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A B S T R A C T 

 

      In this paper, we studied, peristaltic motion and rotation for Powell - 

Eyring fluid in an asymmetric channel with porous medium. The motion 

equations have been solved by the well-known analytical methods, which 

is the perturbation technique, under the assumption of long wave length 

and low Reynolds number a proximation.           

     The study established that several dimensionless characteristics 

regulate mobility. Each of these dimensionless elements' impact on 

pressure and velocity, as well as the key aspects of pumping 

characteristics and the contour plot for the stream lines and trapping, were 

examined. 

MSC.. 

https:// 10.29304/jqcsm.2023.15.41353

1. Introduction 

The area of physics known as fluid mechanics is focused on the forces acting on and within fluids (liquids, 
gases, and plasmas). It has uses in many fields, including biology, geophysics, oceanography, meteorology, 
astrophysics, and mechanical, aeronautical, civil, chemical, and biomedical engineering. Peristaltic motion is a 
series of contractions and diastoles that push fluid along the path, making it easier to move. Peristalsis is a natural 
property of smooth muscles and tubes that carry fluid through vessels as a result of motor activity in numerous 
biological systems. The passage of urine from the kidney to the bladder, the movement of food through the 
gastrointestinal tract, and the migration of eggs through the fallopian tube are all examples of this movement [1]. 
Engineers who measure viscosity and then use the generalized Newtonian fluid model to describe flow are 
particularly interested. A few important studies for the peristaltic flow of Powell–Eyring fluid have indeed been 
discovered through studies, the suggested that nanoparticles be introduced to fluids to increase heat transfer 
abilities of these base liquids [2]. The influence of heat and mass transfer on the peristaltic transport of viscoelastic 
fluid in presence of a magnetic field through a symmetric channel with a porous medium has been investigated 
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[3]. Hatem has studied the analysis of the effect of rotation on the analysis of heat transfer by mixed convection 
for the peristaltic transport of a viscous liquid in an asymmetric channel [4], and also analyzed the effect of rotation 
and magnetic field on the analysis of heat transfer by mixed convection of a viscous liquid through a porous 
medium in an asymmetric [5]. The influence of heat and mass transfer on the peristaltic transport of viscoelastic 
fluid in presence of a magnetic field through a symmetric channel with porous medium has been investigated [6]. 
The influence of heat and mass transfer on peristaltic flow for MHD Powell-Eyring fluid with slip condition was 
discussed [7]. The influence of slip conditions on Eyring-Powell fluid peristaltic flow was investigated [8]. Non-
Newtonian fluids are governed by the Powell-Eyring fluid model. The research is carried out under the assumption 
of a long wavelength and a low Reynold number. The wave frame was used to develop the flow's governing 
equation. Closed expressions for stream function, Rotation, velocity axial, and pressure gradient were determined, 
as well as numerical integration of pressure rise per unit wave using series approximation. Finally, a graphical 
analysis was performed to determine. This study was done by plotting graphs by using "MATHEMATICA". 

2. Mathematic Formulation   

      Consider the flow of an incompressible Powell-Eyring fluid in a two-dimensional asymmetric channel of 

width (d + d').  The flow is caused by an infinite sinusoidal wave line moving forward and with constant velocity 

(c) along the channel's walls. An asymmetric channel is formed by varying wave amplitudes, phase angles, and 

channel widths. 

The geometries of the walls are modeled as 

h1(x, t) = d − a1 sin[
2π

λ
(x − ct)] upper wall,                                     (1) 

h2(x, t) = −d′ − a2 sin[
2π

λ
(x − ct) + ∅] lower wall.                          (2) 

        where (a1) and (a2) denote the amplitudes of the wave, (d) and (d′) represents the width of the channel, (λ) 

designates the wavelength, (X) represents the direction of the propagation of wave and (t) stands for the time. The 

phase difference (∅ ) fluctuates within the range (0 ≤ ∅ ≤ 𝜋)  in which (∅ = 0) corresponds to asymmetric channel 

with waves out of phase and (∅ = 𝜋) stands for the waves in phase. Further (a1), (a2), (d), (d′), and (∅) satisfy the 

condition: 

 a1
2 + a2

2 + 2a1a2 cos 𝑖(∅) ≤  (d + d′)2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Cartesian Dimensional Asymmetric Channels Coordinates. 
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     "It is further assumed that there is no motion of walls in the longitudinal direction. This assumption restricts 

the deformation of the walls, it does not imply that the channel is rigid along the longitudinal motions. 

3. Basic Equations 

        The fluid is obeying the Powell-Eyring model and the Cauchy stress tensor (τ̅) of it is given as follows. 

