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A B S T R A C T 

 

The classical regression model is very sensitive to econometrics problems, one this 
econometrics problem is Multicollinearity, to overcome this problem ,we will use two 
solutions: Firstly  via using  principal component regression and second solution via using 
quantile regression. When mix between these methods together give as robust model against 
the  Multicollinearity problem. The simulation scenario and real data using in this study. 
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1. Introduction 

In empirical applications, regression is by far the most often used  statistical methodology in a variety of filed , from 

the social and economic sciences to the ecological sciences. agricultural economics sciences and so on. Many 

regression models  have been proposed ,  each model deal with different types of data,   in order to provide as   ease 

interpretation and the  availability of tools and strategies suitable to and validity of assumptions. But sometime, these 

assumption is not satisfied, especially, with the era of big data, in other hand, the used of numerous independent 

variables give us a more accurate view on the dependent variable, but  engenders redundant information deriving 

because of the correlation between independent variables . The Multicollinearity  between independent variables is 

one of the main problems come  with multiple linear regression, this problem is affects accuracy estimation of 

regression parameters , standard errors, explanation accuracy. there are several are the proposals to address the 

problem. such as partial least squares regression ,principal component regression and  ridge regression.  

https://www.google.com/search?rlz=1C1FNES_enIQ1044IQ1044&q=multicollinearity&spell=1&sa=X&ved=2ahUKEwj_peS_78_-AhUtQvEDHazOD9QQkeECKAB6BAgIEAE
https://www.google.com/search?rlz=1C1FNES_enIQ1044IQ1044&q=multicollinearity&spell=1&sa=X&ved=2ahUKEwj_peS_78_-AhUtQvEDHazOD9QQkeECKAB6BAgIEAE
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The quantile regression models have a good properties compared with other regression models. quantile regression 

models are belong to a robust  regression models family (Koenker and Geling, (2001). quantile regression models 

does not require any supposition about the random error  distribution. But quantile regression models are not robust 

against the econometrics problems. To overcome these econometrics problems via  principal component method 

associated with quantile regression model. Our contribution in this paper , we use lasso quantile principal component 

regression ,which it reduced the many components to few them, which it have  high  explanatory power . 

The our paper is organized as follows: The Multicollinearity  have been offered in section 2 . In section 3,  Offers Lasso 

quantile principal component regression. In section 4  Offers Simulation approach with two simulation examples and 

real dataset. Brief the conclusions and recommendations have been presented  in section 5. 

2. General Concept of Multicollinearity   

In the analysis of multiple linear regression, Multicollinearity has been a serious problem, the estimation methods 

may result in high variance in the estimates of the regression coefficients in the existence of Multicollinearity. When 

two or more independent variables are perfectly or highly correlated, a multiple regression model suffers from 

Multicollinearity, which it is a significant issue. There are many  reasons for the occurrence of the Multicollinearity 

problem, The tendency of some economic variables to change due to the time factor, Using some time-lagging 

variables as explanatory variables in the model. It have been effecting on regression model , with the Multicollinearity 

problem ,the standard errors of parameters are high may be infinite and therefore, the confidence intervals are high 

to population parameters, because of the parameters variance also high and infinite . Also with the Multicollinearity 

problem, the ordinary least square estimation was unbiased estimated. Some parameters estimation are appear  with 

different signs . Also with the Multicollinearity problem, increases the probability of making a type II error . Also with 

the Multicollinearity problem, the value of determination coefficient R2 and is fake. Also with the Multicollinearity 

problem, the t − test of regression coefficients are unclear. There are many methods to treatment this problem , Some 

of them is classical methods ,and others methods are depend on statistical theory. 

