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A B S T R A C T 

A modification of the familiar half-Cauchy prior is considered. The modification consists 
of writing the half-Cauchy prior as the product of the gamma and inverse gamma 
distributions plus adding an exponential distribution on the scale parameter. 
Furthermore, we consider this model in the setting of the quantile regression structure. 
Additionally, The Gibbs sampler is calculated for this model. Finally, the properties of 
this model are demonstrated using simulated data and it is shown that this method 
performs very well compared to other distributions.   
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1. Introduction 

Three are many advantages of using quantile regression over mean regression [1,7]. Thus, it is objective to use this 
type of regression with a new type prior. Let 𝑦 = (𝑦1, ⋯ , 𝑦𝑛)𝑇 be a vector of dependent variables, with a 𝑛 × 𝑝 design 
matrix of independent variables 𝑋 = (𝑥1, ⋯ , 𝑥𝑝), a 𝑝 × 1 of vector of unknown regression coefficient 𝛽 = (𝛽1, ⋯ , 𝛽𝑝)𝑇 
and 𝜖 = (𝜖1, ⋯ , 𝜖𝑛)𝑇  where 𝜖𝑖 ∼ 𝑁(0, 𝜎2), then we can write our linear model as 

𝑦 = 𝑋𝛽 + 𝜖,  (1) 

The basic framework of frame work of quantile regression is to express the 𝑤th quantile regression model by defining 
the inverse cumulative distribution function 𝑄𝑦𝑖

(𝑤|𝑥𝑖) of 𝑦𝑖  given 𝑥𝑖  as  
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𝑄𝑦𝑖
(𝑤|𝑥𝑖) = 𝛽0 + 𝑥𝑖

′𝛽. (2) 

where we have chosen a Jefferies prior for the variance 𝜎2. To find the values of the coefficient 𝛽, we use the same 
minimization methods in mean regression but with small modifications by the form  

∑

𝑛

𝑖=1

𝜌𝑤  (𝑦𝑖 − 𝑥𝑖
𝑇𝛽), (3) 

where we define the quantile check loss function of 𝜌
𝑤

 as  

𝜌
𝑤

(𝑥) = 𝑥𝑤 − 𝑥𝐼(𝑥 ≤ 0) (4) 

or written in another way 

𝜌
𝑤

(𝑠) = {𝑤𝑠, 𝑖𝑓  𝑠 ≥ 0, (𝑤 − 1)𝑠, 𝑖𝑓  𝑠 < 0.  (5) 

Instead of using the minimization of (3), we could use the Bayesian way to maximize the likelihood function where 
our error distribution is given by the asymmetric Laplace distribution  

 𝑓(𝜖𝑛|𝜏) = 𝑤(1 − 𝑤)𝜏{ −𝜏𝜌𝑤(𝜖𝑛)}, (6) 

with the probability of the dependent variable 𝑦 is obtained by  

 𝑓(𝑦|𝑋, 𝛽, 𝑤) = ∏

𝑛

𝑖=1

𝑤(1 − 𝑤)𝜏{ −𝜏𝜌𝑤(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)} (7) 

To maximize (7), we will use the work of [9] by writing the asymmetric Laplace distribution as a mixture of an 
exponential distribution with a scaled type of the normal distribution and therefore we get 

 𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝜂1𝑠𝑖 + 𝜂2𝜏−1/2√𝑠𝑖𝑞𝑖  (8) 

 

 𝑠|𝜏 ∼ ∏

𝑛

𝑖=1

𝜏(−𝜏𝑠𝑖)  (9) 

 

 𝑞 ∼ ∏

𝑛

𝑖=1

1

√2𝜋
(−

1

2
𝑞𝑖

2)  (10) 

 

such that 𝑠 = (𝑠1, … , 𝑠𝑛), 𝑞 = (𝑞1, … , 𝑞𝑛)  

 𝜂
1

=
1 − 2𝑤

𝑤(1 − 𝑤)
    𝑎𝑛𝑑    𝜼2 = √

2

𝑤(1 − 𝑤)
. (11) 

Next, we will discuss the properties of this model and derive its relevant algorithm, then compare its result with other 
known models. 
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2. The regression prior 

In this paper, we consider a modification the horseshoe prior proposed in [8,9] presented by the following hierarchical 
form  