τ ̅ = −PI +  S̅ ,                                                                                           (3) 

S ̅ =  [µ +  
1

βγ̇
 sinh−1  (

γ̇

c1
)] A11,                                                               (4) 

γ ̇ = √
1

2
tras(A11)2  ,                                                                                 (5)  ”. 

  "The terms sinh−1 is approximated as" 

"sinh−1  (
γ̇

c1
) =

γ̇

c1
−

γ̇3

6 c1
3 , |

γ̇5

 c1
5| ≪ 1".                                                     (6) 

      Where (𝑆 ̅) express the extra stress tensor, (I) the identity tensor, ∇̅=(∂X̅ , ∂Y ̅, 0) the gradient vector, (β,c1) 

the martial parameters of Powell-Eyring fluid, ( P̅) the pressure of the fluid and (µ) the dynamic viscosity. 

s̅x̅x̅ = 2( 𝜇 + 
1

𝛽 𝑐1
)u̅x̅ − 

1

3 𝛽 𝑐1
3 [2u̅x̅

2 + (v̅x̅ + u̅y̅)
2

+ 2v̅2
y̅]u̅x̅ ,                      (7) 

s̅x̅ y̅= s̅ y̅x̅ =( 𝜇 +  
1

𝛽 𝑐1
)(v̅x̅ + u̅y̅) − 

1

6 𝛽 𝑐1
3 [2u̅x̅

2 + (v̅x̅ + u̅y̅)
2

+ 2v̅2
y̅](v̅x̅ + u̅y̅),                 (8)                                                            

s̅y̅y̅ = 2( 𝜇 + 
1

𝛽 𝑐1
)v̅y̅ −  

1

3 𝛽 𝑐1
3 [2u̅x̅

2 + (v̅x̅ + u̅y̅)
2

+ 2v̅2
y̅]v̅y̅ .                       (9)            

4. The Governing Equation 

        The continuity equation may be used to illustrate the fundamental equations of motion in a peristaltic 

transport of Powel-Eyring fluid in experimental frame (x ̅, y ̅): 

∂ u̅

∂x̅
+

∂ v̅

∂y̅
= 0                                                                                                                      (10)  

The x ̅– part of the moment equation is: 

ρ ( 
∂ 

∂t̅
+ u̅

∂ 

∂x̅
+ v̅

∂ 

∂y̅
) u̅ − ρΩ (Ωu̅ + 2

∂ v̅

∂t̅
) =  −

∂p̅

∂x̅
+

∂ 

∂x̅
s̅x̅x̅ +

∂ 

∂y̅
s̅x̅y̅ −

𝜇

k̅
u̅         (11)  

The y ̅– part of the moment equation is: 

ρ ( 
∂ 

∂t̅
+ u̅

∂ 

∂x̅
+ v̅

∂ 

∂y̅
) v̅ − ρΩ (Ωv̅ − 2

∂ u̅

∂t̅
) =  −

∂p̅

∂y̅
+

∂ 

∂x̅
s̅x̅y̅ +

∂ 

∂y̅
s̅yy̅ −

𝜇

k̅
v̅          (12)  

      Where the (ρ) , ( p̅), ( μ), (k̅), (B0),(Ω) is constant density, pressure, dynamic viscosity, permeability 

parameter, rotation. The relationship between coordinates, velocity and pressure in laboratory frame (X, Y) and 

wave frame (�̅�, �̅�̅) is provided by the following transformations.                                                                

     The flow in the laboratory frame is erratic (x ̅, y ̅). Therefore, with a coordinate system traveling at the speed 

of a wave (c) in wave frame (X, Y), the motion is steady. The following expressions 
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x̅ = X̅ − ct̅ , y̅ = Y ̅, u̅(X̅, Y̅) = U̅(x̅, y̅) − c , v̅(X̅, Y̅) = V̅(x̅, y̅), P̅(X̅) = P̅(x̅, t̅)                                          (13) 

        where  u, v and p represent the velocity components and pressure in the wave frame. 