3. Lasso Quantile Principal Component Regression 

3.1. Principal Component Regression  

The multiple regression model is focus on estimation the relationship among with on dependent variable and a set of 
independent variables as according  the formula(Eberly, L. E 2007): 

yi = β0 + β1X1 + β2X2 + ⋯ + βkXk + εi,                 (1)             

where yi  , (i = 1,2 … … n) is dependent variable ,( X1, X2,   … Xk ) are  independent variables (β0, β1, β2 … … βk) are 
unknown parameters , εi, (i = 1,2 … . . n ) random error term is distributed as normal distribution with mean (0) and 
variance (σ2)  εi~N(0, σ2). The model showed  in equation (1) may be suffered from many econometrics problem, the 
Multicollinearity one of these econometrics problem. To overcome this problem  principal component regression 
model (P.C.Reg) have been used (Ergon, R. et al  (2014)). 

The P.C.Reg is focus on transformation of  correlated independent variables to orthogonal compound (uncorrelated) 
as following  

P. C = Xθ                                                     (2) 
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where(P. C) is matrix of principal component have degree (n. k) , that it full rank . θ is orthogonal matrix from standard 
characteristic vectors that corresponding the Eigen factor for information matrix (XtX) ,that the matrix θ have degree 
(k. k) and its row  γi (i = 1, … … . . n) and its column θj(j=1….,k). this matrix is necessary to making information matrix  
(XtX) diagonal matrix , under the assumption that Eigen value  for(XtX)( sutter,j.M et al (1992). 

λ1 ≥ λ2 ≥ ⋯ ≥ λq 

We can  reformulation the model in equation (1) via  principal component (P.C) where the dependent variable (yi) is 
become as function of orthogonal (P.C) instead of independent variables (Xs),it interconnected among themselves. 
We know the matrix θ is orthogonal (θtθ = θθt = 1) . 

(P. C = Xθ)  ∗ θt 

(P. C)θt = Xθθt 

X = (P. C)θt            

yi = (P. C)θtβ + εi,    

Let θtβ = φ  the above model is become the following formula : 

yi = (P. C)φ + ε,                                   (3 )   

The model in equation (3) is represented the relationship between dependent variable  (yi) and principal component 
(P.C). The model in equation (3) linked with quantile regression. 

 

3.2. Lasso Quantile Principal Component Regression 

Koenker and Bassett (1978) are introduced  attractive regression model  named  quantile regression model , it is 
applied in many sciences such as Microarray study agricultural economics (Kostov and Davidova,(2013) , (Wang and 
He, (2007),  ecological studies (Cade and Noon,( 2003), and so on. The quantile regression is suitable  with many 
applied study because, it is  not requires any suppositions compared with classical regression model and it is very 
robust against outliers dataset. The model of quantile regression  can be written as: 

yi = xi
Tβτ + εi,               τ ∈ (0,1),                                              (4) 

where yi is dependent variable, where xi
T is a 1 × k of independent variables  , βτ is a k × 1 of unknown parameters 

vector and τ is the quantile level. 

 when mix the model in equation (3) and equation (4) , we will obtaining the  Quantile Principal Component 
Regression (P.C.Q.Reg) can be written as: 

yi = (P. C)φτ + ε,                                   (5 )   

 where yi is independent variable (P. C) is the principal component φ is unknown parameters of model in (5) , τ is 
quantile level 0 < τ < 1. That the coefficients of φτwhich are belong to P.C.Q.Reg model can be estimated by:    

   ∑ 𝛒𝛕(𝐲𝐢 − (𝐏. 𝐂)𝐭𝛗𝛕)𝐧
𝐢=𝟏𝛗𝛕

𝐦𝐢𝐧                                                (𝟔)  

Since check(loss) function show in equation (6) is not differentiable at (0) point ,see below figure. But (Koenker, 
(2005) explain the minimization of (6) via used a linear programming algorithm (Koenker and D’Orey, (1987).  
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Fig. 1 - The 
check(loss) function at 𝛉(𝟏) = 𝟎. 𝟏𝟎 (red line), 𝛉(𝟐) = 𝟎. 𝟑𝟓 (blue line), 𝛉(𝟑) = 𝟎. 𝟔𝟓 (green line) and 𝛉(𝟒) =
𝟎. 𝟔𝟓 (black line) 

