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A B S T R A C T 

In the present study, an innovative approach is proposed to solve a special case of fractional 
foam drainage using the Laplace residual power series technique (LRPS) in conjunction with 
the Caputo operator for determining the fractional derivative. The study provides extensive 
guidelines for utilizing this approach to solve time-fractional nonlinear formulas. The 
effectiveness and validity of the proposed method are investigated and established by 
comparing the obtained results with the accurate responses using graphs. The study also 
confirms that the accuracy of the proposed technique increases with the number of items in the 
combined solution of the problems, as demonstrated by the convergence of the correlation 
between the obtained solutions and the actual solutions for the special case of fractional foam 
drainage formula. The research findings suggest that the proposed technique is not only 
accurate and uncomplicated but also highly adaptable, making it suitable for addressing both 
linear and nonlinear situations.  
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1. Introduction 

In recent years, great progress has been made in the field of partial differential equations as pioneers in the field, such 
as [1-7] were given a comprehensive introduction to fractional of differential equations concepts and gained an 
organized comprehension of partial calculus. Considering the existence and originality of solutions. In 2010 [8] a 
paper was published on recent achievements in the concept of differential equation with fractional derivatives. 
Furthermore, as demonstrated by the studies of [9-10], scientists have investigated multiple uses of calculus in 
multidisciplinary domains including the processing of images and control theories. These contributions have laid a 
strong foundation for continued research and development in the field of fractional calculus and its applications. 
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There are no approaches in the research literature that generate precise answers to nonlinear differential equations 
with fractions. Just approximate solutions can be obtained through linearization, consecutive or perturbation 
approaches. These approaches include the technique of variational iteration [11], the technique of Adomian 
decomposition [12-15], the Homotopy method of analysis [16] and the Iteration Laplace transformation technique 
[17]. 

The primary goal of this research is to investigate the results for the special case of fractional Foam drainage concept 
stated by using a new unique approach known as the Laplace residual power series approach. 

𝐷𝜂
𝛼𝑢(𝑥, 𝜂) = 𝜌𝑢𝑥𝑥(𝑥, 𝜂),   𝑥 ∈ ℝ, 𝜂 > 0, 𝜌 > 0, 0 < 𝛼 ≤ 1,                           (1)  

 And initial condition as: 

𝑢(𝑥, 𝜂) = 𝜍(𝑥), 

     The present article follows the following pattern: Section 2 contains descriptions and results about Caputo's 
derivatives and fractions power series. We develop a LRPS approach to the special case of fractional foam drainage 
issue in Section 3. Section 4 presents graphical findings for the special case of the foam drainage concept. 

2. Preliminaries  

In this section, we also go through the Laplace transformation's outcomes and the essential concept of fractions 
calculus: 

Definition 1 [18]. The fractional derivative in the Caputo meaning defined as: 

     𝐶𝐷𝛼𝜑(x, 𝜂) = J𝛾−𝛼𝜑𝛾(x, 𝜂),  𝛾 − 1 < 𝛼 ≤ 𝛾, x > 0                                      (2) 

where J𝛼 represents the Riemann-Liouville (RL) integrating operations as:   

       J𝛼𝜑(x, 𝜂) =
1

Γ(𝛼)
∫  

𝜅

0
(𝜅 − 𝜂)𝛼−1𝜑(𝑥, 𝜂)𝑑𝜂                                                     (3) 

and  𝛾 ∈ ℕ. 