Set up the following non-dimensional quantities to perform the non-dimensional analysis: 

x =
1

λ
x̅ y =

1

d
y̅ , u =

1

c
u̅ , v =

1

δ c
v̅ , t =

 c

λ
t̅ , δ =

d

λ
 , Re =

ρ c d 

 μ 
, Da =

 k̅

d2 , sxx =
λ

μ c
s̅x̅x̅, sxy =

d

μ c
s̅x̅y̅  ,         

syy =
d

μ c
s̅y̅y̅ , 𝑀 = √

σ𝐵0
2𝑑2

μ 
, h1 =

1

d
h1
̅̅ ̅ ,   h2 =

1

d
h2
̅̅ ̅ ,   β = 𝑀2 +

1

 Da 
  , R𝑛 =

𝜏0𝑑

 μ𝑐
  p =

𝑑2

λμ c
p̅ ,          (14)                                                                                                                                                                            

where (δ) wave number, (Re) Reynold number, (M) Magnetic field, (∅) phase difference, (Da) Darcy number.                                                                                                                      

    Then, in view of equation (14), Equations (1), (2), and (7) to (12) take the form: 

The equation (1) becomes: 

 h1(x, t) = 1 − a sin(2πx ), a=
a1

d
,                                                                                                             (15) 

The equation (2) becomes: 

 h2(x, t) = −d∗ − b sin( 2πx + ∅) , d∗ =
d′

d
, b =

a2

d
 .                                                                              (16) 

The equation (7) becomes: 

 sxx = 2(w + 1)
∂u

∂x
− 2A [2δ2 ( 

∂u

∂x
 )

2
+ (δ2  

∂v

∂x
+

∂u

∂y
 )

2
+ 2δ2 ( 

∂v

∂y
 )

2
]

∂u

∂x
 .                                           (17) 

The equation (8) becomes: 

 sxy = (w + 1) (δ2  
∂v

∂x
+

∂u

∂y
 ) − A [2δ2 ( 

∂u

∂x
 )

2
+ (δ2  

∂vl

∂x
+

∂u

∂y
l )

2
+ 2δ2 ( 

∂v

∂y
 )

2
] (δ2  

∂vl

∂x
+

∂u

∂y
l).       (18)                                                            

The equation (9) becomes:  

 syy = 2(w + 1) δ
∂v

∂y
− 2Aδ [2δ2 ( 

∂u

∂x
 )

2
+ (δ2  

∂v

∂x
+

∂u

∂y
 )

2
+ 2δ2 ( 

∂v

∂y
 )

2
]

∂v

∂y
 .                                       (19) 

The equation (10) becomes: 

   
∂cu

∂λx
+

∂cδv

∂dy
= 0 , 

Multiply by (
𝑑

𝑐
), we get: 

    
∂u

∂x
+

∂v

∂y
= 0 .                                                                                                                                            (20)                                                                                                                                                            

The equation (11) becomes 

Re δ(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
) −

𝜌𝑑2

𝜇
𝛺2𝑢 − (2𝛺𝛿2𝑅𝑒)(

𝜕𝑣

𝜕𝑡
) = −

∂p

∂x
+ δ2 ∂

∂x
sxx +

∂

∂y
sxy −

1

Da
u

                        (21)                                                                       

And then equation (12) become   

Re δ3(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
) −

𝜌𝑑2

𝜇
𝛿2𝛺2𝑣 + (2𝛺𝛿2𝑅𝑒)(

𝜕𝑢

𝜕𝑡
) = −

∂p

∂y
+ δ2 ∂

∂x
sxy + δ

∂

∂y
syy − δ2 1

Da
v . 

         (22)                                                                                    

The relations establish a connection between the velocity components and stream function (ψ): 

u = 𝜕𝜓 𝜕𝑦̅⁄   ,       v = − 𝜕𝜓 𝜕𝑥⁄                                                                                                                                 (23)          

Substituted equation (23) in equations (17), (18), (19), (20), (21), (22) respectively 

 sxx = 2(w + 1)
∂2ψ

∂x ∂y
− 2A [2δ2 ( 

∂2ψ

∂x ∂y
 )

2

+ (−δ2  
∂2ψ

∂x2 +
∂2ψ

∂y2  )
2

+ 2δ2 (− 
∂2ψ

∂x ∂y
 )

2

]
∂2ψ

∂x ∂y
                      (24)       

sxy = (w + 1) (−δ2  
∂2ψ

∂x2 +
∂2ψ

∂y2  ) − A [2δ2 ( 
∂2ψ

∂x ∂y
 )

2

+ (−δ2  
∂2ψ

∂x2 +
∂2ψ

∂y2  )
2

+ 2δ2 (− 
∂2ψ

∂x ∂y
 )

2

] (−δ2  
∂2ψ

∂x2 +

∂2ψ

∂y2  )  ,                                                                                                                                                          (25) 
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 syy = −2(w + 1)δ
∂2ψ

∂x ∂y
− 2Aδ [2δ2 ( 

∂2ψ

∂x ∂y
 )

2

+ (−δ2  
∂2ψ

∂x2 +
∂2ψ

∂y2  )
2

+ 2δ2 (− 
∂2ψ

∂x ∂y
 )