One significant issue in building a regression models are the selection of the active independent variables. The variable 
selection procedure help  to exclude unimportant independent variables this reflected on  the forecasting accuracy . 
And it help to getting a good interpretation about important independent variables (Alhamzawi et al  2013). Newly, 
there has been big attention on case of sparse methods to shrink inefficient regression coefficients toward zero 
exactly. For example, Lasso (Tibshirani, (1996)). The lasso quantile  principal component quantile  (L.P.C.Q.Reg) 
model can be estimated by:    

   ∑ ρτ(yi − (P. C)tφτ)n
i=1φτ

min   + λ‖φ‖                                                      (7)  

Where λ(λ ≥ 0) is the shrinkage parameter. Lasso quantile principal components regression model can be estimated 
through building a good algorithm, after taking the mean for thousands. 

4. Simulation study 

The performance of the our proposed method lasso quantile principal component quantile referred to as (L.P.C.Q.Reg) 
is inspected by simulations scenario. L.P.C.Reg  is compared with a set of existing methods. 

First method that proposed by (Davino,C (2022)) “Handling Multicollinearity in quantile regression through the use 
of principal component regression” referred to as  (Q.P.C Reg).  

And second method is proposed by Kyung, M. (2021) “Bayesian analysis of quantile principal component regression 
model” referred to as (B.Q.P.C Reg). 

We employed three quantile levels that are (τ = 0.15, τ = 0.55 and τ = 0.95). For each simulation scenario, and also 
five  distributions of random error term have been used .  εi~N(0,1), andεi~standard Laplace (0,1):  and we will used 
five different correlation level (ρ = 0.66, ρ = 0.70, ρ = 0.86, ρ = 0.90 and ρ = 0.95 )For each simulation, we run 
11000 iterations and the first 1000 iterations were removed as burn in, we run one hundred simulations (r). Root 
mean square error (RMSE) have been used ,it colucleted by the following formulation  , where  

RMSE=√(xTβ̂-xTβtrue)
2

r
.  In our paper , we will used two examples of simulation scenario. 

4.1 Simulation Example One  

In this simulation scenario, we study the performance of the our proposed method with case of very sparse models. 
In particular, we consider the true models as in follows: 

yi = x1i + +εi,           i=1,2,….100 

We simulate seven explanatory variables from a multivariate normal distribution  with mean zero and cov(xi, xj) =
0.5|i−j|. Thus the true coefficients of independent varibles, including the intercept term, are β = (1,0,0,0,0,0,0)  

The results that listed in table -1 -  we see the root mean square error (RMSE) is computed via our proposed method 
(L.P.C.Q.Reg) is much smaller than  root mean square error (RMSE) is computed by other two methods (Q.P.C Reg)  
and (BQ.P.C Reg). This mean theour proposed method have a good performance compared with other method. 
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Table 1- Root Mean Square Error for the simulation studies for Simulation Example One. 

𝛆𝐢~𝐍(𝟎, 𝟏) 

𝛕 = 𝟎. 𝟏𝟓  

𝛒 = 𝟎. 𝟗𝟓 𝛒 = 𝟎. 𝟗𝟎 𝛒 = 𝟎. 𝟖𝟔 𝛒 = 𝟎. 𝟕𝟎 𝛒 = 𝟎. 𝟔𝟔 
RMSE RMSE RMSE RMSE RMSE Comparison Methods 
0.832 0.983 0.979 1.313 1.562 Q.P.C Reg 

0.742 0.884 0.892 1.259 1.313 BQ.P.C Reg 
0.644 0.829 0.872 1.131 1.114 L.P.C.Q.Reg 

τ = 0.55 

0.784 0.884 0.986 1.389 1.403 Q.P.C Reg 

0.763 0.852 0.951 1.374 1.305 BQ.P.C Reg 

0.705 0.844 0.905 1.223 1.323 L.P.C.Q.Reg 

                                    τ = 0.95  

0.552  0.572  0.882 1.363 1.236 Q.P.C Reg 

0.532  0.565  0.779 1.114 1.234 BQ.P.C Reg 

0.527  0.537  0.683 1.092 1.107 L.P.C.Q.Reg 

      
εi~standard Laplace (0,1) 

