θ_1^s, θ_2^r) Γ-Center, (θ_1^s, θ_2^r) Hom Γ- derivation, (θ_1^s, θ_2^r) Q-Hom Der_{Γ} , (θ_1^s, θ_2^r) Central Hom Γ- derivation, (θ_1^s, θ_2^r) Hom Γ- Centroid and give the condition to construct induced n- Bi-Hom Γ-Lie algebra, studied Generalized Hom Γ-derivations on direct sum of ideals and we studied the relation between Hom $Der_{\lambda}(g)$, Hom $Cen_{\lambda}(g)$ and Q Hom $Der_{\lambda}(g)$, Q Hom $Cen_{\lambda}(g)$, G Hom $Der_{\lambda}(g)$.

MSC2010: 17B01 , 16S30.

https://doi.org/ 10.29304/jqcm.2023.15.3.1277

1- INTRODUC TIO N

Amine, in [1], introduce n- Bi-Hom Lie algebra and custom to studying a *Generalized derivation* on an n-Bi-Hom Lie algebras. For several years an algebras of derivations and Generalized derivation has been topic about the study by many *researchers*. Leger and Luks, in [2], introduced research is more important on the algebras of Generalized derivation of Lie algebras and those sub algebras, where a writers studied the structure and features on an algebras on *Generalized derivation*, Q Cen of limited dimensional Lie algebras. The result of Leger and Luks where Generalized by more other researchers on algebras. For instance, Chen and Li, in [3], lesson the Generalized derivation of color-Lie algebras. Zhou and Fan, in [4,5], cases are considered on Hom Lie Color algebras and n-Hom Lie super algebras. Zhou, Niu and Chen, in [6], investigated *Generalized derivation* on Hom-Lie algebras. Kygorodov and Popov, in [7], find they out *Generalized derivation* of color n-ary Ω - algebras. For more of a *Generalized derivation* algebras, which is going to be find in [8, 9, 10, 11, 12]. Rezaei and Davvaz, in [13], define Γ - algebra. A. Al-Zaiadi and R. Shaheen, in [14] studied more result on Γ -Lie algebra. The purpose of this paper, is to define n-Bi-Hom *Γ*-Lie algebra, (θ_1^s, θ_2^r) Hom *Γ*-derivation and generalized Hom *Γ*-derivation on n-BiHom Γ -Lie algebra, (θ_1^s, θ_2^r) Q Hom Γ -derivation, (θ_1^s, θ_2^r) Central Hom Γ -derivation and (θ_1^s, θ_2^r) Centroid Hom *Γ*-derivation on n-Bi-Hom,. We also reached some results, [*Q Hom Der_Γ (g)*, *Q Hom Cen_Γ (g)*]_{$\lambda \subseteq Q$ Hom *Cen_Γ* (g),} Studied Generalized derivations on direct sum of ideals.

Now, we will recall the followings concepts which are necessary in this paper.

Definition 1.1:- [1] (n-BiHom Lie-algebra)

An n-Bi-Hom- Lie algebra be a vector space g equipped a linear-function $[\ldots, \ldots]$ linear-functions and such that

$$
(1) \theta_1 \circ \theta_2 = \theta_2 \circ \theta_1
$$

\n
$$
(2) [\theta_2(x_1), \dots, \theta_2(x_{n-1}), \theta_1(x_n)] =
$$

\n
$$
S_{gn}(\sigma) [\theta_2(x_{\sigma(1)}), \dots, \theta_2(x_{\sigma(n-1)}), \theta_1(x_{\sigma(n)})]
$$

\nfor all x_1 , x_2 , $x_3 \in g$ and $\sigma \in S_3$
\n
$$
(3) [\theta_2^2(x_1), \dots, \theta_2^2(x_{n-1}), [\theta_2(y_1), \dots, \theta_2(y_{n-1}), \theta_1(y_n)]]
$$

\n
$$
= \sum_{k=1}^n (-1)^{n-k} [\theta_2^2(y_1), \dots, \theta_2^2(y_k), \dots, \theta_2^2(y_n) [\theta_2(x_1), \theta_2(x_{n-1}), \theta_1(y_k)]]
$$

for all x_1 , \ldots , x_{n-1} , y_1 , \ldots , $y_n \in g$. *If n* = 3, then *g* is called 3- Bi-Hom Lie algebra

Definition 1.2:- [1]

A subset $S \subseteq g$ is a called sub algebra of $(g, [\cdot, \cdot, \cdot], \theta_1, \theta_2)$ if $\theta_1(S) \subseteq S$ and $\theta_2(S) \subseteq S$ and $[S, S, \cdots, S] \subseteq S$, and *S* is an ideal if $\theta_1(S) \subseteq S$, $\theta_2(S) \subseteq S$ and $[S, S, \cdots, g] \subseteq S$

Definition 1.3:-[1]

The center of $(g, [.,...,.] , \theta_1, \theta_2)$ is the set of $u \in g$ such that

 $\left[\mu, x_1, x_2, \cdots, x_{n-1}\right] = 0$. For all $x_1, x_2, \cdots, x_{n-1} \in \mathcal{G}$. A center is ideal on g which symbolize by $Z(g)$.

Definition 1.4:- [1]

The
$$
(\theta_1, \theta_2)
$$
 center of $(g, [.,...,])$, θ_1 , θ_2 is the set
 $Z_{(\theta_1, \theta_2)}(g) = \{U \in g, [U, \theta_1 \theta_2(x_1), \cdots, \theta_1 \theta_2(x_{n-1})] = 0\}.$

For any x_1 , x_2 , \cdots , $x_{n-1} \in g$

Definition 1.5:-[15] Gamma Algebra

Assume Γ is a groupoid and V is a vector space on a field F. Therefore, V be named a Γ -algebra on the field F if there exist a functioning $V \times \Gamma \times V \to V$ (an image be symbolize by $x \alpha y$ for all $x, y \in V$ and $\alpha \in \Gamma$) such the following conditions hold:

- (1) $(x + y)\alpha z = x\alpha z + y\alpha z$, $x\alpha(y + z) = x\alpha y + x\alpha z$,
- (2) $x(\alpha + \beta)y = x\alpha y + x\beta y$,
- (3) $(cx) \alpha y = c(x\alpha y) = xa(cy),$
- (4) $0 \alpha y = y \alpha 0 = 0$, for all x, y, z $\in V$, $c \in F$ and $\alpha \in \Gamma$. Furthermore it, a Γ algebra is named associative if
- (5) $(x\alpha y)\beta z = x\alpha(y\beta z)$.