2

] (− 
∂2ψ

∂x ∂y
)           

                                                                                                                                                                       (26) 

∂2ψ

∂x ∂y
−

∂2ψ

∂x ∂y
= 0,                                                                                                                                           (27) 

Re δ(
∂3ψ

∂x ∂y2 −
∂3ψ

∂x ∂y2) −
𝜌𝑑2

𝜇
𝛺2 𝜕𝜓

𝜕𝑦
− (2𝛺𝛿2𝑅𝑒)(

𝜕2𝜓

𝜕𝑡𝜕𝑥
) = −

∂p

∂x
+ δ2 ∂

∂x
sxx +

∂

∂y
sxy −

1

Da
 
∂ψ

∂y
       

                                                                                                                                                                       (28)                                                     

 Re δ3(
∂3ψ

∂x2 ∂𝑦
−

∂3ψ

∂x2 ∂𝑦
) −

𝜌𝑑2

𝜇
𝛿2𝛺2 𝜕𝜓

𝜕𝑥
+ (2𝛺𝛿2𝑅𝑒)(

𝜕2𝜓

𝜕𝑡𝜕𝑦
) = −

∂p

∂y
+ δ2 ∂

∂x
sxy + δ

∂

∂y
syy − δ2 1

Da

∂ψ

∂x
        (29) 

The dimensionless boundary conditions in the wave frame are"[9]:  

ψ =
F

2
 , 

∂ψ

∂y
= −1 at y= h1,                                                                                                                             (30) 

ψ =
−F

2
 , 

∂ψ

∂y
= −1at y= h2.                                                                                                                            (31) 

5. solution of the Problem   

      It is impossible to provide a precise answer for each of the random parameters involved. We take 

perturbation strategy to get the answer. We go beyond treating the disorder 

ψ = ψ0 + A ψ1 + O(A2), 

F = F0 + AF1 + O(A2),                                                                                                                               (32) 

       Substitute the terms (32) into equations (23)-(29), and the equations for the boundary conditions (31) (δ≪1), 

We can create the following system of comparable powers (A) by equating the coefficients of the higher order 

components it entails because the power of (δ) is lower and inconsequential. 

From equation (25) and equation (28) we get:       
dp

dx
= 𝜉 ψy +  ψyyy −  𝜂A 

∂

∂y
 (ψyy)3 − βψy ,                                                                                           (33) 

Form equation (2-43) we get:  

  −
∂p

∂y
= 0                                                                                                                                                    (34) 

0 = 𝜉 ψyy +  ψyyyy − 𝜂 A 
∂2

∂y2  (ψyy)3 −  βψyy  .                                                                                     (35) 

𝜉 =

(Ω2d2ρ)

μ

w+1
  ,                                                                                                                                                (36) 

 β =
1

Da

w+1
                                                                                                                                                      (37)  

  η =  
1

w+1
 ,                                                                                                                                                     (38) 
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ξ ψ0yy + A ξ ψ1yy + ψ0yyyy + Aψ1yyyy − ηA
∂2

∂y2
 (ψ0yy

)3 − β ψ0yy − A β ψ1yy = 0 

                                                                                                                                                                      (39) 

5.1. Zero Order System 

      When the terms of order (A) are negligible in the zeroth order system, we get: 

 𝜉 ψ0yy + ψ0yyyy − β ψ0yy = 0,                                                                                                                 (40) 

Such that  

ψ0 =
F0

2
 , 

∂ψ0

∂y
= −1 at y= h.1  and  

ψ0 = −
F0

2
 , 

∂ψ0

∂y
= −1 at y= h.2 .                                                                                                                  (41) 

5.2. First order system 

 𝜉 ψ1yy + ψ1yyyy − 𝜂
∂2

∂y2  (ψ0yy
)3 −  β ψ1yy = 0,                                                                                     (42) 

 𝜉 ψ1yy + ψ1yyyy −  β ψ1yy = 𝜂 
∂2

∂y2  (ψ0yy
)3,                                                                                           (43) 

 ψ1 =
F1

2
 , 

∂ψ1

∂y
= −1 at y= h.1     and  

ψ1 = −
F1

2
 , 

∂ψ1

∂y
= −1 at y= h.2 .                                                                                                                   (44)         

 

And get the final equation for stream function by solving the associated zeroth and first order systems: 

 ψ = ψ0 + A ψ1,                                                                                                                                         (45)  

  

6. Results and Discussion 

   To investigate the impact of physical factors like Effect of, Darcy number (Da), Reynolds number (Re), 
material fluid parameters (A, w), Rotation (Ω), Porous medium parameter (k), Density (ρ), Viscosity (μ), pressure 
rise (∆p), the plotted axial velocity (u), phase difference (∅) and stream function (ψ) in figures. 2-10 are 
exemplified by software "MATHEMATICA". 

