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A B S T R A C T 

Cardiovascular function analysis is crucial for illness diagnosis, risk assessment, and therapy 
selection in clinical cardiology. Doctors may identify cardiac disorders such as right ventricular 
failure, hypertrophic cardiomyopathy, and dilated cardiomyopathy using a variety of imaging 
modalities that allow them to spot pathological alterations. The optimum course of therapy 
may be chosen more quickly thanks to accurate automation of the relevant duties. Artificial 
neural networks and deep learning are the foundation of generative adversarial networks 
(GANs), which are methods for creating synthetic pictures. The potential capacity of the GANs 
to solve problems has attracted interest in addition to their inherent flexibility and the 
adaptability of deep learning, on which they are founded. This survey aims to examine the 
significance of medical imaging in the study and diagnosis of cardiac disease. Demonstrate the 
widespread adoption of GAN Network approaches in the field of magnetic resonance imaging 
(MRI) medical image analysis; Explain the recent segmentation application of generative 
adversarial networks. GANs in cardiovascular imaging additionally Identify the hurdles to the 
effective application of the GAN Network to medical imaging tasks and highlight particular 
contributions that address or get around these problems. 

https://doi.org/ 10.29304/jqcsm.2023.15.31291

1. INTRODUCTION 

Image data that could save lives is frequently collected in the medical imaging area [1]. These imaging techniques can 
produce images that show anatomical views of various human bodily organs. As a consequence of the advancement 
of the biomedical imaging disciplines, the data are currently given by positron emission tomography (PET), computed 
tomography (CT), magnetic resonance imaging(MRI), and a few more modalities including microscopy and digital 
pathology. However, using the available imaging data, radiologists have difficulty locating lesions with accuracy. 
Similar to MRI imaging, CT scanning provides extensive anatomical information and assists in accurate diagnosis.[2]. 

All methods of lesion tissue segmentation ask for slice-to-slice analysis on 2D format image data because these image 
data are given in 3D format. Slice-to-slice image data in 2D format was needed for all lesion tissue segmentation 
techniques. However, it will take roughly fifteen minutes per image to manually annotate medical imaging data by a 
radiologist or annotation specialist. The hand annotation technique is costly, time-consuming, and difficult to scale. 
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The leading cause of death globally is cardiovascular disease [3]. Clinical AI applications have been developed to 
assess cardiac function and improve image quality. AI is presently revolutionizing the advancement of cardiac imaging 
technology and its medicinal use.  [4]. Recent advances in deep learning have made it possible to use different 
convolution neural networks) CNN (models to solve many medical imaging problems, including image segmentation 
[5]. For difficult medical imaging, decision-making, deep learning models are famous for their outstanding 
performance [6]. These deep networks use a variety of involving transformations to abstract data at different layers, 
which they combine to anticipate outcomes. Deep neural networks are fully capable and necessary to create a complex 
link between input and predicted outcomes and possess the capacity to completely comprehend the hidden 
characteristics [7]. GANs, which have made remarkable strides in deep networks and have a wide variety of 
applications in medical imaging, have only lately attracted the interest of the research community. A subclass of deep 
neural networks called GANs trains two networks simultaneously. The use of GAN in medical imaging has been 
covered in a few studies and review papers [8]- [11]. These articles take a broad view of the study issues, which is 
advantageous to novice GAN scholars. However, how to use GAN for the biomedical segmentation task was not 
completely covered. Our study aims to comprehensively summarize the applications of GANs in segmenting 
biomedical images. To collect data, we used "Google Scholar" a search engine for articles with certain titles. (GANs, 
"Generative Adversarial Network," "GANs Segments," "GANs Medical Image Segmentation"). 

Most of the papers were obtained from reputable journals like "IEEE, Springer, Elsevier, and some papers from linked 
conferences," among others. From” arXiv” e-Print, articles with strong citations are also taken into consideration. We 
carefully examined each article before excluding any that did not have any bearing on biomedical imaging or GANs. 
We want to comprehensively summarize how AI heart imaging, including CT and MRI, has developed. First, we gave 
a narrative overview of the technical advancements in AI and presented the GAN approach's adaptive framework. The 
adaptive generative adversarial network (AGAN) is proposed to be composed of three elements: a selection generator, 
a discriminator, and a feature harvester. The feature extractor's function extracts pertinent features from the input 
data, which benefit the generative model. These features may be extracted using various methods, such as 
convolutional neural networks or auto encoders. The generator then employs the extracted features to generate a 
new set of data points. We then display the findings of a thorough literature review of current studies and discuss the 
clinical applications of AI and their prospects for clinical practice. 