Definition 2. [18] The transform of Laplace (LT) given on the function 𝜑(x, 𝜂) is 

     ℒ{𝜑(x, 𝜂)} = ∫  
∞

0
𝑒−𝑠𝜂𝜑(x, 𝜂)𝑑𝜂,  𝑠 > 𝛼                               (4) 

And the inverse LT defined as:  

      ℒ−1{Ω(x, 𝑠)} = ∫  
𝜐+𝑖∞

𝜐−𝑖∞
𝑒𝑠𝜂Ω(x, 𝑠)𝑑𝑠,  𝜐 = 𝑅𝑒(s) > 𝜐0      (5) 

Lemma 3.  [19] Suppose 𝜑(x, 𝜂) is a piecewise continuous function having Ω(x, 𝑠) = ℒ{𝜑(x, 𝜂) }. Then, the following 
criteria are valid: 

 (i) ℒ{J𝛼𝜑(x, 𝜂)} =
Ω(x,𝑠)

𝑠𝛼
,  𝜚 > 0 

(ii) ℒ{ 𝐶𝐷𝛼𝜑(x, 𝜂)} = 𝑠𝛼Ω(x, 𝑠) − ∑𝑖=0
𝑘−1  𝑠𝛼−𝑘−1𝜑𝑘(x, 0),  𝑘 − 1 < 𝛼 ≤ 𝑘; 

(iii) ℒ{ 𝐶𝐷𝑘𝛼𝜑(x, 𝜂)} = 𝑠𝑘𝛼Ω(x, 𝑠) − ∑𝑖=0
𝑘−1  𝑠k𝛼−1 𝐶𝐷𝛼𝜑(x, 0),  0 < 𝛼 ≤ 1. 

Proposition 4. [18] Note that the function 𝜑(x, 𝜂) is piecewise continuous on the interval 𝐼 × [0, ∞), and it has an 
exponential growth rate of 𝜁. Given this, the fractional expansions of 𝛀(x, 𝑠) = ℒ{𝜑(x, 𝜂)} can be expressed as follows 

     𝛀(x, 𝑠) = ∑  ∞
𝑚=0

𝜍𝑚(𝑥)

𝑠1+𝑚𝛼
,  0 < 𝛼 ≤ 1, 𝑠 > 𝜁                                                           (6) 

Hence, 𝜍𝑚(𝑥) =  𝐶𝐷𝛼𝜑(x, 0).  
Remark 5. [19] Upon applying the inverse Laplace transform to equation (6), we obtain the following expression: 

    𝝋(x, η) = ∑  ∞
𝑚=0

 𝑪𝑫𝜶𝝋(𝐱,𝟎)

Γ(1+𝑚𝛼)
𝜂𝑚𝛼 ,  0 < 𝛼 ≤ 1, 𝜂 ≥ 0                                             (7)        

The fractional Taylor's equation introduced in reference [19] bears resemblance to the equation under consideration. 

3. The Proposed Method for Special Case of Fractional Foam Drainage Formula 
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To exemplify how the LRPS approach can be utilized to generate a series answer to the FPDEs, firstly we take LT of 
both sides of Eq. (1) we obtain:      

          ℒ[𝐷𝜂
𝛼𝑢(𝑥, 𝜂)] = 𝜌ℒ[𝑢𝑥𝑥(𝑥, 𝜂)],   𝜂 ∈  𝐼, 𝐼 ∈ [0, ∞) .                                (8) 

The construction of equation (8) can be achieved by utilizing Lemma 3 as follows:     

        𝑠𝛼𝑈(𝑥, 𝑠) − 𝑠𝛼−1 𝑢(𝑥, 0) = 𝜌𝑈𝑥𝑥(𝑥, 𝑠), 𝑠 > 0.                                          (9) 

where 𝑈(𝑥, 𝑠) = ℒ[𝑢(𝑥, 𝜂)] and 𝑈𝑥𝑥(𝑥, 𝑠) = ℒ[𝑢𝑥𝑥(𝑥, 𝜂)].  

