
 

 

 75 

Journal of AL-Qadisiyah for computer science and mathematics 

Vol.6    No.1   Year  2014 

                                                                         Ali.H 

 

 

Bounds on the Wave Speed 

By Dr. Ali Hussein Shuaa Al-Taie 

University of Wassit 

College of Mathematics and Computers Science 

Department of Mathematics 2012 

E-mail: shuaa2@yahoo.com 

 

 

Abstract 

 

   In this paper, we will investigate the structure ofbounds for the wave speed cpresented in 

[1]. By constructing appropriate sub- and super-solutions to this system  

−cu′ = u′′ + f(u, v), 

−cv′ = ϵ
2
v′′ + g(u, v), 

 (u, v)(−∞) = S−,    

(u, v)(∞) = S+     (1) 

Where, we are interested in component-wise monotone travelling wave solutions of the 

system of equations 

ut= uxx+ f(u, v),  

vt= ϵ
2
vxx+ g(u, v),                   (2) 

for (x, t ) ∈R × R
+
 for which the asymptotic conditions 

(u, v)(−∞, t) = S−, (u, v)(∞, t) = S+, t >0             (3) 

are satisfied. Similar to those introduced in [3] and using essentially identical arguments, 

itcan be shown that 

−K ≤ c ≤ Lϵ,(4) 

whereK and L are positive constants independent of ϵ. One immediate consequenceof this 

result is that in the limit ϵ → 0 only left travelling waves exist.We investigate the sharpness 

of these bounds in the special case of CLV kinetics.We show that:  the bounds of the wave 

speed given in [4] are optimal for the given leftand right solutions (sub-solutions and super-

solutions). 

 

Mathematics Subject Classification  :35A18 

 

Introduction 

 

The method of sub-solutions and super-solutions and its associated monotone iteration is a 

powerful tool in establishing existence results for differential equations. This method can be 

applied to systems of coupled equations and to equations with nonlinear boundary conditions. 

The basic idea of this method is to use a sub-solution or super-solution as the initial iteration  
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in a suitable iterative process, so that the resulting sequence of iterations is monotone and 

converges in some suitable function space to a solution of the problem. 

The underlying monotone iterative scheme can also be used for the computation of numerical 

solutions when these equations are replaced by corresponding finite difference equations, see 

[7]. Note that in some literature sub-solutions and super-solutions are sometimes referred to 

as lower and upper solutions or sub-functions and super-functions, respectively, see again [6].  

 Another use of sub-solutions and super-solutions is to obtain bounds for the wave speed of 

travelling waves. It is this subject that we concentrate on in this paper. In [4], Heinzeet al. 

stated the following theorem and proved it by considering upper and lower solutions (or left 

and right solutions as we called them below) of a particular form, as we will discuss below. 

Theorem 1.[2]. For each fixed  ϵ > 0, let (uϵ, vϵ, cϵ) be the unique monotone solution of  

equation (1).Then 

)5(,22 KcL   

where 

.
)0,(

sup:
),0(

sup:
1010 u

uf
Land

v

vg
K

uv 

  

Note that the upper bound implies that as ϵ → 0 the only type of travelling waves that can 

exist are left travelling waves. 

Heinzeet al. [3] choose a specific structure for left and right solutions (which will be 

discussed below) to obtain these bounds. This structure was introduced with no motivation 

and also it is not clear whether the wave speed bounds obtained are sharp for the given form. 

In this paper we investigate these bounds further for the special case of the CLV kinetics  

f(u, v) = u(1 − u − αv), 

g(u, v) = δv(1 − v − βu).                                       (6) 

We are interested in systems that satisfy this Assumption below: 

 

Assumption 1.The non-linearities f, g ∈C
2
([0, 1]

2
,R)satisfy: 

(1) f(0, v) = 0 = g(u, 0). 

(2) (1) has exactly two stable, uniform equilibria S−= (0, 1) and S+ = (1, 0) and two unstable, 

uniform equilibria (0, 0) and (us, vs). 

(3) f v(u, v) < 0, gu(u, v) < 0 for (u, v) ∈(0, 1)
2
. 