2. HEART'S ANATOMY FUNCTIONS 

Two atria (top chambers) and two ventricles, totaling four compartments, make up the human heart (as shown in Fig. 
1). Cardio vertebral node there is a membrane between the two heart chambers. The two sides do not immediately 
communicate unless there is a septal abnormality, but they do [12], [13]. The two primary types of circulatory 
channels that travel through the heart are the pulmonary circuit and the systemic circuit. The pulmonary circuit 
carries deoxygenated blood to the right atrium or half of the heart.  the circulation then goes on to the lungs, where 
oxygen is taken in. The oxygenated blood is subsequently returned to the left ventricle via the pulmonary duct. The 
second pathway, commonly referred to as the systemic circuit, is used by the left ventricle (LV) to send oxygenated 
blood into the artery and arterial circulation. The atria and ventricles are separated by the bicuspid (mitral) and 
tricuspid atrioventricular (AV) valves. The cusps of the AV valves are linked to the papillary muscles, which are 
ventricular muscular expansions. The four phases of a healthy heart contraction are as follows. In early diastole, the 
heart is initially at rest. The atrium closes during the atrial systole phase, forcing blood into the ventricles. Third, the 
ventricles constrict until they are fully emptied while maintaining a consistent volume. In the last phase, they stop 
tightening, unwind, and restart the cycle. [14]. 

 

Fig.1. Human heart anatomy (atria and ventricles). 
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3. CARDIAC MAGNETIC RESONANCE IMAGING  

Measurements of ventricular capacity and mass are needed to evaluate cardiovascular illnesses. The go-to imaging 
method for quantitative research is often cardiac magnetic resonance (CMR) [15], [16]. Medical image analysis 
commonly uses motion SSFP, first-pass stress perfusion images, and late gadolinium enhancement (LEG) images in 
CMR image modules. Cine The initial criteria for rating image quality were established, among the factors limiting the 
quality of CMR images are well-known frequent picture artifacts Applying certain criteria to each sort of image series, 
such as the CMR image modules listed above, can yield a numerical score that represents the overall picture quality 
of the CMR research and its three modules.  

4. CMR IMAGE QUALITY ASSESSMENT CHALLENGES 

CMR imaging offers a non-invasive approach to cardiac anatomy and function for population imaging research [17]. 
To assess cardiovascular diseases, it is essential to quantify ventricular anatomy and function using patient cohorts 
from lengthy clinical large-scale imaging studies or trials. Tools for image analysis and automatic image quality 
evaluation are needed for this quantification.  The development of reliable and accurate image analysis tools for 
quantitative assessment is needed due to the technological constraints of imaging systems. For such systems to be 
used in clinical diagnosis, precise predictive performance, accessibility, and interpretability are also requirements  

4.1. CMR imaging anomalies with a defined boundary 

There are not many clinical or non-clinical guidelines that specify what constitutes an excellent medical picture and 
CMR investigation [18]. 

4.2. Methods for limited quality evaluation in video editing 

For automatically determining the quality of photos, a substantial corpus is available. Several techniques for video 
processing can identify visual distortions in frequently occurring multimedia interactions [19] [20]. 

4.3. Recognizing connections in cross-modality imaging data  

When evaluating image clarity in medical image analysis, it may be advantageous or even vital to infer a picture from 
one modality from an image from another. The difficulty of CMR slice posture prediction arises from the disparity of 
data sources. 