Definition 1.6 :- [14] (Γ-Lie algebra)

Assume V is the associative Γ – algebra on a field F.Therefore, for all $\lambda \in \Gamma$ one can create the Γ – Lie algebra $L_{\lambda}(V)$. Like a vector space, $L_{\lambda}(V)$ be a same V. A Lie Γ- arch of 2-elements on $L_{\lambda}(V)$ be defined to be them reflector in V, $[x, y]_{\lambda} = x \cdot_{\lambda} y - y \cdot_{\lambda} x$. Note that $[x, y]_{\lambda} = -[y, x]_{\lambda}$.

2- Main Results

In this section, we will define n-Bi-Hom Γ -Lie algebra, Hom Γ -derivations, (θ_1^s, θ_2^r) Hom Γ - derivations and Γ-center, (θ_1^s, θ_2^r) Q-Hom De r_λ , Generalized (θ_1^s, θ_2^r) -Hom De r_λ , (θ_1^s, θ_2^r) Central Hom Der_{λ} and (θ_1^s, θ_2^r) Hom Γ- Centroid. We will use the notation Hom Γ-derivation (Hom Der_r), Quasi Hom Γ-derivation (Q Hom De r_Γ), Generalized Hom Γ-derivation (Gen Hom De r_Γ), Hom Γ- centroid (Hom Ce n_Γ), Quasi Hom Γ- centroid (Q Hom Cen_{Γ}) and Generalized Hom Γ-derivation (Gen Hom Der_r).

Definition 2.1.:- (n-Bi-Hom -Iie algebra)

An n-Bi-Hom Γ - Lie algebra be a vector-space g equipped n-linear function

[., ...,.] and 2-linear functions θ_1 and θ_2 such $(1) \theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$

$$
(2) [\theta_2(x_1), ..., \theta_2(x_{n-1}), \theta_1(x_n)]_{\lambda} =
$$

$$
S_{gn}(\sigma) [\theta_2(x_{\sigma(1)}), ..., \theta_2(x_{\sigma(n-1)}), \theta_1(x_{\sigma(n)})]
$$

for all x_1 , x_2 , $x_3 \in g$ and $\sigma \in S_3$

$$
(3) \left[\theta_2^{2}(x_1), \ldots, \theta_2^{2}(x_{n-1}), \left[\theta_2(y_1), \ldots, \theta_2(y_{n-1}), \theta_1(y_n)\right]\right]_{\lambda}
$$

=
$$
\sum_{k=1}^n (-1)^{n-k} \left[\theta_2^{2}(y_1), \ldots, \theta_2^{2}(y_k), \ldots, \theta_2^{2}(y_n) \left[\theta_2(x_1), \theta_2(x_{n-1}), \theta_1(y_k)\right]\right]_{\lambda}
$$

for all x_1 , \dots , x_{n-1} , y_1 , \dots , $y_n \in g$.

If $n=3$, then called (3- Bi-Hom Γ -Lie algebra)

Proposition 2.2 :-

Assume $(g, [\cdot, ..., \cdot]_{\lambda})$ is n-*Γ*-Lie algebra and let θ_1 , θ_2 maps on *g* that commute with every other. For x_1 , \cdots , $x_n \in g$. Define $[x_1, \dots, x_n]_{\lambda}$ $_{\theta_1\theta_2} = [\theta_1(x_1), \dots, \theta_1(x_{n-1}), \theta_2(x_n)]_{\lambda}$ Then $\{g, [\ldots, \ldots]_{\lambda|\theta_1\theta_2}, \theta_1, \theta_2\}$ is an n-Bi-Hom Γ -Lie algebra, which is called induced n-Bi-Hom Γ -Lie algebra.

Proof:-

The functions θ_1 , θ_2 commute , by hypothesis, we have a prove θ_1 , θ_2 are algebra morphisms, for every x_1 , \cdots , $x_n \in \mathcal{G}$, we have:

$$
\theta_1([x_1, ..., x_n]_{\lambda \theta_1 \theta_2}) = \theta_1([\theta_1(x_1), ..., \theta_1(x_{n-1}), \theta_2(x_n))]_{\lambda}
$$

$$
= [\theta_1^2(x_1), \dots, \theta_1^2(x_{n-1}), \theta_1 \circ \theta_2(x_n)]_A = [\theta_1^2(x_1), \dots, \theta_1^2(x_{n-1}), \theta_2 \circ \theta_1(x_n)]_A
$$

= [\theta_1(x_1), \dots, \theta_1(x_n)]_{\lambda \theta_1 \theta_2}.

Can a prove that, in a similar way, we can a prove that θ_2 like that a morphism. Also we have

$$
[\theta_{2}(x_{\sigma(1)}),..., \theta_{2}(x_{\sigma(n-1)}), \theta_{1}(x_{\sigma(n)})]_{\lambda\theta_{1}\theta_{2}}=[\theta_{1} \circ \theta_{2}(x_{\sigma(1)}),..., \theta_{1} \circ \theta_{2}(x_{\sigma(n-1)}), \theta_{2} \circ \theta_{1}(x_{\sigma(n)})]_{\lambda}=\theta_{1} \circ \theta_{2}([x_{\sigma(1)}),..., (x_{\sigma(n)})]_{\lambda})=S_{gn}(\sigma) \theta_{1} \circ \theta_{2}([x_{1},...,x_{n}])=S_{gn}(\sigma) [\theta_{1} \circ \theta_{2}(x_{(1)}),..., \theta_{1} \circ \theta_{2}(x_{(n-1)}), \theta_{2} \circ \theta_{1}(x_{(n)})]_{\lambda}=S_{gn}(\sigma) [\theta_{2}(x_{1}),..., \theta_{2}(x_{n-1}), \theta_{1}(x_{n})]]_{\lambda\theta_{1}\theta_{2}} \text{ for every } x_{1} , \cdots , x_{n-1} \in g, y_{1},..., y_{n} \in g, \text{we have:}
$$

$$
[\theta_{2}^{2}(x_{1}),..., \theta_{2}^{2}(x_{n-1}), [\theta_{2}(y_{1}),..., \theta_{2}(y_{n-1}), \theta_{1}(y_{n})]_{\lambda\theta_{1}\theta_{2}}]_{\lambda\theta_{1}\theta_{2}}
$$