𝛽
𝑖
|𝜎2, 𝜔𝑖 ∼ 𝑁(0, 𝜎2𝜔𝑖), 

𝜔𝑖
1/2

∼ 𝐶+(0, 𝛾), 

(12) 

by placing an exponential prior in the parameter 𝛾. We will try to compare the result of this model with a family 
models. We can simplify this equation by writing the above model as 

𝛽
𝑖
|𝜎2, 𝜔𝑖 ∼ 𝑁(0, 𝜎2𝜔𝑖𝛺𝑖𝛾𝑖), 

𝜔𝑖 ∼ 𝐺 (
1

2
, 1), 

𝛺𝑖 ∼ 𝐼𝐺 (
1

2
, 1), 

𝛾
𝑖

∼ 𝐸𝑥𝑝(𝜆), 

(13) 

where we have used the fact that the half-cauchy prior can be written as the product of the gamma and inverse gamma 
distributions. Now, we can write our full hierarchal model as 

 𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝜉1𝑠𝑖 + 𝜉2𝜏−1/2√𝑠𝑖𝑞𝑖  (14) 

 

 𝑠|𝜏 ∼ ∏

𝑛

𝑖=1

𝜏(−𝜏𝑠)  (15) 

 

 𝑞 ∼ ∏

𝑛

𝑖=1

1

√2𝜋
(−

1

2
𝑞𝑖

2)  (16) 

 

 𝛽
𝑖
|𝜔𝑖 , 𝛺𝑖 , 𝜏 ∼ 𝑁(0, 𝜏−1 ∏

𝑁

𝑖=1

𝑧𝑖) (17) 

 

 𝜏 ∼ 𝐺(𝑐0, 𝑑0) (18) 
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Next, we will present a method for updating the hyperparameters that will be added to the Gibbs sampler.  

 

Figure 1. A plot showing check loss function 𝜌
𝑤

 for different values of 𝑤. 

3. The Sampler 

We will derive the conditional posteriors of our prior as follows:  

● For 𝛽  

𝑃(𝛽|𝑋, 𝑦, . . . ) ∝ 𝑃(𝑦|𝛽, . . . )𝜋(𝛽), ∝ {−
(𝑦 − 𝑋𝛽 − 𝜂1𝑣)𝑇𝑆−1(𝑦 − 𝑋𝛽 − 𝜂1𝑠)

2𝜏−1𝜂2
2 }  × {−𝜏

𝛽𝑇𝐷−1𝛽

2
}  

∝ {−
𝜏

2
[−2𝜂2

−2(𝑦 − 𝜂1𝑠)𝑇𝑆−1𝑋𝛽 + 𝜂2
−2𝛽𝑇𝑋𝑇𝑆−1𝑋𝛽 + 𝛽𝑇𝐷−1𝛽]}  

 

(19) 

 

 

with the mean 𝜇 = 𝜂
2
−2𝛴−1𝑋𝑇𝑆−1(𝑦 − 𝜂

1
𝑠), 𝑆 = 𝑑𝑖𝑎𝑔(𝑠1, … , 𝑠𝑛), 𝐷 = 𝑑𝑎𝑖𝑔(𝜔1𝛺1𝛾1, … , 𝜔𝑝𝛺𝑝𝛾𝑝) and variance 𝛴 =

𝜂2
−2𝑋𝑇𝑆−1𝑋 + 𝐷−1. Therefore, we have the normal distribution 

𝛽|𝑋, 𝑦, . . . ∼ 𝑁(𝜇, 𝛴−1𝜎2). (20) 

● For 𝜔𝑖  
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𝑃(𝜔𝑖|𝑋, 𝑦, . . . ) ∝ 𝜋(𝛽𝑖|𝜔𝑖 , 𝛺𝑖 , 𝛾𝑖 , 𝜏)𝜋(𝜔𝑖) ∝
1

√𝜔𝑖

{−
𝜏𝛽𝑇𝐷−1𝛽

2
}  × (𝜔𝑖)

1
2

−1{−𝜔𝑖} ,

∝ (𝜔𝑖)
−1 {−

1

2
[
𝜏𝛽𝑇𝛽

𝛺𝑖

𝜔𝑖
−1 + 2𝜔𝑖]} , 

(21) 

herefore, the posterior conditional distribution of 𝜔𝑖 is given by generalized inverse-gaussian distribution  