5. CARDIOVASCULAR IMAGING METHOD 

The application of AI in cardiac imaging has been explained using two different strategies. To anticipate diagnostic or 
prognostic outcomes utilizing multiple clinical and pre-computed image attributes, large datasets have been 
employed to train traditional ML algorithms. Images from the actual world have been diagnosed using deep learning 
(DL) techniques, a more sophisticated kind of AI. DL does not, in contrast to conventional intelligence techniques. 
Direct image interrogation is utilized for tasks like image segmentation or result projection instead of "feature 
engineering," which computes and extracts "custom-tailored" imaging variables. Examples of huge, complex datasets 
with a range of properties that are good candidates for DL are imaging and genomics datasets. The underlying concept 
of: 

Classical AI is that by automatically and repeatedly changing the appropriate weighting. It is possible to combine 
several weak basic classifiers to create a single potent classifier. Each iteration results in a new weighting distribution 
and basic classifier predictions. These projections are then used to create the weighted majority voting-based ML 
hazard rating, which represents a continuing assessment of the potential threat and runs from 0 to 1. Automatic 
feature selection using Logit Boost model construction information gain ranking and 10-fold cross-validation were all 
done using machine learning an ML score for risk integrating clinical and CTA evaluation is superior to accepted risk 
indices and visual CTA evaluation. The area under the curve (AUC) for the prediction of mortality (ML AUC = 0.79) 
revealed much more information. [21]. The best data on all-cause mortality after age was found in the percentage of 
segments with cemented and no calcified plaque. [22]. In the MESA ("Multi-Ethnic Study of Atherosclerosis") study, 
artificial intelligence (AI) outperformed coronary calcium scoring (CCS) in forecasting negative cardiovascular 
outcomes in more than 6,800 asymptomatic participants. [23]. A coronary composite risk number ('ML AUC = 0.83 
vs. CTA Stenosis = 0.66') has been demonstrated to considerably increase the ability of 13N-ammonia positron 



4 Maysaa Abd Ulkareem, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 15(3) 2023 , pp  Comp.   115–125

 

emission tomography to detect decreased myocardial flow reserve. [24]. The prediction of ischemia specific to 
individual lesions has also been done using AI. Using CT angiography, the NXT research, in which 254 patients had 
CTA before invasive coronary angiography with fractional flow reserve, it was discovered that an assessment of 
plaque features improved the differentiation of lesion-specific ischemia. (FFR) [25]. A related research looked at the 
viability of using AI to forecast lesion-specific ischemia while incorporating clinical information and precise 
assessments of stenosis and plaque from CTA, this combination produced a higher AUC for predicting ischemia when 
compared to the pre-test likelihood of coronary artery disease or quantitative CTA metrics. ("ML AUC = 0.84 vs. best 
clinical score = 0.63, CTA stenosis = 0.76, low-density no calcified plaque volume = 0.77; p 0.006") Software 
applications can incorporate these machine learning risk scores to improve patient risk assessment. The clarity of 
CTA images has also been evaluated using the random forest method, and the findings are similar to those of expert 
visual assessment [26]. The groundbreaking study by Krizhevsky and Hinton [27] .1.3 million images containing more 
than 1,000 distinct objects were automatically classified using Deep learning. The result of DL could be an 
interpretation, forecasting, diagnosis, or (more frequently) a changed photograph, such as the dataset's anatomical 
labels or a higher-quality image. 

Deep learning (DL) has been suggested for several medicinal diagnostic applications. DL's outstanding 
accomplishment in computer vision, together with advancement over the last two years. Two factors that have 
contributed to this growth are recent advancements in reasonably priced graphics processing units ("created for the 
computer gaming business") and a range of DL toolkits that are open-source and accessible to all academics. The 
performance of fully automated segmentation, identification, and categorization of organs or lesions utilizing DL 
algorithms has been much enhanced compared to traditional methods. Pathology image analysis has been the most 
widespread application, however, numerous techniques for analyzing cardiac images have lately been put forth (as 
shown in Fig. 2). Cardiologists have employed DL to determine the coronary centerline. LV image segmentation, CCS 
from CMR, CT, and sonar images, and [28], [29]. The availability of freely available training image datasets made the 
research possible. More for CMR, where a sizable open archive has already been created. The 2016 Kaggle CMR 
competition's winning teams calculated the LV volumes using a DL technique Researchers employed complete 
automation to measure LV volumes. In one documented instance of this research, 1,340 subjects underwent training 
and validation. [30]. 