The application of initial conditions from Eq. (9) and the division of the equation by 𝑠𝛼results in a new form, which is 
given by: 

         𝑈(𝑥, 𝑠) =
𝜍(𝑥)

s
+

𝜌

𝑠𝛼
𝑈𝑥𝑥(𝑥, 𝑠), 𝑠 > 0.                                                            (10) 

Expanding Eq. (10) results in the following outcome: 

      𝑈(𝑠) = ∑
𝜍𝑗(𝑥)

𝑠1+𝛼𝑗

∞

𝑗=0
, 𝑠 > 0                                                                                  (11) 

Equation (11) provides the expression for the kth-truncated series as shown below: 

       𝑈𝑘(𝑠) =
𝜍(𝑥)

s
+ ∑

𝜍𝑗(𝑥)

𝑠1+𝛼𝑗

𝑘

𝑗=1
 , 𝑠 > 0.                                                     (12) 

The utilization of primary LRPS approaches, including the LRF of Eq. (10), can facilitate the identification of the 
unknown parameter value 𝜍𝑗(𝑥), which is denoted by the following expression:   

       LRes(x, s) = U(𝑥, 𝑠) −
𝜍(𝑥)

s
−

𝜌

𝑠𝛼
𝑈𝑥𝑥(𝑥, 𝑠), 𝑠 > 0.                                        (13) 

The expression for the definition of the kth-LRF is as follows: 

       LRes𝑘(x, s) = U𝑘(𝑥, 𝑠) −
𝜍(𝑥)

s
−

𝜌

𝑠𝛼
𝑈(𝑘)𝑥𝑥(𝑥, 𝑠), 𝑠 > 0.                                (14) 

It is obvious that for 𝑠 > 0  and 𝑘 = 0,1,2,3, … . Lim𝑠→∞LRes𝑘(𝑥, 𝑠) = LRes(𝑥, 𝑠) , LRes(𝑥, 𝑠) = 0 . As a 
result,  Lim𝑠→∞(𝑠𝑘LRes(𝑥, 𝑠)) = 0.   Additionally, it was established [19,20] and for 𝑠 > 0  and 𝑘 = 0,1,2,3, … . 
Moreover, previous studies [19, 20] have demonstrated that... 

  Lim𝑠→∞(𝑠𝑘+1LRes(𝑥, 𝑠)) = Lim𝑠→∞(𝑠𝑘+1LRes𝑘(𝑥, 𝑠)) = 0, 𝑘 = 1,2,3, ..   (15) 

If we assume that U1(𝑥, 𝑠) =
𝜍(𝑥)

s
+

𝜍1(𝑥)

𝑠1+𝛼 , then Eq. (14) can be interpreted as: 

  LRes1(x, s) =
𝜍1(𝑥)

𝑠1+𝛼
− 𝜌

𝜍(2)(𝑥)

𝑠1+𝛼
− 𝜌

𝜍1
(2)

(𝑥)

𝑠1+2𝛼
, 𝑠 > 0.                                                   (16) 

By multiplying both sides of Eq. (16) with 𝑠1+𝛼 , we obtain: 

      𝑠1+𝛼LRes1(x, s) = 𝜍1(𝑥) − 𝜌𝜍(2)(𝑥) − 𝜌
𝜍1

(2)
(𝑥)

𝑠𝛼
, 𝑠 > 0.                                  (17) 

By solving the formula given for 𝜍1(𝑥)and applying the assumption in Eq. (15), as well as taking the limit as s 
approaches infinity for both sides of Eq. (17), we can determine the value of 𝜍1(𝑥): 

        0 = 𝜍1(𝑥) − 𝜌𝜍(2)(𝑥).                                                                                           (18) 

By plugging in the value of 𝜍1(𝑥)into the algebraic formula (18), we can obtain the following result:   

       𝜍1(𝑥) = 𝜌𝜍(2)(𝑥).                                                                                                    (19) 

To determine the value of the next unknown parameter 𝜍2(𝑥), we can substitute the 2nd-truncated series of Eq. (16), 
U2(𝑥, 𝑠) =

𝜍(𝑥)

s
+

𝜍1(𝑥)

𝑠1+𝛼 +
𝜍2(𝑥)

𝑠1+2𝛼 , into the 2nd-LRF and apply the following equation: 
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      LRes2(x, s) =
𝝇𝟐(𝑥)

𝒔𝟏+𝟐𝜶 − 𝜌
𝜍1

(2)
(𝑥)

𝒔𝟏+𝟐𝜶 − 𝜌
𝜍2

(2)
(𝑥)