 𝜔𝑖|𝑋, 𝑦, . . . ∼ 𝐺𝐼𝐺 (
𝜏𝛽𝑇𝛽

𝛺𝑖
, 2,0).                                                 

(22) 
 

  

● For 𝛺𝑖  

𝑃(𝛺𝑖|𝑋, 𝑦, . . . ) ∝ 𝜋(𝛽𝑖|𝜔𝑖 , 𝛺𝑖 , 𝛾𝑖 , 𝜏)𝜋(𝛺𝑖) ∝
1

√𝛺𝑖

{−
𝜏𝛽𝑇𝐷−1𝛽

2
}  × (𝛺𝑖)

−
1
2

−1 {−
1

𝛺𝑖

}  ,

∝ (𝛺𝑖)
−1−1 {− [

𝜏𝛽𝑇𝑍−1𝛽

2
+ 1] (𝛺𝑖)

−1} , 

(23) 

Thus, we have the inverse-gamma distribution  

𝛺𝑖|𝑋, 𝑦, . . . ∼ 𝐼𝐺 (1,
𝜏𝛽𝑇𝐷−1𝛽

2
+ 1). (24) 

● For 𝛾
𝑖
 

𝑃(𝛾𝑖|𝑋, 𝑦, . . . ) ∝ 𝜋(𝛽𝑖|𝜔𝑖 , 𝛺𝑖 , 𝛾𝑖 , 𝜏)𝜋(𝛾𝑖) ∝
1

√𝛾𝑖

{−
𝜏𝛽𝑇𝐷−1𝛽

2
}  × {−𝜆 𝛾𝑖} ,

∝ (𝛾𝑖)
−

1
2

−1 {−
1

2
[
𝜏𝛽𝑇𝛽

𝜔𝑖𝛺𝑖

(𝛾𝑖)
−1 + 2𝜆 𝛾𝑖]} , 

(25) 

And hence, we have the generalized inverse-gaussian distribution  

𝛾
𝑖
|𝑋, 𝑦, . . . ∼ 𝐺𝐼𝐺 (

𝜏𝛽𝑇𝛽

𝜔𝑖𝛺𝑖

, 2𝜆,
1

2
). (26) 

● For 𝑠𝑖   
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𝑃(𝑠|𝑋, 𝑦, . . . ) ∝ 𝑃(𝑦|𝛽, . . . )𝜋(𝑠|𝜏) ∝
1

√𝑠
{−

(𝑦 − 𝑋𝛽 − 𝜂1𝑠)𝑇𝑆−1(𝑦 − 𝑋𝛽 − 𝜂1𝑠)

2𝜏−1𝜂2
2 }  × {−𝜏𝑠}  

∝ 𝑠
1
2

−1 {−
1

2
[𝜏𝜂2

−2(𝑦 − 𝑋𝛽)𝑇𝑆−1(𝑦 − 𝑋𝛽) + 𝜏 (
𝜂1

2

𝜂2
2 + 2) 𝑠]}  

(27) 

 

again, we get the generalized gaussian distribution  

𝛾
𝑖
|𝑋, 𝑦, . . . ∼ 𝐺𝐼𝐺 (

𝜏(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)2

𝜂2
2 , 𝜏 (

𝜂1
2

𝜂2
2 + 2) ,

1

2
). (28) 

 

● For 𝜏  

𝑃(𝜏|𝑋, 𝑦, . . . ) ∝ 𝑃(𝑦|𝛽, . . . )𝜋(𝛽𝑖|𝜔𝑖 , 𝛺𝑖 , 𝛾𝑖, 𝜏)𝜋(𝜏)

∝ (𝜏𝑛/2 {−
(𝑦 − 𝑋𝛽 − 𝜂1𝑠)𝑇𝑆−1(𝑦 − 𝑋𝛽 − 𝜂1𝑠)

2𝜏−1𝜂2
2 } )                               

× (𝜏𝑝/2 {−
𝛽𝑇𝐷−1𝛽

2𝜏−1
} ) (𝜏𝑛(−𝜏𝑠) )𝜏𝑐0−1{−𝑑0𝜏}  

∝ 𝜏
𝑐0+(

3𝑛+𝑝
2

)−1 {−𝜏 [∑

𝑛

𝑖=1

(𝑦𝑖 − 𝑥𝑖
𝑇𝛽 − 𝜂1𝑠𝑖)

