

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

New Sandwich-Type Results of Meromorphic Multivalent Functions Defined by Rafid operator

Arkan Firas Abbas a and Wagges Galib Atshan b*

^a Department of Mathematics, College of Sciencen, University of Al-Qadisiyah, Diwaniyah, Iraq.Email: Arkanfiras776@gmail.com

^b Department of Mathematics, College of Sciencen, University of Al-Qadisiyah, Diwaniyah, Iraq.Email: Waggas.galib@qu.edu.iq

ABSTRACT

MSC: 30C45

ARTICLEINFO

Article history: Received: 3 /12/2023 Rrevised form: 23 /12/2023 Accepted : 29 /12/2023 Available online: 30 /12/2023

Keywords:

Analytic Function, subordination, superordination, meromorphic pvalent, Rafid oparetor

https:// 10.29304/jqcsm.2023.15.41351

1. Introduction

Letting \sum_{v} represent a collection of anallytic functions that may be exprassed in the following:

$$\mathfrak{L}(z) = \frac{1}{z^{\mathcal{P}}} + \sum_{\mathcal{K}=1}^{\infty} \mathfrak{v}_{\mathcal{K}} z^{\mathcal{K}}, \tag{1.1}$$

this study aims to ascertain the outcomes differantial subordnation and superordnation for

meromorphic p-valent functions given by the Rafid operetor within a punctared open unit disc.

We acquire multiple results that bear a resemblance to sandwiches.

These are meromorphic functions that are analytic and have multivalant within a puntured open dick $\mathfrak{U}^* = (z: z \in \mathbb{C}, 0 < |z| < 1)$. Multiple writers have conducted research on meromorphic functions in various classes and under different settings, as documented in references [8, 9, 21]. \mathfrak{K} represents a linear space comprising each analytic functions in \mathfrak{U} . Given positive integar n and complex number \mathfrak{v} , we define

 $\mathfrak{K}[\mathfrak{v},\mathfrak{n}] = \{\mathfrak{L} \in \mathfrak{K} : \mathfrak{L}(z) = \mathfrak{v} + \mathfrak{v}_{\mathfrak{n}} z^{\mathfrak{n}} + \mathfrak{v}_{\mathfrak{n}+1} z^{\mathfrak{n}+1} + \cdots \} \quad (\mathfrak{v} \in \mathbb{C}).$

A variables \Im , \mathfrak{L} are analytic functions within \mathfrak{K} , we assert that \mathfrak{L} is subordnate to \Im in \mathfrak{U} , or \Im superordnate to \mathfrak{L} in \mathfrak{U} writes $\mathfrak{L}(z) \prec \mathfrak{I}(z)$, if a Schiwarz function exists \mathfrak{w} within \mathfrak{U} which, accompanied by $\mathfrak{w}(0) = 0$, also $|\mathfrak{w}(z)| < 1$, $(z \in \mathfrak{U})$, where $\mathfrak{L}(z) = \Im (\mathfrak{w}(z))$.

Furtharmore, assuming \Im is a univalent function in \mathfrak{U} , we possess the subsequent equivalency relationship, as indicated by the references [10,11,15,16]:

 $\mathfrak{L}(z)\prec\,\mathfrak{I}(z)\leftrightarrow\mathfrak{L}(0)=\,\mathfrak{I}(0),\ \mathfrak{L}(\mathfrak{U})\subset\,\mathfrak{I}(\mathfrak{U}),(z\in\mathfrak{U}).$

^{*}Corresponding author Arkan Firas Abbas

Email addresses: Arkanfiras776@gmail.com

Definition (1.1) ([15], also see[21]): Letting $\mathfrak{X}: \mathbb{C}^3 \times \mathfrak{U} \to \mathbb{C}$ with $\mathfrak{Y}(z)$ be analytic within \mathfrak{U} . If p(z) with $\mathfrak{X}(p(z), zp'(z), z^2p''(z); z)$ be univalant functions in \mathfrak{U} , when p(z) has to fulfill the sacond-order differential superordnation:

$$\mathfrak{Y}(z) \prec \mathfrak{X}(p(z), zp'(z), z^2 p''(z); z),$$

$$(1.2)$$

therefore, p(z) is referred to as a selution of a differential superordnation (1.2). A subordinant function q(z) is an analytic function that is associated with a solutions of a differential superordnation (1.2), in simpler terms, a subordnant if q < f for each the fanctions p fulfills (1.2). A univalant subordnant \check{q} which fulfills $q < \check{q}$ as each the subordnants q the superiority in (1.2) as a best subordnant.

Definition (1.2) [15]: Letting $\mathfrak{X}: \mathbb{C}^3 \times \mathfrak{U} \to \mathbb{C}$ with $\mathfrak{Y}(z)$ be univalent within \mathfrak{U} , when p(z) is analytic within \mathfrak{U} and fulfills a condition of being sacond-order differentially subordnated:

$$\mathfrak{X}(p(z), zp'(z), z^2 p''(z); z) \prec \mathfrak{Y}(z),$$
(1.3)

further, the function p(z) is referred to as a differantial subordnation solutian (1.3), while q(z) is refarred to as a dominent of the differantial subordnation (1.3) or, to express it clearly, a dominant if p(z) < q(z).

For every p(z) that fulfil equation (1.3), a univalent dominating function $\check{q}(z)$ that fulfils $\check{q}(z) \prec q(z)$ for every dominent q(z) of (1.3) it's claimed to obtain best dominent.