$$
=[\theta_{1} \circ \theta_{2}^{2}(x_{1}),..., \theta_{1} \circ \theta_{2}^{2}(x_{n-1}), \theta_{2}([\theta_{1} \circ \theta_{2}(y_{1}),..., \theta_{1} \circ \theta_{2}(y_{n-1}), \theta_{2} \circ \theta_{1}(y_{n})]_{\lambda}]_{\lambda}
$$

$$
=\theta_{1} \circ \theta_{2}^{2}([y_{1},...,x_{n-1}, [y_{1},...,y_{n}]_{\lambda}])
$$

$$
=\sum_{k=1}^{n} (-1)^{n-k} (\theta_{1} \circ \theta_{2}^{2}(y_{1}),..., \theta_{k}, ..., y_{n}, [x_{1},...,x_{n-1}, y_{k}]_{\lambda}]_{\lambda}
$$

$$
=\sum_{k=1}^{n} (-1)^{n-k} (\theta_{1} \circ \theta_{2}^{2}(y_{1}),..., \theta_{1} \circ \theta_{2}^{2}(y_{
$$

Example 2.3:-

Let *g* is the 4-dimensional vector-space with the *basis* $[e_1, e_2, e_3, e_4]$. Define the next arch:

$$
[e_1, e_2, e_3]_{\lambda} = -e_4; [e_1, e_2, e_4]_{\lambda} = e_3; [e_1, e_3, e_4]_{\lambda} = -e_2; [e_2, e_3, e_4]_{\lambda} = e_1
$$

in this bracket, $(g, [.,., .]_\lambda)$ be the 3- *F*-Lie algebra. Assume θ_1 and θ_2 be 2- linear functions of *g* defined:

$$
\theta_1(e_1) = -e_2 \; ; \; \theta_1(e_2) = -e_1 \; ;
$$
\n
$$
\theta_1(e_3) = -e_4 \; ; \; \theta_1(e_4) = -e_3 \text{ and } \theta_2 = -\theta_1
$$
\nLet $[x_1, x_2, x_3]_{\lambda \theta_1 \theta_2} = [\theta_1(x_1), \theta_1(x_2), \theta_2(x_3)]_{\lambda}$

be the twisted bracket defined on *g*. Then $(g, [.,.,.]_{\lambda \theta_1 \theta_2}, \theta_1, \theta_2)$ is the 3-Bi-Hom **F**-lie algebra **Definition 2.4:-**

The F-center of $(g, [\cdot, ..., \cdot]_k, \theta_1, \theta_2)$ is the set of $u \in g$ such that

 $[u, x_1, x_2, \cdots, x_{n-1}]_{\lambda} = 0$. For all $x_1, x_2, \cdots, x_{n-1} \in g$. The *Γ-center* be an ideal of *g* which we will symbolize by $Z_{\lambda}(g)$.

Definition 2.5 :-

A (θ_1, θ_2) Γ - center on $(g, [.,...,.]_{\lambda}, \theta_1, \theta_2)$ is the set $Z_{\lambda(\theta_1, \theta_2)}(g) = \{u \in g, [u, \theta_1\theta_2(x_1), \cdots, \theta_1\theta_2(x_{n-1})]_{\lambda} = 0\},\$

for any x_1 , x_2 , \cdots , $x_{n-1} \in g$

Definition 2.6:-

Let $(g, [.,...,.]_{\lambda}, \theta_1, \theta_2)$ is the n-Bi-Hom Γ-Lie algebra. The linear function $D:g \longrightarrow g$ $\theta_0(s^*, \theta_2^r)$ be Hom De $r_{\rm F}$ if for every x , y , $z \in g$. There exist $\delta: A \longrightarrow A$ is a Homomorphism,

define $({\theta_1}^s \;,\; {\theta_2}^r)$ Hom De r_{λ} on n-Bi-Hom Γ-*Lie algebra*

$$
D[x_1, \cdots, x_n]_{\lambda} = [D(x_1), \theta_1^s \theta_2^r(x_2), \cdots, \theta_1^s \theta_2^r(x_n)]_{\lambda}
$$

+
$$
\sum_{i=1}^n [\theta_1^s \theta_2^r(x_1), \cdots, \theta_1^s \theta_2^r(x_{i-1}), D(x_i), \theta_1^s \theta_2^r(x_{i+1}), \cdots, \theta_1^s \theta_2^r(x_n)]_{\lambda}
$$

+
$$
\delta[x_1, \cdots, x_n]_{\lambda}
$$

Let Hom De r_λ (θ_1^s, θ_2^r) (g) be the set of (θ_1^s, θ_2^r) -Hom Γ -derivation of g and set Hom Hom De r_{λ} $(\theta_1^{\ s}$, $\theta_2^{\ r})$ (g). We show it Hom $Der_{\lambda}(g)$ be equipped with a Γ -

lie algebra structure. In effect, for all $D \in$ Hom Der $_{\lambda}(\theta_1^s, \theta_2^r)(g)$ and $D' \in$ Hom Der_{λ} $(\theta_1^s, \theta_2^r)(g)$ we have $[D, D']_\lambda \in$ Hom $Der_\lambda(\theta_1^{s+s'}, \theta_2^{r+r'})(g)$, where $[D, D']_\lambda$ us the standard commutation defined by $\left[\begin{matrix} D \end{matrix} \right], \ D' \right]_\lambda = \left[\begin{matrix} D \circ D' - D' \circ D \end{matrix} \right].$

Note that if $(g, [.,...,.]_{\lambda})$ be the n- Γ-Lie algebra and $(g, [.,...,.]_{\lambda \theta_1 \theta_2}, \theta_1, \theta_2)$ the induced n- Bi-Hom Γ-Lie algebra where θ_1 , θ_2 are 2-morphism used to this induction.