(4) The non-trivial solutions (u, v) of g(u, v) = 0 are given by u = Γ(v) for a 

monotonically decreasing function Γ. Setting Γ(1) = 0 and Γ(0) = û , where 

0 < û < 1, Γ has an inverse  ŷ ∈C
1
([0, û ], [0, 1]), which can be extended trivially to a 

function γ ∈C
0
([0, 1], [0, 1]) where  

 

 
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Moreover, Γ′(v) = 0 implies Γ has a local maximum. 
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Alternatively, if we make the substitution z = x − ct, but do not assume that the solution is a 

travelling wave, i.e. if we assume (u, v) is of the form (u(z, t), v(z, t)), then (1) becomes 

ut− cuz− uzz= f(u, v),   

vt− cvz− ϵ
2
vzz= g(u, v).               (7) 

Any solutions u(z, t), v(z, t) of (2) provides a solution u(x, t), v(x, t) of (1). Moreover, 

travelling waves are steady states of this system (ut= vt= 0). Below, we will apply sub-

solution and super-solution techniques (from [7]) to system  (2).  

In order to employ the comparison solutions mentioned above, the following definitions and 

results given in [7] are required. 

Definition 1.A function Q(u, v) := (f(u, v), g(u, v)) is called quasimonotone 

nonincreasingin R
+
× R

+
if both f(u, v) and g(u, v) are quasimonotone 

nonincreasingfor (u, v) ∈R
+
× R

+
, i.e. 

∂f/∂v ≤ 0, ∂g/∂u ≤ 0for(u, v) ∈R
+
× R

+
. 

Definition 2.If Q(u, v) := (f(u, v), g(u, v)) is quasimonotonenonincreasing 

inR
+
×R

+
, then a pair of functions ),( vu


  and )~,~(~ vu are called ordered sub-solution 

and super-solution of (2) if they satisfy the relation v~~   and if 

)8()~,~(~~~~0)~,~(~~~~

)~,~(~~~~0)~,~(~~~~

22 vugvvcvvugvvcv

vufuucuvufuucu

zzztzzzt

zzztzzzt




 

Note that in this section it is actually combinations of sub-solution and supersolutionthat are 

useful in obtaining our results. We therefore make the followingdefinition. 

Definition 3.We say that (u, v ) is a right solution of (2) iffu is a sub- solutionand v  is a 

super-solution. Similarly, we define a left solution to be apair (u , v) where u a super-

solution and v is is a sub-solution. Hence, a directconsequence from the Definition 2 in [7] 

we have that that (u, v ) is a right solutionof (2) iff it satisfies 

)9(0)~,~(~~~~

0)~,~(~~~~

2 



vugvvcv

vufuucu

zzzrt

zzzrt

 

and(u , v)is a left solution of (2) iff it satisfies 

)10(0)~,~(~~~~

0)~,~(~~~~

2 



vugvvcv

vufuucu

zzzlt

zzzlt
 

We know that if we have a sub solutionand super-solution, then a solution must lie between 

that sub-solutionand super-solution. In the CLV case, then in the bound (1), we have 

1)1(sup:)1(sup:
1010




uLandvK
uv

  

In this chapter, we will show that these values are optimal for the form of leftand right 

solutions introduced in [4]. 

In order to do this we reformulate the left and right solutions. 

i) Right solution: 
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     Following [3] we define the right solution: 


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where z ∈R, F <0, T <0, S <0, M >0 and cr≥ 0 are constants to be defined later andϵ ≥ 0, (see 

Figure 1).  

We seek values ofF, T, S and M, that give the smallest value of cr, i.e. the sharpest right 

bound on the wave speed. First, note that ut= v  t= 0. Hence we must choose umand vmso that 

f(u, v ) ≥ 0.  

First consider the equation foru. Forz<0, u≡ 0. Therefore, 

cruz+ uzz+ f(u, v ) = 0 = ut. 

In the case z>0, 

u= um(1 − e
Fz

) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The right solution (u, v ), shown in (blue, red) and the solution(u, v)  of system (2) 

shown in black. 