Millier, Mocaanu [16] and more authors [1,2,3,4,5,6,7,8,9,10,12] and also [13,14,18,20,21,24,25] established necessary conditions on the functions \mathfrak{Y} , p, and \mathfrak{X} in order to obtain the following conclusion:

 $\mathfrak{Y}(z) \prec \mathfrak{X}(p(z), zp'(z), z^2p''(z); z) \to q(z) \prec p(z)(z \in \mathfrak{U}).$ (1.4)
Assuming that $\mathfrak{L} \in \sum_p$ it is defined by (1.1) furthermore, $\mathfrak{F} \in \sum_p$ called

$$\mathfrak{F}(z) = \frac{1}{z^p} + \sum_{\mathcal{K}=1}^{\infty} \mathscr{b}_{\mathcal{K}} z^{\mathcal{K}}$$

The Hadamaard product, also known as convalution, of $\mathfrak L$ and $\mathfrak F$ is given by:

$$(\mathfrak{L} * \mathfrak{F})(z) = \sum_{\mathcal{K}=1}^{\infty} \mathfrak{a}_{\mathcal{K}} \mathscr{b}_{\mathcal{K}} z^{\mathcal{K}} = (\mathfrak{F} * \mathfrak{L})(z), \quad (z \in \mathfrak{U})$$

Through the utilisation of conclusions, (see [2,4,5,6,9,13,14,18,20,22,23,24,25]) to fulfil necessary conditions for satisfying of normailzed analytic functions

$$q_1(z) \prec \frac{z \, \mathcal{G}'(z)}{\mathcal{G}(z)} \prec q_2(z)$$

when q_1 , q_2 include univalent functions in \mathfrak{U} and $q_1(0) = q_2(0) = 1$. Shanmugm et al. [22][23], and also Goyal et al. [12], new research has yielded recent discoveries regarding the outcomes of sandwiches for classes of analytic functions (Refer to [1,3,4,6,11]).

Letting $0 \leq \lambda \leq 1$; $0 \leq \gamma \leq 1$; $p \in \mathcal{N}$ and $\mathfrak{L} \in \sum_{p}$, Salah et al. [19] applied multivalent Rafid operator $S^{\gamma}_{\lambda,p}: \sum_{p} \to \sum_{p}$, defined by

$$S_{\lambda,p}^{\gamma} \mathfrak{L}(z) = \frac{1}{(1-\lambda)^{\gamma+1} \Gamma(\gamma+1)} \int_{0}^{\infty} t^{\gamma+p} e^{\left(\frac{-t}{1-\lambda}\right)} \mathfrak{L}(zt) dt,$$
(1.5)

then

$$S_{\lambda,p}^{\gamma} \mathfrak{L}(z) = \frac{1}{z^{p}} + \sum_{\mathcal{K}=1}^{\infty} L(\lambda, \mathbf{k}, \gamma) \mathfrak{a}_{\mathcal{K}} z^{\mathcal{K}}, \qquad (1.6)$$

where

$$L(\lambda, \mathcal{K}, \gamma) = (1 - \lambda)^k (\gamma + 1)_{\mathcal{K}}$$
,

and $(u)_{\mathcal{K}}$ represents the Pochammer symboli such that:

$$(u)_{k} = \frac{\mathcal{T}(u+\mathcal{K})}{\mathcal{T}(u)} = \begin{cases} 1 & \text{if } k = 0, \\ u(u+1)\dots(u+k-1) & \text{if } \kappa \in \mathcal{N}. \end{cases}$$
(1.7)

Note that, if p = 1 in (1.5), the Rafid operator was introduced by Rossy and Varma [17]. By applying equation (1.6), it becomes clear that

$$S_{\lambda,p}^{\gamma}(z \mathfrak{L}'(z)) = z \left(S_{\lambda,p}^{\gamma} \mathfrak{L}(z) \right)',$$

thus

$$z\left(S_{\lambda,p}^{\gamma}\mathfrak{L}(z)\right)' = (1+\gamma)S_{\lambda,p}^{\gamma+1}\mathfrak{L}(z) - (p+1+\gamma)S_{\lambda,p}^{\gamma}\mathfrak{L}(z).$$
(1.8)

The fundamental objective of this definition is to identify the appropriate condetions when specific normalized analytic functions can be satisfied:

$$q_1(z) \prec \left[z^p \, \mathsf{S}^{\gamma}_{\lambda,p} \mathfrak{L}(z) \right]^{\mathsf{\tau}} \prec q_2(z),$$

and

$$q_{1}(z) \prec \left[\frac{vz^{p} S_{\lambda,p}^{\gamma+1} \mathfrak{Q}(z) + \eta v^{p} S_{\lambda,p}^{\gamma} \mathfrak{Q}(z)}{v + \eta}\right]^{\frac{1}{\tau}} \prec q_{2}(z),$$

whenever univalent functions $q_1(z)$, $q_2(z)$ are provided in \mathfrak{U} with $q_1(z) = q_2(z) = 1$.

2. Preliminaries

The provided definitons and lemmas will aid us in demonstrating our fundamental conclusions.

Definition (2.1) [15]: Letting \mathfrak{S} represent the collection of each functions q that are both injective and analytic on $\overline{\mathfrak{U}} \setminus \mathfrak{Z}(q)$, when $\overline{\mathfrak{U}} = \mathfrak{U} \cup \{z \in \partial \mathfrak{U}\}$, where

$$\mathfrak{Z}(q) = \left\{ \varepsilon \in \partial \mathfrak{U}: \lim_{z \to \varepsilon} q(z) = \infty \right\},\tag{2.1}$$

as well as being $q'(z) \neq 0$ for $\varepsilon \in \partial \mathfrak{U} \setminus \mathfrak{Z}(q)$. Also, consider the subclass of \mathfrak{S} that is q(0) = 1 be indicated by $\mathfrak{S}(\mathfrak{a})$, and $\mathfrak{S}(0) = \mathfrak{S}_0$, $\mathfrak{S}(1) = \mathfrak{S}_1 = \{q \in \mathfrak{S} : q(0) = 1\}$.