Definition 2.7:-

The endo-morphism D on the n-Bi-Hom Γ-*Lie algebra g* be called $(\theta_1^{\ s} \ , \ \theta_2^{\ r})$ Q-Hom De r_λ if there exist an endomorphism D' of g such that

$$
D \circ \theta_1 = \theta_1 \circ D \; ; \; D \circ \theta_2 = \theta_2 \circ D \, , D' \circ \theta_1 = \theta_1 \circ D' \; ; \; D' \circ \theta_2 = \theta_2 \circ D'
$$

, There exist $\delta: A \longrightarrow A$ is a homomorphism

$$
D'[x_1, \cdots, x_n]_{\lambda} =
$$
\n
$$
\sum_{i=1}^n [\theta_i^s \theta_2^r(x_1), \cdots, \theta_i^s \theta_2^r(x_{i-1}), D(x_i), \theta_i^s \theta_2^r(x_{i+1}), \cdots, \theta_i^s \theta_2^r(x_n)]_{\lambda}
$$
\n
$$
+ \delta[x_1, \cdots, x_n]_{\lambda}
$$
 For any x_1 , \cdots , $x_n \in g$. Then we define

Q Hom $\text{Der}_{\lambda}(g) = \bigoplus_{s \geq 0} \bigoplus_{r \geq 0} Q$ Hom $\text{Der}_{\lambda}(\theta_1^s, \theta_2^r)$

Definition 2.8:-

Let $(g$, $[.,...,.]_{\lambda}$, θ_1 , $\theta_2)$ is the n-Bi-Hom *Γ-Lie algebra* and suppose *D* is endo morphism on g .A linear function *D* be named the Gen (θ_1^s, θ_2^r) -Hom Der_λ on g if there exists $D^{(i)}$, $i \in \{1, ..., n\}$ family of $D \circ \theta_1 = \theta_1 \circ D$; $D \circ \theta_2 = \theta_2 \circ D$ endomorphism of *g* such that

$$
D^{(i)} \circ \theta_1 = \theta_1 \circ D^{(i)} \, ; \, D^{(i)} \circ \theta_2 = \theta_2 \circ D^{(i)}
$$

For any, where
$$
\delta: A \longrightarrow A
$$
 is a Homomorphism and
\n
$$
D^{(n)}[x_1, \cdots, x_n]_{\lambda} = [D(x_1), \theta_1^s \theta_2^r(x_2), \cdots, \theta_1^s \theta_2^r(x_n)]_{\lambda}
$$
\n
$$
+ \sum_{i=2}^n [\theta_1^s \theta_2^r(x_1), \cdots, \theta_1^s \theta_2^r(x_{i-1}), D^{(i-1)}(x_i), \theta_1^s \theta_2^r(x_{i+1}), \cdots, \theta_1^s \theta_2^r(x_n)]_{\lambda}
$$
\n
$$
+ \delta[x_1, \cdots, x_n]_{\lambda}, \text{for all } x_1, \ldots, x_n \in g
$$

The set of generalized (θ_1^s, θ_2^r) - Hom Der_λ of g is Gen Hom $Der_\lambda (\theta_1^s, \theta_2^r)(g)$ and as for Gen Hom Der_λ (g) , we denote

Gen Hom De $r_\lambda(g)=~\oplus~\oplus~$ Gen Hom De r_λ $(\theta_1$ s $~,\,\theta_2$ s $)$ (g)

Proposition 2.9:-

Let $(g, [.,.,.]]_{\lambda}, \theta_1, \theta_2)$ is the regular n-Bi-Hom Γ - Lie algebra in trivial Hom Γ - Center. Assume $g = I \bigoplus J$; such *I* and *J* are ideals on *g*, then

Gen Hom De $r_\lambda(g)=$ Gen Hom De $r_\lambda(I)\oplus\mathrm{G}$ en $\,$ H $\mathrm{om}\, \operatorname{Der}_\lambda(J)$, such that there exist $\partial\..A\longrightarrow A$ is an isomorphism.

Proof:-

We will prove this for any $D\!\in$ Gen Hom De $r_\lambda(g)$, we have $D(I)\!\subset\! I$ and $D(J)\!\subset\! J$, therefore it follows a restriction of *D* to *I* (resp. *J*) be the Gen Hom Der_{λ} of *I* (resp. *J*).

Assume $u \in I$ and suppose $D(u) = a + b$, $a \in I$, $b \in J$ be the decomposition of $D(u)$. For any $y_1, \cdots, y_{n-1} \in g$, we have $[b, y_1, \cdots, y_{n-1}]_i \in J$. On the other hand, $[b, y_1, \cdots, y_{n-1}]_i = [D(u) - a, y_1, \cdots, y_{n-1}]_i$ $= [D(u), y_1, \cdots, y_{n-1}]_{\lambda} - [a, y_1, \cdots, y_{n-1}]_{\lambda}$

Since *I* is an ideal and $a \in I$, so $[a, y_1, \cdots, y_{n-1}]_a \in I$. Moreover, for each $1 \le i \le n-1$, let $v_i = \theta_1^s \theta_2^r(x_i)$, then \mathbf{t} then \mathbf{t} $[D(u), y_1, \cdots, y_{n-1}]_{\lambda} = [D(u), \theta_1^s \theta_2^r(x_1), \cdots, \theta_1^s \theta_2^r(x_{n-1})]_{\lambda}$ $= D^{(n)}[u, x_1, \cdots, x_{n-1}]_{\lambda}$ $\sum_{i=1}^{n-1} \left[\theta_1{}^s \theta_2{}^r(u) \; , \; \theta_1{}^s \theta_2{}^r(x_1), \ldots \; , \; D^{(i)}(x_i) \; , \; \theta_1{}^s \theta_2{}^r(x_{i+1}) \; , \; \cdots \; , \; \theta_1{}^s \theta_2{}^r(x_{n-1}) \right]_{\lambda}$ $\int + \delta [u_1, x_1, \cdots, x_n]$. For every *I*, where, $\delta: A \longrightarrow A$ is an isomorphism $[\theta_1^s \theta_2^r(u), \theta_1^s \theta_2^r(x_1), \cdots, D^{(i)}(x_i), \theta_1^s \theta_2^r(x_{i+1}), \cdots, \theta_1^s \theta_2^r(x_{n-1})]_i \in I$ so $[\theta_1^s \theta_2^r(u), \theta_1^s \theta_2^r(x_1), \cdots, D^{(i)}(x_i), \theta_1^s \theta_2^r(x_{i+1}), \cdots, \theta_1^s \theta_2^r(x_{n-1})]_1 \in I$ \sum Now let $x_i = a_i + b_i$ be the decomposition of x_i $i=1,...,$ n-1 $[u, x_1, \cdots, x_{n-1}]_{\lambda} = [u, a_1 + b_1, \cdots, a_{n-1} + b_{n-1}]_{\lambda}$ $=[u, a_1+b_1, \cdots, a_{n-1}]_1+[u, a_1+b_1, \cdots, b_{n-1}]_1$ but $[u, a_1 + b_1, \cdots, b_{n-1}]$, $\in I \cap J = \{0\}$, so $[u_1, x_1, \cdots, x_{n-1}]_1 = [u_1, a_1 + b_1, \cdots, a_{n-2} + b_{n-2}, a_{n-1}].$

Similarly, $[u, a_1 + b_1, ..., b_{n-2}, a_{n-1}]_1 = 0$

Thus $[u, x_1, \cdots, x_{n-1}]_1 = [u, a_1, \cdots, a_{n-2}, a_{n-1}]_1$.