2

2𝜂2
2𝑠𝑖

+ ∑

𝑝

𝑖=1

𝛽𝑖
2

2𝜔𝑘𝛺𝑘𝛾𝑘

+ 𝑑0]}  

(29
) 

 

Therefore, the conditional distribution of 𝜏 is given by the gamma distribution  

𝛾
𝑖
|𝑋, 𝑦, . . . ∼ 𝐺 (𝑐0 +

3𝑛 + 𝑝

2
, ∑

𝑛

𝑖=1

(𝑦𝑖 − 𝑥𝑖
𝑇𝛽 − 𝜉1𝑣𝑖)

2

2𝜉2
2𝑣𝑖

+
𝛽𝑇𝛽

2 ∏𝑁
𝑖=𝑘 𝑧𝑘

+ 𝑑0). (30) 

4. Simulation Study 

In this section, we will show and demonstrate how our model, referred to as Half-Cauchy-Plus, difference in terms of 
prediction with respect to other models such as the horseshoe prior [13], the beta prime prior [10], the regular 
Bayesian quantile regression (Bqr) [12], Bayesian quantile regression with lasso penalty (qr.lasso) [11,15], and 
Bayesian quantile regression with the elastic net penalty (qr.enet) [14]. We will evaluate our methods with the mean 
squared error (MSE), the false positive rate (FPR) and the false negative rate (FNR).  

Example 1 (almost all variables are active) 

In this example, we consider the model where only some variables are not active by setting 𝛽 =
 (4, 0, 6, 2,3, 5, 9, 1, 9, 0,1, 2), 𝑤 = 0.5 and 𝜎2 = 1. The will simulate the covariates independently from 𝑁(0, 𝛴) where 
𝛴 is defined such that it is elements are given by 0.5|𝑖−𝑗| with 𝑖 and 𝑗 being then (𝑖, 𝑗)𝑡ℎ elements using 100 simulations. 
It is clear that the results show that the proposed works better than other distributions in Table 1.  
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Table 1. Results for Example 1. 

 MSE (sd)  FPR (sd)  FNR (sd)   

Half-Cauchy+  1.0359 (0.4842) 0.0000 (0.0000) 0.0400 (0.0749) 

Horseshoe  1.0787 (0.9972) 0.0000 (0.0000) 0.0500 (0.1643) 

Bqr  1.0561 (0.5818) 0.0000 (0.0000) 0.1600 (0.2351) 

qr.lasso  1.1197 (0.7700) 0.0000 (0.0000) 0.1300 (0.5812)   

qr.enet  1.0973 (0.5571) 0.0000 (0.0000) 0.2200 (0.5123)   

 

Example 2 (Most variables are not active) 

In the second example, we will study the opposite case where only few variables are active by setting 𝛽 =
 (7, 0, 0, 0, 0, 0, 1, 0), 𝑤 = 0.5 and 𝜎2 = 1. Similarly, our proposed method gives better results and prediction accuracy 
than other distributions in Table 2 and Figures 1 and 2.   

 

Table 2. Results for Example 2. 

 MSE (sd)  FPR (sd)  FNR (sd)   

Half-Cauchy+  0.2996 (0.1989) 0.3000 (0.6749) 0.0000 (0.0000) 

Horseshoe  0.4392 (0.3245) 0.4000 (0.6992) 0.0000 (0.0000) 

Bqr  1.3473 (0.4414) 1.5000 (1.4337) 0.0000 (0.0000) 

qr.lasso  1.0756 (0.3434) 4.3000 (1.4944) 0.0000 (0.0000) 

qr.enet  1.1541 (0.3593) 4.1000 (1.2867) 0.0000 (0.0000) 
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Figure 1. Trace plots of the data covariates. 

 

Figure 2. Histograms of the data covariates.  

5. Concluding Remarks 

In this paper, we have presented a modification of the Bayesian quantile regression using a half-Cauchy prior with an 
exponential distribution for the scale parameter. To study the properties of our proposition, we have compared our 
modification the regular Bayesian quantile regression [1,2], Bayesian quantile regression with lasso penalty [3], and 
Bayesian quantile regression with the elastic net penalty [4]. Through these simulations, we have showed how this 
models preforms comparatively better than other distributions. 
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