Lemma (2.1) [16]: Letting q(z) be a convex univalant function in \mathfrak{U} with $\mathfrak{f} \in \mathbb{C}, \mathfrak{P} \in \mathbb{C} \setminus \{0\}$ with

$$\mathcal{R}\left\{1+\frac{za''(z)}{a'(z)}\right\} > max\left\{0,-\mathcal{R}\left(\frac{f}{\mathfrak{P}}\right)\right\}.$$

Assuming p is analytic in \mathfrak{U} , with

$$fp(z) + \mathfrak{P}zp'(z) < fq(z) + \mathfrak{P}zq'(z), \tag{2.2}$$

consequently, *q* be the bested dominent of (2.2) and $p(z) \prec q(z)$. **Lemma (2.2)** [11]: Consider the function q(z) to be univalant in \mathfrak{U} , assume Φ , \wp are analytic within a domein \mathfrak{Q} including $q(\mathfrak{U})$ also $w \neq 0$, $w \in q(\mathfrak{U})$. Establish $\mathfrak{S}(z) = zq'(z)\Phi(q(z))$ and $\mathfrak{Y}(z) = \wp(q(z)) + \mathfrak{S}(z)$. Consider: a- $\mathfrak{S}(z)$ be starlike univalent in \mathfrak{U} ,

b- $\mathcal{R}\left\{\frac{z\mathfrak{Y}'(z)}{\mathfrak{S}(z)}\right\} > 0, (z \in \mathfrak{U}).$

When p is analytics function in \mathfrak{U} , also p(0) = q(0), $p(\mathfrak{U}) \subseteq \mathfrak{Q}$, with

$$\wp(p(z)) + zp'(z)\Phi(p(z)) \prec \wp(q(z)) + zq'(z)\Phi(q(z)),$$

$$(2.3)$$

consequently, *q* be a best dominent of (2.3) and p < q.

Lemma (2.3) [16]: Letting q(z) be a convax univalent in \mathfrak{U} with q(0) = 1. Assume $\mathfrak{P} \in \mathbb{C}$, so $\mathcal{R}(\mathfrak{P}) > 0$, when $p(z) \in \mathfrak{R}[q(0),1] \cap \mathfrak{S}$ and $p(z) + \mathfrak{P}zp'(z)$ is univalant in \mathfrak{U} , thus

$$aq(z) + \mathfrak{P}zq'(z) < ap(z) + \mathfrak{P}zp'(z),$$
(2.4)
consequantly, *q* be the bested dominent of (2.4) and $p(z) < q(z)$.

Lemma (2.4) [16]: Consider q(z) as a convax univalent function within \mathfrak{U} with Φ, \wp are analytic in a domein \mathfrak{D} including $q(\mathfrak{U})$. Assume that

a- $\mathfrak{S}(z) = zq'(z)\phi(q(z))$ is starlike univalent in \mathfrak{U} ,

b- $\mathcal{R}e\left\{\frac{\wp'(q(z))}{\Phi(q(z))}\right\} > 0, (z \in \mathfrak{U}).$

When
$$p \in \Re[q(0),1] \cap \mathfrak{S}$$
, with $p(\mathfrak{U}) \subset \mathfrak{D}$, $\wp(p(z)) + zp'(z)\Phi(p(z))$ is univalant in \mathfrak{U} and
 $\wp(q(z)) + zq'(z)\Phi(q(z)) \prec \wp(p(z)) + zp'(z)\Phi(p(z)),$
(2.5)

consequently, *q* be the bested dominent of (2.5) and $q \prec p$.

3. Results of Differential Subordinations

Now, let us engage in a discussion. The Rafid operator $S_{\lambda,p}^{\gamma}$ can yield various differential subordnation outcomes. **Theorem 3.1** Consider $q_i(z)$ a convax univalent in \mathfrak{U} , adding $q_i(0) = 1$, with $q'(z) \neq 0$, to each $z \in \mathfrak{U}$. Assume that $\varrho, \tau \in \mathbb{C} \setminus \{0\}$, and

$$\mathcal{R}\left\{1 + \frac{z \, q^{\prime\prime}(z)}{q^{\prime}(z)}\right\} > max\left\{0, -\mathcal{R}\left(\frac{\tau}{\varrho}\right)\right\}. \tag{3.1}$$

considering that $\mathfrak{L} \in \Sigma_{p}$ fulfils the subordnation condition:

$$\psi(z) \prec q(z) + \frac{\varrho}{\tau} z q''(z), \tag{3.2}$$

where

$$\psi(z) = \varrho(\gamma+1) \left[z^{\mathscr{P}} \ S^{\gamma}_{\lambda,\mathscr{P}} \mathfrak{L}(z) \right]^{\tau} \left[\left(\frac{S^{\gamma+1}_{\lambda,\mathscr{P}} \mathfrak{L}(z)}{S^{\gamma}_{\lambda,\mathscr{P}} \mathfrak{L}(z)} - 1 \right) \right] + \left[z^{\mathscr{P}} \ S^{\gamma}_{\lambda,\mathscr{P}} \mathfrak{L}(z) \right]^{\tau}, \tag{3.3}$$

then

$$\left[z^{p} S_{\lambda,p}^{\gamma} \mathfrak{L}(z)\right]^{\tau} < q(z), \tag{3.4}$$

the best dominance is attained by q(z).