𝒔𝟏+𝟑𝜶 , 𝑠 > 0.                                     (20) 

We obtain the following equation by multiplying both sides of Eq. (20) with 𝑠1+2𝛼: 

      𝑠1+2𝛼LRes2(x, s) = 𝜍2(𝑥) − 𝜌𝜍1
(2)

(𝑥) − 𝜌
𝜍2

(2)
(𝑥)

𝑠𝛼
, 𝑠 > 0.                                  (21) 

To derive the following formula, take the limit as s approaches infinity for both sides of Eq. (21) and apply Eq. (15): 

       0 = 𝜍2(𝑥) − 𝜌𝜍2
(2)

(𝑥).                                                                                               (22) 

We can obtain the value of 𝜍2(𝑥) by solving the resulting algebraic equation: 

         𝜍2(𝑥) = 𝜌𝜍2
(2)

(𝑥) .                                                                                                     (23) 

As same way, we can find 𝜍3(𝑥) 𝑎𝑛𝑑  𝜍4(𝑥) as follows  

          𝜍3(𝑥) = 𝜌𝜍2
(2)(𝑥), 

          𝜍4(𝑥) = 𝜌𝜍3
(2)

(𝑥).                                                                                                     (24) 

The factor 𝜍𝑘(𝑥) can be determined by examining the pattern of the computed factors, which continues as follows: 

        𝜍𝑘(𝑥) = 𝜌𝜍2
(𝑘−1)

(𝑥).                                                                                                   (25) 

Eq. (12) can be expressed as an infinite series using the following representation:    

         𝑈(𝑥, 𝑠) =
𝜆(𝑥)

s
+ ∑ (

𝝀𝒋(𝑥)

𝒔𝟏+𝜶𝒋
)∞

𝒋=𝟏 , 𝑠 > 0.                                                                     (26) 

By utilizing the inverse Laplace transform of Eq. (26) in the provided simplified format, we can obtain the solution for 
Eqs. (6) and (7): 

       𝑢(𝑥, 𝜂) = 𝜆(𝑥) + ∑ (
𝝀𝒋(𝑥)

𝒔𝟏+𝜶𝒋
)∞

𝒋=𝟏  
𝜂𝛼𝑗

Γ(1+𝛼𝑗)
.                                                                   (27) 

 

4.  Numerical Issues 

    This section is dedicated to exploring how LRPSM can be utilized to obtain an approximate  

 solution for the FPDEs:  

 Issue 1. Consider with regard to the shape's FPDEs: 

     𝐷𝜂
𝛼𝑢(𝑥, 𝜂) − 𝑢𝑥𝑥(𝑥, 𝜂) = 0 ,     𝜂 > 0, 0 < 𝛼 ≤ 1,                                                (28) 

  And initial condition as: 

      𝑢(x, 0) = e𝑥                                                                                                                  (29) 

The Laplace transform of Eq. (29) yields Eq. (28) as the resulting equation.    

      𝑈(𝑥, 𝑠) =
e𝑥

𝑠
+

1

𝑠𝛼
𝑈𝑥𝑥(𝑥, 𝑠),   𝑠 > 0.                                                                        (30) 

 The kth-truncated series is purported to be: 

     𝑈𝑘(𝑥, 𝑠) =
e𝑥

𝑠
+ ∑

𝜍𝑗(𝑥)

𝑠1+𝛼𝑗

𝑘

𝑗=1
 , 𝑠 > 0.                                                                          (31)  

Therefore, the kth LRFs can be expressed as: 

   LRes𝑘(x, s) = U𝑘(𝑥, 𝑠) −
e𝑥

𝑠
−

1

𝑠𝛼
U(𝑘)𝑥𝑥(𝑥, 𝑠), 𝑠 > 0.                                             (32) 
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By inserting the kth-truncated series (Eq. 31) into the kth LRF (Eq. 32), we can derive 𝜍𝑗(𝑥). We can then derive the 
relationship by multiplying the resulting expression by 𝑠1+𝛼𝑗as 

     Lim𝑠→∞(𝑠𝑘+1LRes𝑘(𝑥, 𝑠)) = 0, 𝑘 = 1,2,3, .. 