Therefore,
$$
D^{(n)}[u, x_1, \cdots, x_{n-1}]_{\lambda} = D^n[u, a_1, \cdots, a_{n-1}]_{\lambda}
$$

$$
= [D(u), \theta_1^s \theta_2^r(a_1), \cdots, \theta_1^s \theta_2^r(a_{n-1})]_{\lambda} + \sum_{i=1}^{n-1} [\theta_1^s \theta_2^r(u), \theta_1^s \theta_2^r(a_1), \cdots, D^{(i)}(a_i), \theta_1^s \theta_2^r(a_{i+1}), \cdots, \theta_1^s \theta_2^r(a_{n-1})]_{\lambda} \in I
$$

Then $[D(u)$, y_1 , \cdots , $y_{n-1}]_q \in I$ and so is $[b$, y_1 , \cdots , $y_{n-1}]_q$.

Hence $[b, y_1, \cdots, y_{n-1}]_{\lambda} \in I \cap J$. We can conclude that $b \in Z_{\lambda}(g) = \{0\}$ and so $D(I) \subseteq I$

Remark 2.10:-

Since any Hom Der_{λ} and quasi Hom Der_{λ} is a Generalized Hom Der_{λ} .

Hom De $r_\lambda(g)\subseteq Q$ Hom De $r_\lambda(g)\subseteq Gen$ Hom De $r_\lambda(g)$.

Hence proposition 2.9 holds of Q Hom $Der_\lambda(g)$ and Hom $Der_\lambda(g)$ as well, that Hom $Der_\lambda(g) =$ Hom $Der_\lambda(I)$ \bigoplus Hom $Der_{\lambda}(J)$ and

 Q Hom $Der_{\lambda}(g) = Q$ Hom $Der_{\lambda}(I) \oplus Q$ Hom $Der_{\lambda}(J)$

Definition 2.11:-

The linear function *D* be called (θ_1^s, θ_2^r) central-Hom *Der*_{λ} on *g* if it satisfies

$$
D([x_1, \cdots, x_n]_x) = [\theta_1^s \theta_2^r(x_1), \cdots, \theta_1^s \theta_2^r(x_{i-1}), D(x_i), \theta_1^s \theta_2^r(x_{i+1})
$$

, $\cdots, \theta_1^s \theta_2^r(x_n)]_x + \delta[x_1, \cdots, x_n]_x = 0.$

for all $i \in \{1, \dots, n\}$

The set of $(\theta_1^{\ s}$, $(\theta_2^{\ r})$ central De r_λ is denoted by Z Hom De r_λ and we set

$$
Z \text{ Hom } Der_{\lambda}(g) = \bigoplus_{s \geq 0} \bigoplus_{r \geq 0} Z \text{ Hom } Der_{\lambda}(\theta_1^s, \theta_2^r)(g).
$$

Definition 2.12:-

The $(\theta_1^s$, θ_2^r) Hom Γ - Centroid of $(g, [.,.,.]_{\lambda}, \theta_1, \theta_2)$ denoted by Hom Cen_F $(\theta_1^s, \theta_2^r)(g)$ be a set of linear functions *D* satisfying

$$
D([x_1, \cdots, x_n]_x) = [\theta_1^s \theta_2^r(x_1), \cdots, \theta_1^s \theta_2^r(x_{i-1}), D(x_i), \theta_1^s \theta_2^r(x_{i+1})
$$

, $\cdots, \theta_1^s \theta_2^r(x_n)]_x + \delta[x_1, \cdots, x_n]_x$,

there exist $\delta: A \longrightarrow A$ is a Homomorphism for all $i \in \{1, ..., n\}$. We set

Hom $Cen_{\Gamma}(g) = \bigoplus_{s \geq 0} \bigoplus_{r \geq 0}$ Hom $Cen_{\Gamma}(\theta_1^s, \theta_2^r)(g)$.

Proposition 2.13:-

For any S , \dot{r} , we have

 Z Hom $Der_{\lambda}(\theta_1^s, \theta_2^r)(g) = \text{Hom }\text{Der}_{\lambda}(\theta_1^s, \theta_2^r)(g) \cap \text{Hom}\text{Cen}_{\lambda}(\theta_1^s, \theta_2^r)(g).$

Proof:-

It is clear that *Z* Hom $Der_1(\theta_1^s, \theta_2^r)(g) \subseteq$ Hom $Der_1(\theta_1^s, \theta_2^r)(g)$ and *Z* Hom $Der_{\lambda}(\theta_1^s, \theta_2^r)(g) \subseteq$ Hom $Cen_{\lambda}(\theta_1^s, \theta_2^r)(g)$ Conversely, Let $D \in$ Hom $Der_{\lambda}(\theta_1^s, \theta_2^r)(g) \cap$ Hom $Cen_{\lambda}(\theta_1^s, \theta_2^r)(g)$, so for each *I*, there exist, $\delta: A \longrightarrow A$ is a homomorphism we have $D([x_1, ..., x_n]_i) = [\theta_i^s \theta_i^r(x_1), ..., \theta_i^s \theta_i^r(x_{i-1}), D(x_i), \theta_i^s \theta_i^r(x_{i+1})]$ \ldots , $\theta_1^s \theta_2^r(x_n)$, \ldots , \ldots , \ldots

In addition,

$$
D([x_1, \cdots, x_n]_2) =
$$
\n
$$
\sum_{i=1}^n [\theta_1^s \theta_2^r(x_1), \cdots, \theta_1^s \theta_2^r(x_{i-1}), D(x_i), \theta_1^s \theta_2^r(x_{i+1}), \cdots, \theta_1^s \theta_2^r(x_n)]_2
$$
\n
$$
+ \delta[x_1, \cdots, x_n]_2
$$
\nThen $D([x_1, \cdots, x_n]_2) = nD([x_1, \cdots, x_n]_2).$
\nThus $D([x_1, \cdots, x_n]_2) = 0$ and $D \in Z$ Hom $Der_{\lambda}(\theta_1^s, \theta_2^r)(g)$.