An automatic DL algorithm's training and evaluation for identifying a severe angiographic disease from SPECT MPI 
by Betancur et al. [31] utilizing the most current registry (" 1,638 SPECT MPIs from the REFINE SPECT") Use of SPECT 
cameras is advised for patients with possible coronary artery dysfunction. [32]. To control memory and processing 
effectiveness, instead of using complete 3D image datasets, they used displays for automatically produced 2D polar 
maps as the convolutional neural network's initial input. Each vascular territory's obstructive condition was trained 
into the DL network. This technique (which distinguished between training and test data using cross-validation) beat 
the industry standard for quantifying these images. Despite not having the specialized graphics card used for system 
instruction, the pre-trained model assessed a brand-new patient in less than one second. 

 

Fig. 2.  Example of context-enabled Encoder-Decoder segmentation [33]. 

6. CARDIAC MR IMAGE SEGMENTATION                                   

Heart image segmentation is crucial for obtaining accurate diagnosis of heart disorders and for giving information 
that will be helpful during clinical therapy and surgery. MRI is the modality most frequently used to produce cardiac 
pictures (as shown in Fig. 3). Segmentation is a helpful technique for examining the quantitative function and 
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perfusion of cardiac MR images. By tracking left ventricular volume (LVV) over the cardiac cycle, as well as associated 
indices including ejection percent, wall thickness during the cardiac cycle, and left ventricular myocardium mass 
(LVMM), it provides an accurate and quick diagnostic of the heart. 

The analysis and interpretation of CMR images are often time-consuming. Cardiac features like the left ventricular 
wall can significantly decrease the automated segmentation of the time required for image processing. To automate 
this process, several techniques have been suggested. These techniques can be classified as deep learning or non-deep 
learning techniques. An overview of the steps required to divide heart pictures into the following categories: Multi-
Chamber, Left Ventricle, Right Ventricle, Aortic Valve, Left Atrium, and Right Atrium. 

 
 

Fig. 3. An overview of the tasks involved in segmenting heart images. 

7. GAN APPLICATION IN CARDIAC IMAGING 

The applications of the GAN model in different biomedical imaging methods are discussed in this section (as shown 
in Table 1). Heart diseases, clinical monitoring, and therapy planning all stand to benefit greatly from cardiovascular 
segmentation in medical imaging. Because it contains information on premedication and surgical procedures, the 
information given by cardiac magnetic resonance imaging (CMRI) helps, evaluate all possible therapies. However, 
echocardiogram encounters some challenges, including poor spatial precision, deformable appearance, and a lack of 
readily available annotation images. 

8. GAN-based derivative models  

Since (Goodfellow et al). [34] proposed a GAN in 2014There have been several GAN-based derivative models 
presented. These models combine cutting-edge theoretical advancement, model construction, and application 
principles. Semi-GAN was suggested by Odena et al. [35], who improved the training of the discriminator D with 
knowledge from real data annotation. [36] Another suggestion was to employ the conditional GAN ("CGAN") by 
incorporating y, which may be labels or other supplementary data, into the model. Traditional GANs create a 
generative model to connect the distribution of the data from the hidden layer with that of the real data and other 
data. (As shown in Fig. 4). 

In this particular version, the input to generator G is split into z and c, where z is identical to the input to the GAN and 
c denotes the implicit connection between a given semantic and a set of hidden structural variables. pG(x) = pG (x | c) 
in a GAN. However, there is a significant connection between c and the outcome of G. The output of the generator is 
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shown by the equation G (z, c). Given that a GAN cannot construct a discrete space distribution and can only produce 
a continuous real number distribution, [37]"Browne et al." Our proposed SeqGAN enhances GNs with the RL-based 
generator to handle the issue of sequence creation, where the discriminator sends a reward signal after each 
sequence. Monte Carlo technique. Table 2 lists the GAN model's advantages and disadvantages. 

Table 1. The articles for cardiac segmentation using GAN models are summarized. 

 

Reference Type GAN Method description 

[53] Automap-GAN 
Our approach is based on the newly created Automap reconstruction technique, which uses deep 
learning to directly recreate high quality MR images from k-space. 

[54] 
 

Network CCGAN 

Suggest a technique for bi-ventricle segmentation that is automatic and concurrent. First, we select 
the area of interest (ROI) from the initial cardiac image at various sizes. The captured ROI is then fed 
into the conditional convolution generative adversarial network (CCGAN), which creates a 
segmentation overlay. 