Proof. Letting p(z) known for:

24

$$\mathcal{P}(z) = \left[z^{p} S_{\lambda,p}^{\gamma} \mathfrak{L}(z) \right]^{\tau}, \tag{3.5}$$

therefore in \mathfrak{U} , p(z) is analytic and p(0) = 1 as a result of taking the derivative of (3.5) involving z then applying the identity of (1.8) in the provided equation.

$$\Psi(z) = \varrho(\gamma+1) \left[z^{\mathscr{P}} S^{\gamma}_{\lambda,\mathscr{P}} \mathfrak{L}(z) \right]^{\tau} \left[\left(\frac{S^{\gamma+1}_{\lambda,\mathscr{P}} \mathfrak{L}(z)}{S^{\gamma}_{\lambda,\mathscr{P}} \mathfrak{L}(z)} - 1 \right) \right] + \left[z^{\mathscr{P}} S^{\gamma}_{\lambda,\mathscr{P}} \mathfrak{L}(z) \right]^{\tau} = \mathscr{P}(z) + \frac{\varrho}{\tau} z \mathscr{P}''(z).$$

Therefore, the subordnation (3.2) be the same as

$$p(z) + \frac{\varrho}{\tau} z p''(z) \prec q(z) + \frac{\varrho}{\tau} z q''(z).$$

Lemma (2.1) is used in this context, with $\mathfrak{P} = \frac{\varrho}{\tau}$, $\alpha = 1$, we get (3.4).

Applying $q(z) = \left(\frac{1+Az}{1+\Re z}\right)$, and $(-1 \le \Re < A \le 1)$ from theorem 3.1, the subsequent outcome is calculated:

Corollary 3.1. Given $\tau, \varrho \in \mathbb{C} \setminus \{0\}$ with $(-1 \le \mathfrak{B} < A \le 1)$. Assume as

$$\mathcal{R}\left\{\frac{1-Bz}{1+Bz}\right\} > \max\left\{0, -\mathcal{R}\left(\frac{\tau}{\varrho}\right)\right\}.$$

considering that $\mathfrak{L} \in \sum_{\mathscr{P}}$ fulfils the subordnation condition:

$$\psi(z) \prec \left(\frac{1+Az}{1+\Re z}\right) + \left(\frac{\varrho}{\tau}\right) \frac{z(A-\Re)}{(1+\Re z)^2}$$

when $\psi(z)$ as defined in equation (3.3), then

$$\left[z^{\mathcal{P}} \ \mathsf{S}^{\gamma}_{\lambda,\mathcal{P}}\mathfrak{L}(z)\right]^{\tau} \prec \left(\frac{1+\mathcal{A}z}{1+\mathcal{B}z}\right)$$

where the bested domineting is $\left(\frac{1+Az}{1+Bz}\right)$.

By use corollary (3.1) for A = 1, $\mathfrak{B} = -1$, we obtain our next conclusion.

Corollary 3.2. Given $\tau, \varrho \in \mathbb{C} \setminus \{0\}$, assuming that

$$\mathcal{R}\left\{\frac{1+z}{1-z}\right\} > \max\left\{0, -\mathcal{R}\left(\frac{\tau}{\varrho}\right)\right\}$$

considrring that $\mathfrak{L} \in \sum_{p}$ fulfils the subordnation condition:

$$\psi(z) \prec \left(\frac{1+z}{1-z}\right) + \left(\frac{\tau}{\varrho}\right) \frac{2z}{(1-z)^2},$$

when $\psi(z)$ expressed as equation (3.3), then

$$z^{\mathcal{P}} S^{\gamma}_{\lambda, \mathcal{P}} \mathfrak{L}(z) \Big]^{\tau} \prec \Big(\frac{1+z}{1-z} \Big),$$

where the best dominating is $\left(\frac{z+1}{1-z}\right)$.

Theorem 3.2 : Consider a function q(z), which is both convax and univalent within \mathfrak{U} and q(0) = 1, where $q'(z) \neq 0$ and $\frac{zq'(z)}{q(z)}$ is star like and univalent in \mathfrak{U} . Letting $j, v, \eta, \tau \in \mathbb{C}^*$, $\mathcal{Y}, t \in \mathbb{C}$ with $v + \eta \neq 0$, $\frac{vz^p S_{\lambda,p}^{Y+1}\mathfrak{L}(z) + \eta z^p S_{\lambda,p}^{Y}\mathfrak{L}(z)}{v+\eta} \neq 0$, $z \in \mathfrak{U}$, assuming that q fulfil the next condition

$$\mathcal{R}\left\{1 + \frac{2\chi}{j}(q(z))^2 + \frac{z\,q''(z)}{q'(z)} - \frac{z\,q'(z)}{q(z)}\right\} > 0,\tag{3.6}$$

if $\mathfrak{L} \in \sum_{p}$ fulfil:

$$\Delta(z) \prec \Im(q(z))^2 - t + j \frac{z \, q'(z)}{q(z)},\tag{3.7}$$

where

$$\Delta(z) = \left[\sqrt{\frac{vz^{p} S_{\lambda,p}^{\gamma+1} \mathfrak{Q}(z) + \eta z^{p} S_{\lambda,p}^{\gamma} \mathfrak{Q}(z)}{v+\eta}} \right]^{\frac{2}{\tau}} - t + j \left(\frac{1}{\tau}\right) (1+\gamma) \left[\left(\frac{vz^{p} S_{\lambda,p}^{\gamma+2} \mathfrak{Q}(z) + \eta z^{p} S_{\lambda,p}^{\gamma+1} \mathfrak{Q}(z)}{vz^{p} S_{\lambda,p}^{\gamma+1} \mathfrak{Q}(z) + \eta z^{p} S_{\lambda,p}^{\gamma} \mathfrak{Q}(z)} - 1 \right) \right],$$
(3.8)

thus

$$\left[\frac{vz^{p} S_{\lambda,p}^{\gamma+1} \mathfrak{Q}(z) + \eta z^{p} S_{\lambda,p}^{\gamma} \mathfrak{Q}(z)}{v + \eta}\right]^{\frac{1}{\tau}} \prec q(z),$$

when the best dominant is denoted as q(z).