 

6.1. Velocity Distribution (u) 

        Figures 2 demonstrate how the axial velocity (𝑢) value can vary with respect to y for various rotational 

values (Ω), Darcy number (Da), Viscosity (μ), material fluid parameter (w,A), density (𝜌) and amplitude ratio 

(∅). These figures (2) show that the maximum velocity is consistently found close to the channel's center and 

that All instances of the velocity profiles are parabolic. The figures show that the axial velocity decreases at the 

two walls of the channel and increases at the center of the channel as (Ω), (Da), (A), (𝜌), (∅) and (d*) increase. 
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We notice that when (w) increases, the axial velocity decreases along the channel. When the viscosity (μ) 

increases, we notice that the axial speed is constant.                                                   

6.2. pressure gradient 

       Graphical representation of the impact of relevant parameters on the pressure gradient (dp/dx) is possible 

figures 3. We notice in the figures that when the values of (Da), (Ω), (𝜌) and (w) increase, they decrease at the 

beginning of the left wall and then begin to increase in the middle of the channel as well as at the right wall of 

the channel. In the two figures, when the value of (A) increases and (d*) we notice that the pressure gradient 

increases along the channel. When the value of (∅) increases, we notice different disturbances in the rise and fall 

of pressure.                                                                                                       

6.3. Pressure Rise (∆p) 

         Figures 4 display the various pressure increases in the wave outline's capability of volumetric stream rate 

for various Darcy number (Da), Rotation (Ω), material fluid parameter (w, A), density (𝜌) and amplitude ratio 

(∅). The relationship between a dimensionless mean flow rate (Q1) and a non-dimensional average pressure 

rises per wavelength will be illustrated in this paragraph along with variations in the relevant parameters in (∆p). 

Figures shows the effect of increasing the parameter (Da) and (A) on (Δ𝑃) reveals that pressure rice per wave 

length Δ𝑃 increase in magnitude in all regions.). Figure shows the effect of increasing the parameter (Ω), (β_1) 

and (∅) on (Δ𝑃) reveals that pressure rice per wave length Δ𝑃 increase in magnitude in all regions. Figures 

(Ω)and (𝜌), the pumping rate increases in a retrograde region where (∆p > 0, Q1 > 0) and lowers in a cop 

umping zone where (∆p <0, Q1< 0), according to the graph. Figure shows the pressure rice per wave length Δ𝑃 

decreases in magnitude for fixed values of the (w), (∅) and (d).                                                                      

6.4. Trapping phenomena 

         An interesting component happens in peristaltic flows closed movement strains lure bolus, or the extent of 

fluid called bolus, in the channel tube close to the partitions, and this trapping bolus advances along the path of 

the wave. In figures 5 –10 Plots of the stream lines are shown at different values of (Ω), (Da), (w), (A) and (d*). 

Figures it shows a shrinking of the trapped bolus when the (Ω), (Da), (d*) and (A) is increased. Figures the 

exhibits that the trapping exists in the focus of the channel, an increase in (w) and (∅) increases the size of 

bolus.        
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Figure 2. Variation of Ω, Da, A, w, ∅, ρ, d∗, and μ on the axial velocity (𝑢) with respect to 𝑦̅. 
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  Figure 3. Variation of pressure gradient whit different parameter Ω, Da, A, w, ∅, ρ, d∗ 

.. 
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Figure 4.  Variation of Ω, Da, A, w, ∅, ρ, d∗ on the pressure rise per wavelength (Δ𝑝) against the 

volume flow rate 𝑄1 

.. 
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7. Conclusions 

        The peristaltic motion of Powell - Eyring fluid in an asymmetric channel with a porous material was 

examined in this study to determine the rotation on it. By choosing peristaltic waves with various ranges, phases, 

low Reynolds numbers, and wavelengths, the asymmetric duct is created. The expression for the axial velocity, 

pressure, flow function, and current density were also obtained using an application of the perturbation method. 

Graphs are used to illustrate the findings as follows : 

1- Velocity is a decreasing function of the material parameter w whereas it is a increasing function of the Darcy 

number Da, rotation Ω and ∅. 

2- The influence of relevant parameters on pumping rate varies depending on the pumping region 

3- The pressure rise enhances above the critical value of flow rate with higher values of Darcy number and 

rotation. 

4- For higher values of Ω, Da and A, the size of the trapped bolus decreases while it increases with increasing w 

and ∅. 
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