Definition 2.14:-

Q Hom $Cen_{\lambda}(\theta_1^s, \theta_2^r)(g)$ be a set of linear functions *D* such $[D(x_1), \theta_1^s \theta_2^r(x_2), \cdots, \theta_n^s \theta_2^r(x_n)]_1 = [\theta_1^s \theta_2^r(x_1), \cdots, \theta_1^s \theta_2^r(x_{i-1}),$ $D(x_i)$, $\theta_i^s \theta_i^r (x_{i+1})$, \cdots , $\theta_i^s \theta_i^r (x_n)$, $+\delta[x_1, \cdots, x_n]$ For all $i \in \{1, \ldots, n\}$, there exist, $\delta: A \longrightarrow A$ is a Homomorphism. We set Q Hom $Cen_\lambda(g) = \bigoplus_{s \geq 0} \bigoplus_{r \geq 0} Q$ Hom $Cen_\lambda(\theta_1^s, \theta_2^r)$ (g)

Lemma 2.15:-

Let $(g, [\ldots]_1, \theta_1, \theta_2)$ is n-Bi-Hom Γ-Lie algebra. (1) [Hom Der_{λ} (θ_1^s, θ_2^r) (g), Hom $Cen_{\lambda}(\theta_1^s, \theta_2^r)$ (g)] $\lambda \subseteq Hom \, Cen_{\lambda}(\theta_1^s, \theta_2^r)$ (g);

(2) Hom $Cen_{\lambda}(\theta_1^s, \theta_2^r)(g) \oplus \text{Hom Der}_{\lambda}(\theta_1^s, \theta_2^r)(g) \subseteq \text{Hom Der}_{\lambda}(\theta_1^s, \theta_2^r)(g)$.

Proof:-

Let $D \in \text{Hom Der}_{\lambda}(\theta_1^s, \theta_2^r)(g)$ and $D' \in \text{Hom Con}_{\lambda}(\theta_1^{s'}, \theta_2^{r'})(g)$ for some S , S' , r , r' . Let x_1 , \cdots , $x_n \in g$. There exist $\delta: A \longrightarrow A$ is a homomorphism (1) Compute $[DD'(x_1), \theta_1^{s+s'}\theta_2^{r+r'}(x_2), \cdots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]_x$ $= D([D'(x_1), \theta_1^{s'}\theta_2^{r'}(x_2), \cdots, \theta_1^{s'}\theta_2^{r'}(x_n)]_{\lambda}$ $-\sum_{i=1}^{n} [\theta_1^{s} \theta_2^{r} D'(x_1), \cdots, D(x_i), \ldots, \theta_1^{s} \theta_2^{r}(x_n)]_{\lambda}$ $-\delta[x_1, \cdots, x_n]_1$ $\hat{D} = DD'([x_1\ ,\ \cdots\ ,\ x_n]_{\lambda}) - \sum_{i=2}^n [\theta_i^{\ s}\theta_2^{\ r}(x_1)\ ,\ \cdots\ ,\ D'D(x_i),\dots\ ,\ \theta_i^{\ s}\theta_2^{\ r}(x_n)]_{\lambda}.$ $-\delta[x_1, \cdots, x_n]_{\lambda}$. On the other hand,
 $[D'D(x_1), \theta_1^{s+s'}\theta_2^{r+r'}(x_2), \cdots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]_2$ $= D'([D(x_1), \theta_1^s \theta_2^r(x_2), \cdots, \theta_1^s \theta_2^r(x_n)]_1) - \delta[x_1, \cdots, x_n]_1$ $=DD'([x_1, \cdots, x_n]_1)$ $-D'\left[\sum_{i=1}^{n}[\theta_{i}^{s}\theta_{i}^{r}(x_{1}), \cdots D(x_{i}), \cdots, \theta_{i}^{s}\theta_{i}^{r}(x_{n})]_{\lambda}-\delta[x_{1}, \cdots, x_{n}]_{\lambda}\right]$ but since for each *i,* $D'(\lceil \theta_1^s \theta_2^r(x_1), \cdots, D(x_i), \cdots, \theta_1^s \theta_2^r(x_n) \rceil_i) - \delta[x_1, \cdots, x_n]_i$ $= [\theta_1^s \theta_2^r(x_1), \cdots, D'D(x_i), \cdots, \theta_1^s \theta_2^r(x_n)]_{\lambda} - \delta[x_1, \cdots, x_n]_{\lambda}$ so $D'\left(\sum_{i=1}^n [\theta_1^s \theta_2^r(x_1), \cdots, D(x_i), \cdots, \theta_1^s \theta_2^r(x_n)]_{\lambda} - \delta[x_1, \cdots, x_n]_{\lambda}\right)$ $\mathcal{L} = \sum_{i=1}^n [\theta_1^s \theta_2^r(x_1), \cdots, D'D(x_i), \cdots, \theta_1^s \theta_2^r(x_n)]_{\lambda} - \delta[x_1, \cdots, x_n]_{\lambda}$ Hence $\left[\begin{bmatrix} D,D' \end{bmatrix} \right]_{\lambda}(x_1)$, $\theta_1^{s+s'} \theta_2^{r+r'}(x_2)$, \cdots , $\theta_1^{s+s'} \theta_2^{r+r'}(x_n)$ $=[D, D']$ $(\lceil x_1, \cdots, x_n \rceil)$ The same proof holds for any $i \in \{1, \dots, n\}$ Thus, $[D, D']_{\lambda} \in Hom C_{\lambda}(\theta_1^{s+s'} , \theta_2^{r+r'}) (g)$ (2) Now $D'D([x_1, \cdots, x_n]_2) = D'([D(x_1), \theta_1^s \theta_2^r(x_2), \cdots, \theta_1^s \theta_2^r(x_n)]_2)$

$$
+D'\left(\sum_{i=2}^{n}\left[\theta_{1}^{s}\theta_{2}^{r}(x_{1})\right],\cdots,D(x_{i}),\cdots,\theta_{1}^{s}\theta_{2}^{r}(x_{n})\right]_{\lambda}+\delta[x_{1},\cdots,x_{n}];
$$