Proof. Write p(z) by the following manner:

$$p(z) = \left[\frac{vz^{p} S_{\lambda,p}^{\gamma+1} \mathfrak{L}(z) + \eta z^{p} S_{\lambda,p}^{\gamma} \mathfrak{L}(z)}{v+\eta}\right]^{\frac{1}{\tau}},$$
(3.9)

then p is analytic in \mathfrak{U} . A computing the derivetive of (3.9) with regard to z, then substituting the identity of (1.8) into the resultant solution, we get

$$\frac{z p'(z)}{p(z)} = \left(\frac{1}{\tau}\right) (1+\gamma) \left[\left(\frac{v z^p S_{\lambda,p}^{\gamma+2} \varrho(z) + \eta z^p S_{\lambda,p}^{\gamma+1} \varrho(z)}{v z^p S_{\lambda,p}^{\gamma+1} \varrho(z) + \eta z^p S_{\lambda,p}^{\gamma} \varrho(z)} - 1 \right) \right].$$
(3.10)

Setting $\mathscr{D}(\mathfrak{w}) = \mathfrak{Y}\mathfrak{w}^2 - \mathfrak{t}$ with $\Phi(\mathfrak{w}) = \frac{j}{\mathfrak{w}}, \mathfrak{w} \neq 0$, reveals the $\mathscr{D}(\mathfrak{w})$ is analytic function in \mathbb{C} , also $\mathfrak{G}(\mathfrak{w})$ is analytic in $\mathbb{C}\setminus\{0\}$ and $\Phi(\mathfrak{w}) \neq 0, \mathfrak{w} \in \mathbb{C}\setminus\{0\}$. Furthermore, there is

$$\mathfrak{S}(z) = z\mathfrak{q}'(z)\Phi(\mathfrak{q}(z)) = j\frac{z\mathfrak{q}'(z)}{\mathfrak{q}(z)},$$

and

$$\mathfrak{Y}(z) = \mathscr{P}(\mathfrak{q}(z)) + \mathfrak{S}(z) = \mathfrak{Y}(\mathfrak{q}(z))^2 - \mathfrak{t} + \mathfrak{j}\frac{z\,\mathfrak{q}'(z)}{\mathfrak{q}(z)},$$

 $\mathfrak{S}(z)$ is found to be a starlika univalent functions in \mathfrak{U} , we have

$$\mathfrak{Y}'(z) = 2 \mathfrak{Y} \, q(z) q'(z) + j \frac{z \, q''(z)}{q'(z)} - j z \left(\frac{q'(z)}{q(z)}\right)^2 + j \frac{q'(z)}{q(z)}$$

hence that

$$\mathcal{R}\left\{\frac{z\,\mathfrak{Y}'(z)}{\mathfrak{S}(z)}\right\} = \mathcal{R}\left\{1 + \frac{2\gamma}{j}(q(z))^2 + \frac{z\,\mathfrak{q}''(z)}{q'(z)} - \frac{z\,\mathfrak{q}'(z)}{q(z)}\right\} > 0.$$

Applying equation (3.10), getting

$$\mathbb{Y}(p(z))^2 - \mathbf{t} + j\frac{zp'(z)}{p(z)} = \mathbb{Y}\left[\frac{vz^p \, \mathbf{S}_{\lambda,p}^{\gamma+1} \mathfrak{Q}(z) + \eta z^p \, \mathbf{S}_{\lambda,p}^{\gamma} \mathfrak{Q}(z)}{v+\eta}\right]^{\frac{1}{\tau}} - t + j\left(\frac{1}{\tau}\right)(1+\gamma)\left[\left(\frac{vz^p \, \mathbf{S}_{\lambda,p}^{\gamma+2} \mathfrak{Q}(z) + \eta z^p \, \mathbf{S}_{\lambda,p}^{\gamma+1} \mathfrak{Q}(z)}{vz^p \, \mathbf{S}_{\lambda,p}^{\gamma+1} \mathfrak{Q}(z) + \eta z^p \, \mathbf{S}_{\lambda,p}^{\gamma} \mathfrak{Q}(z)} - 1\right)\right].$$
sing (3.7), we have

By u

$$\chi(p(z))^{2} - t + j\frac{zp'(z)}{p(z)} = \chi(q(z))^{2} - t + j\frac{zq''(z)}{q'(z)}$$

it may be deduced that subordination (3.7) means that $p(z) \prec q(z)$, furthermore, it can be deduced from Lemma (2.2), the fanction q(z) is best for the domain.

Putting
$$q_i(z) = \left(\frac{1+Az}{1+\Im_z}\right)$$
, with $(-1 \le \mathfrak{B} < A \le 1)$ from Theorem3.2, equation (3.6) is transformed into
$$\mathcal{R}\left\{1 + \frac{2Y}{j}\left(\frac{1+Az}{1+\Im_z}\right)^2 + \frac{z(A-B)}{(1+Az)(1+\Im_z)} - \frac{2Bz}{1+zB}\right\} > 0,$$
(3.11)

therefore, we can infer the consequent conclusion.

Corollary 3.3. Letting $(-1 \le \mathfrak{B} < A \le 1)$, with $j, v, \eta, \tau \in \mathbb{C}^*$, $\mathcal{Y}, t \in \mathbb{C}$, consider that (3.11) fulfills. If $\mathfrak{L} \in \Sigma_p$ and

$$\Delta(z) \prec \operatorname{Y}\left(\frac{1+Az}{1+z\mathfrak{B}}\right)^2 - t + j \frac{z(A-B)}{(1+Az)(1+z\mathfrak{B})}$$

the function $\Delta(z)$ is define in equation (3.8), then

$$\left[\frac{vz^{\mathscr{P}} S_{\lambda,\mathscr{P}}^{\gamma+1} \mathfrak{L}(z) + \eta z^{\mathscr{P}} S_{\lambda,\mathscr{P}}^{\gamma} \mathfrak{L}(z)}{v+\eta}\right]^{\frac{1}{\tau}} \prec \left(\frac{1+Az}{1+Bz}\right)^{\frac{1}{\tau}}$$

where the bested domineting is $\left(\frac{1+A_Z}{1+\vartheta}\right)$.