Therefore, a few of the values are: 

𝜍1(𝑥) = e𝑥, 

𝜍2(𝑥) = e𝑥, 

𝜍3(𝑥) = e𝑥, 

𝜍4(𝑥) = e𝑥, 

𝜍5(𝑥) = e𝑥. 

By entering the values of 𝜍𝑗(𝑥).into (31) for 𝑗 = 1,2,3, . . ., we can derive their specific expressions. 

    𝑈(𝑥, 𝑠) =
e𝑥

𝑠
+

e𝑥

𝑠1+𝛼
+

e𝑥

𝑠1+2𝛼
+

e𝑥

𝑠1+3𝛼
+

e𝑥

𝑠1+4𝛼
+

e𝑥

𝑠1+5𝛼
                                                  (33) 

The result can be obtained by taking the inverse Laplace transform of the equation.     

     𝑢(𝑥, 𝜂) = e𝑥 +
e𝑥𝜂𝛼

Γ(1+𝛼)
 +

e𝑥𝜂2𝛼

Γ(1+2𝛼)
+

e𝑥𝜂2𝛼

Γ(1+3𝛼)
+

e𝑥𝜂4𝛼

Γ(1+4𝛼)
+

e𝑥𝜂5𝛼

Γ(1+5𝛼)
                              (34) 

The accurate solution of Eq. (34) is:  

    𝑢(𝜂) = 𝑒𝑥+𝜂                                                                                                                        (35) 

Figure 1 provides visual evidence of the precision of the proposed method in generating accurate outcomes for the 
given problem. The figure showcases the graphs of the exact solution and the 5th-order approximation of Eqs. (28) 
and (29) over the interval [0,2]. Based on the results, it can be inferred that the proposed approach is a dependable 
analytical and numerical technique for obtaining exact solutions to fractional partial differential equations.  

 

Fig. 1. The fifth-order analytical solution for Issue 1 and 2 is obtained using the proposed method 

at various values of 𝜶, namely: (a)  𝜶 = 𝟏, (b)  𝜶 = 𝟎. 𝟕𝟓 , (𝒄) 𝜶 = 𝟎. 𝟕𝟓 , (𝒅) 𝜶 = 𝟎. 𝟐𝟓 . 



6 Basma Abdul Hadi, Journal of Al-Qadisiyah  for Computer Science and Mathematics VOL. 15(3) 2023 , PP  MATH.   26–33

 

Issue 2. Consider with regard the shape's FPDEs: 

   𝑫𝜼
𝜶𝒖(𝒙, 𝜼) + 𝒖𝒙𝒙(𝒙, 𝜼) = 𝟎 ,     𝜼 > 𝟎, 𝟎 < 𝜶 ≤ 𝟏,                                              (36) 

  And initial condition as: 

       𝒖(𝐱, 𝟎) = 𝒄𝒐𝒔(𝒙)                                                                                                     (37) 

The Laplace transform of Eq. (37) yields Eq. (36) as the resulting equation.    

      𝑼(𝒙, 𝒔) =
𝐜𝐨𝐬(𝒙)

𝒔
−

𝟏

𝒔𝜶
𝑼𝒙𝒙(𝒙, 𝒔),   𝒔 > 𝟎.                                                              (38) 

 The kth-truncated series is purported to be: 

       𝑼𝒌(𝒙, 𝒔) =
𝐜𝐨𝐬(𝒙)

𝒔
+ ∑

𝝇𝒋(𝒙)

𝒔𝟏+𝜶𝒋

𝒌

𝒋=𝟏
 , 𝒔 > 𝟎.                                                             (39)  

Therefore, the kth LRFs can be expressed as: 

    𝐋𝐑𝐞𝐬𝒌(𝐱, 𝐬) = 𝐔𝒌(𝒙, 𝒔) −
𝐜𝐨𝐬(𝒙)