\n
$$
=\left[D'D(x_{1}),\theta_{1}^{s+s'}\theta_{2}^{r+r'}(x_{2}),\ldots,\theta_{1}^{s+s'}\theta_{2}^{r+r'}(x_{n})\right]_{\lambda}
$$

\n
$$
+\sum_{i=2}^{n}\left[\theta_{1}^{s+s'}\theta_{2}^{r+r'}(x_{1}),\cdots,D'D(x_{i}),\cdots,\theta_{1}^{s+s'}\theta_{2}^{r+r'}(x_{n})\right]_{\lambda}
$$

\n
$$
+\left[x_{1},\cdots,x_{n}\right]_{\lambda}
$$

\nThus $D'D \in Hom Der_{\lambda}(\theta_{1}^{s+s'},\theta_{2}^{r+r'})$ (g)

Theorem 2.16:-

Let $(g, [\cdot, \cdot, \cdot]_{\lambda}, \theta_1, \theta_2)$ is the multiplicative n-Bi-Hom Γ- Lie algebra.

- (1) [O Hom Der₁(g), O Hom Cen₁(g)], \subseteq O Hom Cen₁(g)
- (2) Hom $Cen_{\lambda}(g) \subseteq Q$ Hom $Der_{\lambda}(g)$;
- (3) [O Hom Cen₂(g), O Hom Cen₂(g)]₂ \subseteq O Hom Der₂(g)
- (4) Q Hom Der₂ $(g) + Q$ Hom $Cen_{\lambda}(g) \subseteq Gen$ Hom Der₂ (g)

Proof:-

Let $D \in Q$ Hom $Der_{\lambda} (\theta_1^s, \theta_2^r)(g)$ and $D' \in Q$ Hom $Cen_{\lambda} (\theta_1^{s'}, \theta_2^{r'})(g)$ for some S, S', r, r' . Let $\delta: A \longrightarrow A$ is a homomorphism. (1) Compute
 $[DD'(x_1), \theta_1^{s+s'}\theta_2^{r+r'}(x_2), \cdots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]$ $= D([D'(x_1), \theta_1^{s'}\theta_2^{r'}(x_2), ..., \theta_1^{s'}\theta_2^{r'}(x_n)]_{\lambda}) \sum_{i=1}^{n} [\theta_{i}^{s} \theta_{2}^{r} D'(x_{1}), \cdots, D(x_{i}), \cdots, \theta_{i}^{s} \theta_{2}^{r}(x_{n})]_{\lambda} - \delta[x_{1}, \cdots, x_{n}]_{\lambda}$ $\hspace*{-1.5cm} = D D' \big(\big[x_1, \ldots, x_n \big]_{\lambda} \big) - \sum_{i=1}^n [\theta_{1}^{\;s} \theta_{2}^{\;r} \big(x_1 \big) \; , \; \cdots \; , \; \theta_{1}^{\;s'} \theta_{2}^{\;r'} \big(x_{i-1} \big) \; , \; D' D \big(x_i \big) \; , \; \cdots \; , \; \theta_{1}^{\;s} \theta_{2}^{\;r} \big(x_n \big) \big]_{\lambda}$ $-\delta[x_1, \cdots, x_n]_1$. On the other hand,
 $[D'D(x_1), \theta_1^{s+s'}\theta_2^{r+r'}(x_2), \cdots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]$, $= D'([D(x_1), \theta_1^s \theta_2^r(x_2), \cdots, \theta_1^s \theta_2^r(x_n)]_2) - \delta[x_1, \cdots, x_n]_2$ $\hspace{25mm} = DD'([x_1, \ldots, x_n]_\lambda) - D' \bigg[\sum^n [\theta_1^s \theta_2^{\;\prime\!}(x_1) \;,\; \cdots \; , \; D(x_i) \;,\; \cdots \; , \; \theta_1^s \theta_2^{\;\prime\!}(x_n)]_\lambda \bigg] - \delta \big[x_1 \;,\; \cdots \; , \; x_n \big]_\lambda \, ,$ but since for each *i*, $D'([\theta_1^s \theta_2^r(x_1), \dots, D(x_i), \dots, \theta_1^s \theta_2^r(x_n)$ $], \)$ $= [\theta_1^s \theta_2^r(x_1), \cdots, D'D(x_i), \cdots, \theta_1^s \theta_2^r(x_n)]_1 + \delta[x_1, \cdots, x_n]_1$ so

$$
D' \left(\sum_{i=2}^{n} \left[\theta_{1}^{s} \theta_{2}^{r}(x_{1}), \cdots, D(x_{i}), \cdots, \theta_{1}^{s} \theta_{2}^{r}(x_{n}) \right]_{\lambda} \right) + \delta [x_{1}, \cdots, x_{n}]_{\lambda}
$$

=
$$
\sum_{i=2}^{n} \left[\theta_{1}^{s} \theta_{2}^{r}(x_{1}), \cdots, D'D(x_{i}), \cdots, \theta_{1}^{s} \theta_{2}^{r}(x_{n}) \right]_{\lambda} + \delta [x_{1}, \cdots, x_{n}]_{\lambda}
$$

Hence

$$
\left[\left[D, D' \right]_{\lambda} (x_{1}), \theta_{1}^{s+s} \theta_{2}^{r+r}(x_{2}), \cdots, \theta_{1}^{s+s} \theta_{2}^{r+r}(x_{n}) \right]_{\lambda} - \delta [x_{1}, \cdots, x_{n}]_{\lambda}
$$

 $=[D,D']_{\lambda}([x_1, \cdots, x_n]_{\lambda}), i \in \{1, \cdots, n\}$ Thus $[D, D']$ $_{\lambda} \in Q$ Hom $C_{\lambda}(\theta_1^{s+s'} , \theta_2^{r+r'})$ (g)

(2) It be the immediate consequence on a definition on the Q-Hom Der_{Γ} . If $D \in \text{Hom } Cen_{\lambda}(\theta_1^s, \theta_2^r)$, then

$$
\sum_{i=1}^{n} [\theta_{1}^{s} \theta_{2}^{r}(x_{1}), \cdots, D(x_{i}), \cdots, \theta_{1}^{s} \theta_{2}^{r}(x_{n})]_{\lambda} + n\delta[x_{1}, \cdots, x_{n}]_{\lambda}
$$