 

By 

 

it follows that f(u, v ) ≥ 0 because vm∈(0, 


1
(1 − um)). Therefore,  
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cruz+ uzz+ f(u, v ) ≥ cruz+ uzz 

= cr−umFe
Fz

]+[−umF
2
e

Fz
] 

= −umFe
Fz

[cr+ F] 

≥ 0 = ut, 

iff 

cr≤ −F. (11) 

 

 Thus, we ensured that the first relation in (4) is satisfied. We can obtain 

f(u, v ) ≥ 0 by taking um∈(1/β , 1)andvm∈(0, 


1
(1 − um)).   
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Fix F and choose M >0 sufficiently large, such that 
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Hence, for an appropriately chosenumand an arbitrarily chosen F, we requireMto be chosen 

such that 
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We now consider the v-equation which ensures the second relation in (4) 

holds. For 0,ln
1

 uv
T

z m   and v ≡ 1. Therefore, 

cr zv + ϵ
2
vzz+ g(u, zv ) = 0 tv . 

For z >


M
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it follows that ),( vug ≤ 0 for any v ≥ 0 because um∈(


1
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iff 

cr≤ −ϵ
2
S.  (14) 

In the case z < 
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Note also that for all 0 ≤ u, v ≤ 1, g(u, v) ≤ δv. So, in this case, 

 

iffϵ
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is in some sense optimal: cris an upper bound for the wave speed of travellingwaves of (1) 

and 2 is the lowest upper bound in this case. Note that for anyϵ >0 the profile  vu,  

remains in both components at a positive distance fromS+ = (1, 0) for all z >0. 

Furthermore,  vu, (z) = (0, 1) for all z <0. Thus,any initial data (uo, vo) of problem (2) with 

(uo, vo)(z) → (1, 0) as z → ∞ 

can be shifted to be comparable with  vu, . This implies that no travelling 

wave solution of (3) can travel at speeds faster than the comparison solution, i.e.cϵ≤ cr= 2ϵ√δ. 

 

 

ii) Left solution.  Following [4] we define the left solution: 
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as shown in Figure 2, where R >0, P >0, Q >0, M >0 and cl≤ 0 are constants to be 

determined. We seek values ofR, P, Q and M, that give thesmallest value ofcl, i.e. the sharpest 

left bound on the wave speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The left solution  ,,vu   shown in (blue, red) and the solution (u, v)of system (2) 

shown in black. 
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First, note that 0 tt vu . Hence we must choose umand vmso that   ,0, vug .  We have
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Equations (10) describe a left solution if we can find the constantsR, P, Q andM satisfy 

system (10) and M >0 such that  .,, lcvu  
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iff 

cl≤ −P.(17) 

 

Forz>−M and u <1, it follows that 
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As we are seeking cl ≤ 0, this requires cl ≤ −2. The sharpest left solution is 

thereforecl= −2, and in this case R = 1. 

Now consider the v-equation to ensure that the second relation (2.5) is satisfied.For z>0, v ≡ 
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From (14) and (15), we now establish an upper bound for cl, we therefore 

require 

cl≤ min{−P,−ϵ2Q} 

Therefore, the sharpest left solution for the wave speed that can be obtained 

with this form of left solution is cl = −2. Hence, we have shown that the left 

solution 
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is in some sense optimal, where M is given by  (12). 

Hence, cl is a lower bound for the wave speed of travelling waves of (1) and−2 is the largest 

lower bound in this case. Since u and v are uniformly boundedaway from 0 and 1, 

respectively, and (   )(, zvu ) = (1, 0) for z >0 

we can alwaysshift initial data (u0, v0) of problem (2.2) with (u0, v0)(z) → (1, 0) for z → 

−∞to be comparable with the left solution. We conclude cϵ≥ cl= −2. 

2. Conclusion 

In this chapter, we demonstrated that, for the CLV case at least, the bounds 

of the wave speed given in [8] are optimal for the given left and right solutionpair. We have 

tried to find other right and left solutions in order to improve thebounds on the wave speed 

that is stated in Theorem 1. However, we could not find an alternative that would allow for 

the kind of explicit calculations done above. Notwithstanding this, the fact that the wave 

speed must be ≤ 0 in the limit as ϵ → 0 and thatcϵ≤ C.ϵ for some positive constant C for ϵ >0, 

will be very useful in the results to come. 
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