Putting $q_i(z) = \left(\frac{1+z}{1+z}\right)$, from theorem 3.2, equation (3.6) is transformed into $\mathcal{R}\left\{1 + \frac{2Y}{j}\left(\frac{1+z}{1+z}\right)^2 + \frac{2z}{1-z^2} + \frac{2z}{1-z}\right\} > 0,$

Corollary 3.4. Letting $j, v, \eta, \tau \in \mathbb{C}^*$, $\mathcal{Y}, t \in \mathbb{C}$. Let's suppose that (3.12) fulfills. If $\mathfrak{L} \in \Sigma_p$ and

$$\Delta(z) \prec \bigvee \left(\frac{1+z}{1+z}\right)^2 - \mathbf{t} + j\frac{2z}{1-z^2},$$

the function $\Delta(z)$ is defined in equation (3.8), then

$$\left[\frac{vz^{p} S_{\lambda,p}^{\gamma+1} \mathfrak{Q}(z) + \eta z^{p} S_{\lambda,p}^{\gamma} \mathfrak{Q}(z)}{v + \eta}\right]^{\frac{1}{\tau}} \prec \left(\frac{z + 1}{1 + z}\right),$$

where the best domineting is $\left(\frac{z+1}{1+z}\right)$.

4. Results of Differantial Superordnations:

Theorem 4.1: Let us consider a function q(z) to be convax univalent in \mathfrak{U} also $q(0) = 1, \tau \in \mathbb{C} \setminus \{0\}, \ \mathcal{R}\{\varrho\} > 0$, if $\mathfrak{L} \in \Sigma_{\mathcal{P}}$, where

$$\left[z^{p} S^{\gamma}_{\lambda,p} \mathfrak{L}(z)\right]^{\tau} \in \mathfrak{R}[q(0),1] \cap \mathfrak{S}.$$

$$(4.1)$$

If $\psi(z)$ function in (3.3), be univalent and the superordnation criteria will be obtained:

$$q(z) + \frac{\varrho}{\tau} z q'(z) \prec \psi(z), \tag{4.2}$$

(3.12)

thus

$$q(z) \prec \left[z^{p} \; \mathsf{S}^{\gamma}_{\lambda,p} \mathfrak{L}(z)\right]^{\mathsf{T}},\tag{4.3}$$

where the best subordnant is q(z).

Proof. Letting p(z) be a function specified by

$$p(z) = \left[z^{p} S_{\lambda,p}^{\gamma} \mathfrak{L}(z)\right]^{\mathsf{T}}.$$
(4.4)

Taking the derivative of (4.4) with regard to z, it has

$$\frac{z \, p'(z)}{p(z)} = \tau \left[\frac{z \left(S_{\lambda,p}^{Y} \mathfrak{L}(z) \right)' + \mathcal{P} \, S_{\lambda,p}^{Y} \mathfrak{L}(z)}{S_{\lambda,p}^{Y} \mathfrak{L}(z)} \right]. \tag{4.5}$$

By a simple calculation and applying the equation (1.8) to the value (4.5), we can obtain:

$$\psi(z) = \varrho(\gamma+1) \left[z^{\mathcal{P}} S^{\gamma}_{\lambda,\mathcal{P}} \mathfrak{L}(z) \right]^{\tau} \left[\left(\frac{S^{\gamma+1}_{\lambda,\mathcal{P}} \mathfrak{L}(z)}{S^{\gamma}_{\lambda,\mathcal{P}} \mathfrak{L}(z)} - 1 \right) \right] + \left[z^{\mathcal{P}} S^{\gamma}_{\lambda,\mathcal{P}} \mathfrak{L}(z) \right]^{\tau} = \mathcal{P}(z) + \frac{\varrho}{\tau} z \mathcal{P}''(z).$$

Applying Lemma 2.3 yields the desired outcome.

Setting $q_{\ell}(z) = \left(\frac{1+Az}{1+\Re z}\right)$, with $(-1 \le \Re < A \le 1)$, the next conclusion can be derived of theorem 4.1.

Corollary 4.1: Given $\tau \in \mathbb{C} \setminus \{0\}$, $\mathcal{R}\{\varrho\} > 0$, with $(-1 \le \mathcal{B} < \mathcal{A} \le 1)$, where

$$\left[z^{p} S^{\gamma}_{\lambda,p}\mathfrak{L}(z)\right]^{\tau} \in \mathfrak{R}[q(0),1] \cap \mathfrak{S}.$$

When $\psi(z)$ in (3.3) is univaluet in \mathfrak{U} , and $\mathfrak{L} \in \sum_{\mathcal{P}}$ satisfying the superorduction condition,

$$\left(\frac{1+Az}{1+Bz}\right) + \left(\frac{\varrho}{\tau}\right)\frac{z(A-B)}{(1+Bz)^2} \prec \psi(z)$$

thus

$$\left(\frac{1+Az}{1+\Re z}\right) \prec \left[z^{\mathcal{P}} \ \mathrm{S}_{\lambda,\mathcal{P}}^{\gamma} \mathfrak{L}(z)\right]^{\mathsf{T}}.$$

Were the best subordnant is $\left(\frac{1+Az}{1+z\mathfrak{B}}\right)$.