[55] 
 
 
 

Unet-GAN 

Proposed a comprehensive architecture to solve this issue, consisting of (1) a vendor adaption GAN 
for unpaired GANs and (2) object segmentation GANs. The Unet-GAN concept that is being suggested 
calls for GAN to obtain feature data from Unet at the feature level. However, we choose cardiac cine 
MRI as the example, with three significant manufacturers functioning as three zones (Philips, 
Siemens, and GE). The method may be used to extensively segment medical pictures. 

[56] 
 

 
SDNet  (U-Net and GAN) 

A cycle-consistency-based approach to latent space decomposition is suggested. Consider the 
implementation of cardiac MR segmentation, where data about the myocardium is separated from 
imaging-related characteristics and auxiliary substructures. 

[57] 
 

conditional GANs 
Dividing the myocardial of individuals with congenital heart disease using a chain of conditional 
GANs for semantic segmentation 

[58] 
 
 

CGAN(VoxelAtlasGAN.) 
Utilized in 3-D echocardiography to divide the LV. This network combines map into a framework 
augmentation from start to finish and is built using voxel-to-voxel-based cGAN. The findings 
highlight how crucial the suggested paradigm is for clinical applications.  

[59] 
 

VAE-GAN 

For the implementation of cine-MR image cardiac segmentation, we suggest a Variation Auto 
encoder (VAE) - Generative Adversarial Net-works (GAN) model can generate highly realistic MRI 
along with its pixel exact ground truth. 

[60] 
 

CGAN U-Net 

To capture these interactions, suggest a machine learning technique that uses a conditional 
Generative Adversarial Network (cGAN) to predict cardiac deformation from individual cardiac 
magnetic resonance (CMR) frames and learns a deterministic mapping between end-diastolic (ED) 
and end-systolic (ES) CMR short-axis frames. 

[61] 
 

AAE 

For both discrete and continuous hidden variables in probabilistic autoencoders, the GAN 
framework has been presented as a variational inference method. On the real-valued MNIST and 
Toronto Face datasets, the adversarial autoencoder (AAE) approach we use creates rival test 
likelihoods. 

[62] 
 

GAN-based (U2S 
network) 

A few-shot GAN Transfer Learning for Interactive Echocardiography Translation was suggested in 
the article. Both the U2S Parent Network and the S2U Parent Network have been previously 
developed and retrained. 

[63] 
 

GANs (PSCGAN) 

Progressive sequence causal GANs (PSCGAN) are suggested in this paper. This is the first 
comprehensive CA-free IHD approach that can simultaneously create an LGE-equivalent image from 
cine MR images and segment tissues crucial for diagnosis (such as scars, healthy myocardium, blood 
pools, and other pixels). 

[64] Unet-GAN 

In the suggested Unet-GAN design, GAN picks up segmentation-specific feature information from 
Unet at the feature level. The technique can be applied to the segmentation of medical pictures 
generally, However, we chose cardiac cine MRI as the illustration, with three important 
manufacturers (Philips, Siemens, and GE) acting as three areas 

[65] 
 

progressive sequential 
causal GANs ) 

(1) Generating a crude tissue overlay in advance with GAN. 
(2) LGE analogous picture synthesis GAN condition. 
(3) GAN with precise segmentation. 

[66] 
 

(MuTGAN) 

Complementarity between segmentation and measurement (A1): joint feature learning network for 
multitask learning (A2): spatiotemporal feature extraction network by 3D sequential convolution; 
kinematic abnormalities and LV morphology (A1): combined feature learning network for multitask 
learning; The (B) discriminator (B1) is the task-relatedness network, which uses task-relatedness 
patterns as an innate structure between occupations. 

[67] (R2Unet-GAN) 
The R2U-Net serves as the generating network and the FCN operates as the discriminative network 
in the network design, which is based on a conventional architecture known as a conditional 
generative adversarial network (cGAN).  

[68] 
 

DT-GAN 
To decrease the number of pictures needed for training while keeping high segmentation accuracy, 
we therefore present a semi-supervised semantic segmentation method. 