 
τ = 0.15 

0.575  0.641 0.822 0.923 0.987 Q.P.C Reg 

0.565  0.626 0.801 0.912 0. 863 BQ.P.C Reg 

0.533  0. 538 0.759 0.893 0.894 L.P.C.Q.Reg 

τ = 0.55   

0.552 0.530 0.581 0.735 0.752 Q.P.C Reg 

0.522 0.514 0.536 0.621 0.713 BQ.P.C Reg 

0.482 0.473 0.519 0.635 0.652 L.P.C.Q.Reg 

τ = 0.95 

0.532 0.520 0.523 0.671 0.659 Q.P.C Reg 

0.491 0.513 0.492 0.633 0.623 BQ.P.C Reg 

0.453 0.472 0.449 0.525 0.592 L.P.C.Q.Reg 

 

4.2 Simulation Example two  

  In this simulation scenario, we study  the performance of the our proposed method  with case of  dense models. In 
particular, we consider the true models as in follows 

yi = 0.85x1i + 0.85x2i+0.85x3i + 0.85x4i + 0.85x5i + 0.85x6i + 0.85x7i + εi,                     i=1,2,….100 

We simulate seven explanatory variables from a multivariate normal distribution  with mean zero and cov(xi, xj) =
0.5|i−j|. Thus the true coefficients of independent varibles, including the intercept term, are β =
(0.85,0.85,0.85,0.85,0.85,0.85,0.85)  

The results that  listed in table -2 -  we see the root mean square error (RMSE) is computed via our proposed method 
(L.P.C.Q.Reg) is much smaller than  root mean square error (RMSE) is computed by other two methods (Q.P.C Reg)  
and (BQ.P.C Reg). This mean the our proposed method have a good performance compared with other method . 
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Table 2- Root Mean Square Error for the simulation studies for Simulation Example two  . 

.𝛆𝐢~𝐍(𝟎, 𝟏) 

𝛕 = 𝟎. 𝟏𝟓  

ρ = 0.95 ρ = 0.90 ρ = 0.86 ρ = 0.70 ρ = 0.66 

RMSE RMSE RMSE RMSE RMSE Comparison Methods 
0.687  0.702  0.712 0.837 0.951 Q.P.C Reg 

0.653  0.687  0.713 0.829 0.877 BQ.P.C Reg 
0.564  0.592  0.613 0.737 0.883 L.P.C.Q.Reg 

τ = 0.55  

0.755 0. 773 0.834 0.896 0.964 Q.P.C Reg 

0.713 0.748 0.822 0.898 0.941 BQ.P.C Reg 

0.654 0.683 0.631 0.764 0.865 L.P.C.Q.Reg 

      
τ = 0.95  

0.562 0.674 0.687 0.834 0.873 Q.P.C Reg 

0.586 0.613 0.619 0.822 0.788 BQ.P.C Reg 

0.549 0.564 0.580 0.631 0.742 L.P.C.Q.Reg 

εi~standard Laplace (0,1)  

 
τ = 0.15 

 