= $nD([\![x_{1}, \cdots, x_{n}]\!]_{\lambda}) + \delta[x_{1}, \cdots, x_{n}]_{\lambda}$
(3)

Let $D \in Q$ Hom $Cen_{\lambda}(\theta_1^s, \theta_2^r)(g)$ and $D' \in Q$ Hom $Cen_{\lambda}(\theta_1^{s'} , \theta_2^{r'})(g)$

For any
$$
x_1
$$
, \cdots , $x_n \in g$ we have
\n
$$
[DD'(x_1), \theta_1^{s+s'}\theta_2^{r+r'}(x_1), \cdots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]_{\lambda}
$$
\n
$$
= [\theta_1^s\theta_2^r D'(x_1), D\theta_1^s\theta_2^{r'}(x_2), \cdots, \theta_2^{s+s'}\theta_2^{r+r'}(x_n)]_{\lambda} + \delta[x_1, \cdots, x_n]_{\lambda}
$$
\n
$$
= [\theta_1^{s+s'}\theta_2^{r+r'}(x_1), D\theta_1^{s'}\theta_2^{r'}(x_2), D'\theta_1^{s}\theta_2^{r}(x_3), \cdots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]_{\lambda}
$$
\n
$$
+ 2\delta[x_1, \cdots, x_n]_{\lambda}
$$
\n
$$
= [DD^{s'}\theta_2^{r'}(x_1), \theta_1^{s+s'}\theta_2^{r+r'}(x_2), D'\theta_1^{s}\theta_2^{r}(x_3), \cdots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]_{\lambda}
$$
\n
$$
+ 3\delta[x_1, \cdots, x_n]_{\lambda}
$$
\n
$$
= [DD(x_1), \theta_1^{s+s'}\theta_2^{r+r'}(x_2), \theta_1^{s+s'}\theta_2^{r+r'}(x_3), \cdots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]_{\lambda}
$$
\n
$$
+ n\delta[x_1, \cdots, x_n]_{\lambda}
$$
\nThen
$$
[[D, D']_{\lambda}(x_1), \theta_1^{s+s'}\theta_2^{r+r'}(x_2), \cdots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]_{\lambda} = 0.
$$
\nIn the same way we have
\n
$$
[\theta_1^{s+s'}\theta_2^{r+r'}(x_1), \cdots, [D, D'](x_i), \cdots, \theta_1^{s+s'}\theta_2^{r+r'}(x_n)]_{\lambda} = 0.
$$
\nFor all *i*. Hence
\n
$$
\sum_{i=1}^{n} [\theta_1^{s+s'}\theta_2^{r+r'}(x_1), \cdots
$$

(4)

By Remark 2.10 we have Q Hom $Der_{\lambda}(g) \subseteq Gen$ Hom $Der_{\lambda}(g)$, by definition Q Hom $Cen_{\lambda}(g) \subseteq$ Hom $\mathit{Cen}_{\lambda}(g)$ and by above (2) we have

Hom $\mathit{Cen}_\lambda(g)\subseteq \mathbf Q$ Hom $\mathit{Der}_\lambda(g)$, then $\mathbf Q$ Hom $\mathit{Cen}_\lambda(g)\subseteq \mathbf Q$ Hom $\mathit{Der}_\lambda(g)\subseteq \mathit{Gen}$ Hom $\mathit{Der}_\lambda(g)$, thus $\mathbf Q$ Hom $\mathcal{C}en_{\lambda}(g) \subseteq \text{Gen Hom } \mathcal{D}er_{\lambda}(g)$. Hence Q Hom Der_{λ} (g) + Q Hom Cen_{λ}(g) \subseteq Gen Hom Der_{λ}(g)

References

[1] Amine Ben Abdeljelill., Generalized derivations of ternary Lie Algebras and n-Bi-Hom Lie Algebras, University of South Florida, (2019).

[2] Leger, G. F., Luks, E. M., Generalized derivation of Lie algebras, Algebra, 228, 1, 165-203, (2000).

[3] Chen L., Ma Y., Ni L., Generalized derivations of Lie Color algebras, Results in math-ematics, 63 ,3-4, 923-936, (2013).

[4] Zhou J., Fan G., Generalized derivations of Hom-Lie Color algebra (Chinese), Pure Mathematics, 6 (2016), 3, 182- 189.

[5] Zhou J., Fan G., Generalized derivations of n-Hom-Lie super algebras, Mathematica Aeterna, 6, 4, 533-550,(2016).

[6] Zhou J., Niu Y., Chen L., Generalized derivations of Hom-Lie algebras (Chinese), Acta Math. Sinica (Chin. Ser.), 58, 4, 551-558, (2015).

[7] Kaygorodov I., Popov Yu., Generalized derivations of (Color) n-ary algebras, Linear multilinear Algebra, 64, 6, 1086-1106, (2016).

[8] Zhang R., Zhang Y., Generalized derivations of Lie super algebras, Communications in Algebra, 38, 10, 3737-375, (2010).

[9] Komatsu H., Nakajima A., Generalized derivations of associative algebras, Quaestiones Mathematica, 26, 2, 213- 235. (2003).

[10] Zhou J., Chen L., Ma Y., Generalized derivations of Lie triple systems, Open Mathematics, 14 , 260-271,(2016).

[11] Zhou J., Chen L., Ma Y., Generalized derivations of Hom-Lie triple systems, Bulletin of the Malaysian Mathematical Sciences Society, 39 (2016).

[12] Beites P.D., Kaygorodov I., Popov Yu., Generalized derivations of multiplicative n-ary Hom-Ω Color algebras, Bull. Malays. Math. Sci., 42, 1, 315-115. (2019).

[13] A. Rezaei and B. Davvaz, "Construction of Γ –Lie algebra and Γ –Lie Admissible," *Korean Jornal of Mathematics,* vol. 26, no. 3, pp. 175-189, (2018).

[14] A. Alzaiad and R. Shaheen, "Involutive Gamma Derivations on n-Gamma Lie Algebra and 3- Pre Gamma-Lie Algebra," *Iraqi Journal of Science,* vol. 63, no. 3, pp. 1146-1157, (2022).

[15] A.H. Rezaei, , B. Davvaz,S. and O. Dehkordi , *Fundamentals of - Algebra and - Dimension*, UPB Scientific Bulletin, Series A: applied Mathematics and Physics vol.76,no.2, pp.111-122 , (2014).