Theorem 4.2: Consider q(z) as a convax univalent within \mathfrak{U} and q(0) = 1, also $q'(z) \neq 0$, when $\frac{z q'(z)}{q(z)}$ is starlikes univaluet in \mathfrak{U} . Letting $j, v, \eta, \tau \in \mathbb{C}^*$, $\mathcal{Y}, t \in \mathbb{C}$ with $v + \eta \neq 0$, $\frac{vz^p S_{\lambda,p}^{\gamma+1} \mathfrak{L}(z) + \eta z^p S_{\lambda,p}^{\gamma} \mathfrak{L}(z)}{v+\eta} \neq 0, z \in U$. Assume that q fulfill the next condition:

$$\mathcal{R}\left\{\frac{2\chi}{j}(q(z))^2q'(z)\right\} > 0.$$

Let $\mathfrak{L} \in \Sigma_{p}$ and satisfy the condition:

$$\frac{\left[\frac{vz^{p}}{s_{\lambda,p}^{\gamma+1}\mathfrak{L}(z)+\eta z^{p}}\frac{s_{\lambda,p}^{\gamma}\mathfrak{L}(z)}{v+\eta}\right]^{\frac{1}{\tau}}}{v+\eta} \in \mathfrak{R}[q(0),1] \cap \mathfrak{S}.$$
(4.6)

We have $\Delta(z)$ function provided by (3.8), is univaluet in \mathfrak{U} ,

$$Y(q(z))^{2} - t + j \frac{z \, q'(z)}{q(z)} \Delta(z), \tag{4.7}$$

then

$$q(z) \prec \left[\frac{vz^{p} S_{\lambda,p}^{\gamma+1} \mathfrak{L}(z) + \eta z^{p} S_{\lambda,p}^{\gamma} \mathfrak{L}(z)}{v + \eta}\right]^{\frac{1}{\tau}},$$

when the best subordnant is q(z).

Proof. Letting p(z) define on \mathfrak{U} by (3.9). Subsequently, the calculation revealed as:

$$\frac{z \,p'(z)}{p(z)} = \left(\frac{1}{\tau}\right) (1+\gamma) \left[\left(\frac{v z^{p} \, S_{\lambda,p}^{j+2} \,\varrho(z) + \eta z^{p} \, S_{\lambda,p}^{j+1} \,\varrho(z)}{v z^{p} \, S_{\lambda,p}^{j+1} \,\varrho(z) + \eta z^{p} \, S_{\lambda,p}^{j} \,\varrho(z)} - 1 \right) \right]. \tag{4.8}$$

Choosing $\mathscr{D}(\mathfrak{w}) = \mathbb{Y}\mathfrak{w}^2 - \mathfrak{t}$ with $\Phi(\mathfrak{w}) = \frac{j}{\mathfrak{w}}, \mathfrak{w} \neq 0$, it's clearly the $\mathscr{D}(\mathfrak{w})$ in \mathbb{C} and $\Phi(\mathfrak{w})$ in $\mathbb{C}\setminus\{0\}$ are analytics functions, that $\Phi(\mathfrak{w}) \neq 0, (\mathfrak{w} \in \mathbb{C}\setminus\{0\})$. Furthermore, getting

$$\mathfrak{S}(z) = z\mathfrak{q}'(z)\phi(\mathfrak{q}(z)) = \mathbf{j}\frac{z\,\mathfrak{q}'(z)}{\mathfrak{q}(z)},$$

it was discovered $\mathfrak{S}(z)$ is a function that is both starlike and univalant within \mathfrak{U} . Since $\mathfrak{q}(z)$ is convex, we may deduce that

$$\mathcal{R}\left\{\frac{\wp'(q(z))}{\Phi(q(z))}\right\} = \mathcal{R}\left\{\frac{2\chi}{j}(q(z))^2 q'(z)\right\} > 0$$

The hypothesis (4.7) can be equivalently utilised by employing (4.8)

 $\wp(q(z)) + zq'(z)\Phi(q(z)) \prec \wp(p(z)) + zp'(z)\Phi(p(z)).$

A conclusion is thus achieved application of the lemma 2.4.

5. Sandwich Results:

Theorem 5.1: Consider q_1 , q_2 as convax univalant function in \mathfrak{U} , employing $q_1(0) = q_2(0) = 1$ and q_2 fulfils (3.1). Assume $\tau \in \mathbb{C} \setminus \{0\}$, $\mathcal{R}\{\varrho\} > 0$. If $\mathfrak{L} \in \sum_{\wp}$, where

$$\left[z^{p} S_{\lambda,p}^{\gamma} \mathfrak{L}(z)\right]^{\tau} \in \mathfrak{R}[q(0),1] \cap \mathfrak{S}$$

the function $\psi(z)$, specified in equation (3.3), is univalent and fulfills the specified criteria:

$$q_1(z) + \frac{\varrho}{\tau} z q_1'(z) < \psi(z) < q_2(z) + \frac{\varrho}{\tau} z q_2'(z),$$
(5.1)

thus

$$q_{1}(z) \prec \left[z^{p} S^{\gamma}_{\lambda,p} \mathfrak{L}(z) \right]^{\tau} \prec q_{2}(z),$$

when q_1 , q_2 represent the best subordnant and dominent respectively.

Theorem 5.2: Letting q_i denote a pair of univalent convax functions in \mathfrak{U} , through $q_i(0) = 1$, $q_i'(z) \neq 0$, (i = 1, 2). Say it q_1 and q_2 fulfill all the conditions specified in calculations (3.7) and (4.7), respectively. If $\mathfrak{L} \in \sum_{p}$, assume that function \mathfrak{L} fulfills the following condition:

$$\left[\frac{vz^{p} \, s_{\lambda,p}^{\gamma+1} \mathfrak{L}(z) + \eta z^{p} \, s_{\lambda,p}^{\gamma} \mathfrak{L}(z)}{v+\eta}\right]^{\frac{1}{\tau}} \in \mathfrak{R}[\mathfrak{q}(0), 1] \cap \mathfrak{S},$$

where $\frac{vz^{p} S_{\lambda,p}^{\gamma+1} \mathfrak{L}(z) + \eta z^{p} S_{\lambda,p}^{\gamma} \mathfrak{L}(z)}{v+\eta} \neq 0$, and $\Delta(z)$ is univalent in \mathfrak{U} , as indicated by equation (3.8),

$$\chi(q_1(z))^2 - t + j \frac{z \, q_1'(z)}{q_1(z)} \prec \Delta(z) \prec \chi(q_2(z))^2 - t + j \frac{z \, q_2'(z)}{q_2(z)},$$
(5.2)

implies

$$q_1(z) < \left[\frac{vz^{p} S_{\lambda,p}^{\gamma+1} \mathfrak{Q}(z) + \eta z^{p} S_{\lambda,p}^{\gamma} \mathfrak{Q}(z)}{v+\eta}\right]^{\frac{1}{\tau}} < q_2(z),$$

where the best subordnant and dominant q_1 and q_2 , respectively.