[69] 
(DAN) model 

 
A novel deep adversarial network (DAN) model is proposed to achieve reliably effective 
segmentation results on both annotated and unannotated pictures in the field of biomedical imaging. 
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Fig. 4. (A) GAN for image synthesis overview. (B) A description of antagonistic training 
for segmenting images. [38] 

Table 2. Some previous studies of the GANs network in terms of the advantages and disadvantages 

Model Advantage Disadvantage 

DCGAN[39] Model stability and picture processing suitability Model bursts, gradient vanishes, and it's uncontrollable 

CGAN[40] Controllable training Gradient vanishes, model erupts 

WGAN[41] 
can stop the eruption of gradient disappearance; more 
stable 

Selecting a weight-cutting range can be challenging. 

INFOGAN 
[42],[ 43] 

comprehensible example features Gradient vanishes, model erupts 

BEGAN[44] 
The model is simpler to train and the generated sample 
diversity is superior 

Model bursts, the gradient vanishes, and it's uncontrollable 

CycleGAN[45] Training rounds don't need to be paired substantial use of processing resources 

SRGAN[46] 
Low-resolution photos are scaled up by 4x to create high-
resolution images. 

There is some disturbance and not enough realistic texture 
information 

ACGAN[47] For each division, accuracy can be evaluated 
Overlooks the damage that class labels do when a label is 
missing from a particular training picture. 

LAPGAN[48] training independently for each pyramid stage No convergence and mode collapse 

SAGAN[49] 
Recent studies have shown that generator conditioning 
affects GAN performance, and improves training dynamics. 

Focus is not Expanded 

GRAN[50] Sequential generation  of images Samples break down after extensive training 

AAE [51] 
Balanced approximation is superior to vibrational 
autoencoders and can be expanded to semi-supervised 
learning 

Examples produced are fuzzed and smoothed 

Pix2Pix[52] 
The generation of realistic pictures and parameter 
reduction 

Images must be paired one to one. 

9. CHALLENGES 

Despite their ability to generate data, GANs have associated disadvantages that may prohibit them from accepting 
data synthesis software.  The following list includes some of these restrictions: 

1. Dynamics Instruction. The training process with GANs is unstable and unpredictable due to their adversarial 
structure. Mode collapse, where GAN's generator only learns to create a subset of a reference dataset, limits 
the trained model's usefulness. 

2. Another problem is the long training times for advanced GAN models; even modern graphics processing units 
take weeks of training. 

3. Model Evaluation. Since it is challenging to objectively assess Uncertainty exists regarding model 
convergence and the quality of the generated pictures, and dynamics instruction is made more difficult.  
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4. Medical Clinicians must exercise caution when implementing new tools because their choices influence their 
patients' health. Because they fall under the category of "black-box" probabilistic models, the behaviour of 
the neural networks that constitute the core elements of GANs is not completely understood [70].  

5. Additionally, the intricate features of an organ or pathology may not be fully captured in GAN images. These 
issues need to be fixed for GANs to be accepted as reliable therapeutic tools. 

6. Data Ethics and Rules. Because it is so closely related to a person's health details, medical data is extremely 
sensitive. In light of this, it is still unclear whether data laws and regulations protect Synthetic data generated 
by GANs trained on actual patient data.  

7.  GANs have the potential to amplify the biases inherent in the original datasets, which poses ethical questions 
about the use of GAN-generated data as a trustworthy source of information 

10. DATA AVAILABILITY  

 

11.  CONCLUSION 

This article summarized a thorough analysis of cardiac magnetic resonance imaging and GAN including their 
fundamental concepts, GAN variants, cardiac MR image segmentation by GAN, and their visual perception-related 
computational uses. A comparison between biological and computer vision is made to better comprehend the 
development of neural networks and the background of computer vision. This poll offers a thorough comparison of 
recent and previous surveys. This study in-depth examines GAN's uses in cardiac MR image segmentation. It has been 
demonstrated that GAN can address the issue of insufficient data and enhance picture generation quality. The 
experimental results are discussed to examine the capabilities of GAN model variations. The benefits, disadvantages, 
and network designs of several GAN models are explained. Cardiac MR Image Segmentation and GAN applications are 
also addressed, both of which have made significant progress in many computer vision applications. The possibilities 
and difficulties in all the emerging areas are covered in depth in this article. One of the potential directions for future 
study is to modify GAN in this manner. 
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