𝒔
+

𝟏

𝒔𝜶
𝐔(𝒌)𝒙𝒙(𝒙, 𝒔), 𝒔 > 𝟎.                                 (40) 

By inserting the kth-truncated series (Eq. 39) into the kth LRF (Eq. 40), we can derive 𝝇𝒋(𝒙). We can then derive the 
relationship by multiplying the resulting expression by 𝒔𝟏+𝜶𝒋as 

    𝐋𝐢𝐦𝒔→∞ (𝒔𝒌+𝟏𝐋𝐑𝐞𝐬𝒌(𝒙, 𝒔)) = 𝟎, 𝒌 = 𝟏, 𝟐, 𝟑, .. 

Therefore, a few of the values are: 

𝝇𝟏(𝒙) = 𝒄𝒐𝒔(𝒙), 

𝝇𝟐(𝒙) = 𝒄𝒐𝒔(𝒙), 

𝝇𝟑(𝒙) = 𝒄𝒐𝒔(𝒙), 

𝝇𝟒(𝒙) = 𝒄𝒐𝒔(𝒙), 

𝝇𝟓(𝒙) = 𝒄𝒐𝒔(𝒙). 

By entering the values of 𝝇𝒋(𝒙).into (39) for 𝒋 = 𝟏, 𝟐, 𝟑, . . ., we can derive their specific expressions. 

    𝑼(𝒙, 𝒔) =
𝒄𝒐𝒔(𝒙)

𝒔
+

𝒄𝒐𝒔(𝒙)

𝒔𝟏+𝜶
+

𝒄𝒐𝒔(𝒙)

𝒔𝟏+𝟐𝜶
+

𝒄𝒐𝒔(𝒙)

𝒔𝟏+𝟑𝜶
+

𝒄𝒐𝒔(𝒙)

𝒔𝟏+𝟒𝜶
+

𝒄𝒐𝒔(𝒙)

𝒔𝟏+𝟓𝜶
                                  (41) 

The result can be obtained by taking the inverse Laplace transform of the equation.     

    𝒖(𝒙, 𝜼) = 𝟏 +
𝜼𝜶

𝜞 (𝜶+𝟏)
+

𝜼𝟐𝜶

𝜞 (𝟐𝜶+𝟏)
+

𝜼𝟑𝜶

𝜞 (𝟑𝜶+𝟏)
+

𝜼𝟒𝜶

𝜞 (𝟒𝜶+𝟏)
+

𝜼𝟓𝜶

𝜞 (𝟓𝜶+𝟏)
                       (42) 

The accurate solution of Eq. (42) is:  

    𝒖(𝜼) = 𝒄𝒐𝒔(𝒙)ⅇ𝜼                                                                                                          (43) 

Figure 1 provides visual evidence of the precision of the proposed method in generating accurate outcomes for the 
given problem. The figure showcases the graphs of the exact solution and the 5th-order approximation of Eqs. (36) 
and (37) over the interval [0,2]. Based on the results, it can be inferred that the proposed approach is a dependable 
analytical and numerical technique for obtaining exact solutions to fractional partial differential equations.  
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5. Conclusion 

This article presents a novel analytical iterative technique that employs the Laplace residual power series to estimate 
the solution of a nonlinear special case of fractional foam drainage formula. The study investigates the impact of two 
distinct initial conditions of the special case Foam model on the physical behavior of the system. The results 
demonstrate that when 𝜶 is in proximity to 0, the solutions exhibit a bifurcation phenomenon that generates wave-
like patterns, whereas when 𝜶approaches 1, no detectable pattern emerges. This finding provides a new perspective 
on the relationship between time-fractional derivatives and real-life phenomena. The accuracy of the proposed 
method is evaluated by analyzing the absolute errors of the approximations of the Foam model, as displayed in Figures 
1 and 2. The simplicity and precision of the LRPS approach suggest its potential as a valuable tool for the fractional 
theory and computations field. In future research, the authors intend to expand the LRPS method's application to 
linear and nonlinear time-fractional physical problems.  
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