References

[1] R. Abd Al-Sajjad and W. G. Atshan, "Certain analytic function sandwich theorems involving operator defined by Mittag-Leffler function, "AIP Conference Proceedings, 2398(2022), 060065, 1-8.

[2] S. A. Al-Ameedee, W. G. Atshan and F. A. Al-Maamori, "On sandwich results of univalent functions defined by a linear operator, "Journal of Interdisciplinary Mathematics, 23(4)(2020), 803-809.

[3] S. A. Al-Ameedee, W. G. Atshan and F. A. Al-Maamori, "Some new results of differential subordinations for higher- order derivatives of multivalent functions," *Journal of Physics: Conference Series*, 1804 (2021) 012111, 1-11.

[4] R. M. Ali, V. Ravichandran, M. H. Khan and K. G. Subramanian, "Differential sandwich theorems for certain analytic functions, "Far East J. Math. Sci., 15(2004), 87–94.

[5] W. G. Atshan and A. A. R. Ali, "On sandwich theorems results for certain univalent functions defined by generalized operators, "*Iraqi Journal of Science*, 62(7) (2021), pp: 2376-2383.

[6] W. G. Atshan and A. A. R. Ali, "On some sandwich theorems of analytic functions involving Noor –Sâlâgean operator, "Advances in Mathematics: Scientific Journal, 9(10)(2020), 8455-8467.

[7] W. G. Atshan and R. A. Hadi, "Some differential subordination and superordination results of p-valent functions defined by differential operator, "Journal of Physics: Conference Series, 1664 (2020) 012043, 1-15.

[8] W. G. Atshan and S. R. Kulkarni, "On application of differential subordination for certain subclass of meromorphically p-valent functions with positive coefficients defined by linear operator, "Journal of Inequalities in Pure and Applied Mathematics, 10(2)(2009), Article 53, 11 pp.

[9] W. G. Atshan, A. H. Battor and A. F. Abaas, "Some sandwich theorems for meromorphic univalent functions defined by new integral operator, "Journal of Interdisciplinary Mathematics, 24(3) (2021), 579-591.

[10] T. Bulboacã, "Classes of first – order differential superordinations, "Demonstration Math., 35(2) (2002), 287-292.

[11] T. Bulboaca, "Differential Subordinations and Superordinations, Recent Results, "House of Scientific Book Publ., Cluj-Napoca, (2005).

[12] S. P. Goyal, P. Goswami and H. Silverman, "Subordination and superordination results for a class of analytic multivalent functions, "Int. J. Math. Math. Sci. (2008), Article ID 561638, 1–12.

[13] I. A. Kadum, W. G. Atshan and A. T. Hameed, "Sandwich theorems for a new class of complete homogeneous symmetric functions by using cyclic operator, "Symmetry,14(10)(2022),2223,1-16.

[14] B. K. Mihsin, W. G. Atshan and S. S. Alhily, "On new sandwich results of univalent functions defined by a linear operator, "Iraqi Journal of Science, 63(12) (2022), pp: 5467-5475.

[15] S. S. Miller and P. T. Mocanu, "Differential subordinations: Theory and Applications, "Series on Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, New York and Basel, (2000).

[16] S. S. Miller and P. T. Mocanu, "Subordinants of differential superordinations, "Complex Var. Theory Appl., 48(2003), 815 - 826.

[17] T. Rosy, S. Varma, "On a subclass of meromorphic functions defined by Hilbert space operator, "Geometry, 2013, Article ID 671826, 4 pages.

[18] M. A. Sabri, W. G. Atshan and E. El-Seidy, "On sandwich-type results for a subclass of certain univalent functions using a new Hadamard product operator, "Symmetry, 14(5)(2022),931,1-11.

[19] S. A. Saleh, A. H. El-Qadeem, and M. A. Mamon, "Inclusion relationships and some integral-preserving properties of certain classes of meromorphic p-valent functions," Acta Universitatis Apulensis, vol. 59 (2019), pp. 63–76.

[20] F. O. Salman and W. G. Atshan, "New results on integral operator for a subclass of analytic functions using differential subordinations and superordinations, "Symmetry, 15(2)(2023), 1-10.

[21] N. Seenivasagan, "Differential Subordination and Superordination for Analytic and Meromorphic Functions Defined by Linear Operator, "Doctoral Dissertation, University Sains Malaysia, (2007).

[22] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, "Differential sandwich theorems for subclasses of analytic functions, "Aust. J. Math. Anal . Appl., 3 (2006), Article 8, 1–11.

[23] T. N. Shanmugam, S. Shivasubramanian and H. Silverman, "On sandwich theorems for some classes of analytic functions, "Int. J. Math. Math. Sci., (2006), Article ID 29684, 1 – 13.

[24] S. D. Theyab, W. G. Atshan, A. A. Lupas and H. K. Abdullah, "New results on higher – order differential subordination and superordination for univalent analytic functions using a new operator, "Symmetry, 14(8)(2022), 1576, 1-12.

[25] S. D. Theyab, W. G. Atshan and H. K. Abdullah, "On some sandwich results of univalent functions related by differential operator, "*Iraqi Journal of Science*, 63(11)(2022), pp: 4928-4936.