0. 625  0. 642  0.662 0.687 0.708 Q.P.C Reg 

0.610  0.635  0.647 0.619 0.696 BQ.P.C Reg 

0.469  0.494  0.507 0.580 0.576 L.P.C.Q.Reg 

τ = 0.55  

0. 457  0. 485  0.517 0.662 0.704 Q.P.C Reg 

      
0.386  0.394  0.409 0.647 0.622 BQ.P.C Reg 

0.368  0.381  0.399 0.507 0.424 L.P.C.Q.Reg 

τ = 0.95  

0.469 0.478 0.519 0.592 0.579 Q.P.C Reg 

0.351 0.384 0.503 0.372 0.441 BQ.P.C Reg 

0.250 0.329 0.469 0.273 0.352 L.P.C.Q.Reg 

4.3 Real Dataset  

In this section, the air Pollution Data within package in (bayesQR)  package in R programing (Lindmark and Karlsson, 
(2011))  have been used to evaluating the performance of our proposed method compared with other method. the air 
Pollution Data  was measured through the Public Roads Administration in Norway.  It consists of one dependent 
variable referred to as (yi)( the log (concentration of NO2 per hour)) and seven independent variables are: 
temperature referred to as (x1), the temperature difference  (x2), the log (number of cars per hour) referred to as (x3), 
), wind speed in meters per second  (x4), wind direction (x5), day number referred to as (x6) and time of day in hours 
referred to as (x7), in this section we compare three methods : (Q.P.C Reg,  BQ.P.C Reg, and our  proposed approach). 
These methods are evaluated by depend on the Root mean squared error (RMSE) and standard deviations (SD). The 
result of (RMSE and SD) listed in table 3 are computed via three quantile levels (τ = 0.15, τ = 0.55 and τ = 0.95) as 
,it show in table 3  
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Table -3 Standard deviations (SD) and RMSEs for the air pollution data 

Methods τ = 0.15  τ = 0.55 τ = 0.95 

RMSE (SD) 

RMSE (SD) RMSE (SD)  

Q.P.C Reg 0.471 (0.396) 0.466 (0.394) 0.435 (0.418) 

BQ.P.C Reg 0.454 (0.423) 0.424 (0.363) 0.417 (0.384) 

L.P.C.Q.Reg 0.395 (0.355) 0.375 (0.346) 0.368 (0.292) 

From the rsults showed in the table 3, we see the the root mean square error (RMSE) is computed via our proposed 
method (L.P.C.Q.Reg) is much smaller than  root mean square error (RMSE) is computed by other two methods (Q.P.C 
Reg)  and (BQ.P.C Reg). This mean the our proposed method have a good performance compared with other method 
,also with real data. We see the the Standard deviations (SD) is computed via our proposed method (L.P.C.Q.Reg) is 
much smaller than  Standard deviations (SD)  is computed by other two methods (Q.P.C Reg)  and (BQ.P.C Reg). Also, 
This mean the our proposed method have a good performance compared with other method. From all via all criteria 
used in the current study , we concluded the our proposed method have a good performance compared with other 
methods . We can estimating and 95% intervals for the three quantile level  0.15, 0.55 and 0.95 by the following figures  
.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.2- 
Show the confidence interval for estimating at 95% intervals for the three quantile level  0.15, 0.55 and 0.95 

and three methods under study 

From the above figure we see our proposed method (L.P.C.QReg) is a good performance to coefficient estimation and 
variable selection compared with other method. In LPC. Q. Regτ=0.15 ,we see the independent variables (x1, x3, x5, x9) 
are excluded from our model, because of it coefficients estimation closed from zero exactly. In LPC. Q. Regτ=0.55 ,we 
see the independent variables (x1, x3, x6, x7) are excluded from our model, because of it coefficients estimation closed 
from zero exactly. In LPC. Q. Regτ=0.55 ,we see the independent variables (x1, x2, x5, x7) are excluded from our model, 
because of it coefficients estimation closed from zero exactly. 
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5. Conclusions and Recommendations 

5.1 Conclusions 

In results showed  from simulation examples and real data sets ,we see the our proposed methods  (LPC. Q. Reg) is 
better than other method for variable selection and parameters estimation via all quantile level and all different 
errors. All methods (Q.P.C Reg,BQ.P.C Reg andL.P.C.Q.Reg) have a good  performance with high correlation between 
independent variables , but our proposed method L.P.C.Q.Reg  was very active with all correlation level between 
independent variables. 

5.2  Recommendations 

We recommended extension this study  with another shrinkage method  such as  group lasso function , adaptive Lasso 
function  and fused lasso function. And ,We recommended extension this study  with binary quantile regression and 
with topit  quantile regression model. And applied these proposed method on real data about specific phenomenon.   
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