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A B S T R A C T 

The topic of variable selection in constructing statistical models has received wide attention in 
many applications, including medical, economic, engineering, and various other fields. Since, 
this method helps researchers save time and effort, by concentrating on crucial variables and 
eliminating unimportant variables from the statistical models under study. The famous 
variable selection technique known as the Least absolute Shrinkage and Selection Operator 
(LASSO) method works by reducing the number of variables with high explanatory power. This 
study will combine two methods for variable shrinkage, which minimize both simultaneously 
by removing variables with little effect and reducing the variance and bias of the estimated 
parameters. Two techniques were used to validate the results of our current study. The first 
approach uses simulation, where data is produced using predetermined hypotheses and 
models. The second approach uses data from actual sources . 
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1. Introduction 

The statistical literature has long included methods, for variable selection, and model selection. Such as Akaike 
information criterion (AIC) (Akaike, 1973) and Bayesian information criterion(BIC)( Schwarz, 1978). But these 
techniques are regarded as classical approaches, and it frequently takes a long time to finish the process of selecting 
the best models. This is because the number of models that can be obtained is proportional to the number of 
independent variables included in the model. The potential number of statistical models is positively relationship with 
number of independent variables (2^p), p is number of independent variables(Murtaza Haider,2014). Modern 
approaches to variable and model selection, on the other hand, have developed swiftly. These approaches are 
distinguished by their ability to choose significant variables and eliminate unimportant variables more quickly. These 
techniques, which usually take place in a very short amount of time, estimate the parameters and choose variables all 
at once. Such as (LASSO) (Tibshirani, 1996), (SCAD) (Fan and Li, 2001), LARS (Efron et al., 2004), adaptive Lasso (Zou, 
2006) , Bayesian Lasso (Park and Casella, 2008) and Bayesian adaptive Lasso and iterative adaptive Lasso (Sun et al., 
2010) etc. The aforementioned strategies are all up-to-date techniques that simultaneously choose variables and 
estimate parameters, saving time and reducing the likelihood of estimation errors. These techniques seek to lessen 
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the inflated variance of the parameters linked to standard regression models; however, on occasion, these models 
experience multicollinearity because of a perfect or semi-perfect linear relationship between two or more of the 
independent variables(Frost, J. (2017)). The estimation techniques mentioned above can still be used even in the case 
of multicollinearity, but they lose their effectiveness in situations where the independent variables exhibit significant 
correlation. It is commonly known that principal component regression is a two-step process that can be used to 
address the problem of multicollinearity. In the first stage, the accompanying parameters for the principal 
components are estimated, and in the second stage, the landmarks of the original model are estimated through the 
inverse feedback of the estimators of the principal component parameters (Alabi,O,KAyinde,2008). In this paper, we 
propose a new methodology that combines the LASSO method with principal component regression. To successfully 
handle both the variable selection process and the multicollinearity issue, making sure both are taken care of. When 
the number of variables in the model is greater than the sample size, the suggested method can also estimate 
regression parameters effectively(n<p) . The benefits of our proposed method include reduced variance inflation of 
model parameters and reduced bias. This paper is divided into. In the second section, the focus will be on combining 
principal component regression with Lasso. In the third section, the emphasis will be on the Gibbs Sampler technique 
specific to our studied model. The fourth section will concentrate on using simulation methods to compare the 
performance of our proposed approach to other methods, In the fifth section, we also examine the performance of our 
proposed approach with other methods using real-world data, In the sixth section, we provide concise conclusions 
regarding our proposed approach. 

1.1. Lasso principal component regression 

The regression model is considered a statistical tool that focuses on estimating the relationship between a single 
dependent variable and one or more explanatory variables. This relationship is built using a regression model, as 
indicated by the following general formula. 

y=Xβ+ε                 (1) 

where  y is dependent variable and 𝑋=(x1,x2,x3…xP) is The matrix of explanatory variables (N*P) assumes that there is 
a certain level of correlation between two or more of these explanatory variables. ε It is the degree of random error 
that conforms to a normal distribution with a a mean of 0 and variance σ^2. One of the proposed methods to address 
multicollinearity is the principal component regression method. The principal component regression method focuses 
on transforming the original explanatory variables, which may have correlations, without omitting any variable. It 
transforms them into linear combinations called principal components. These principal components provide 
integrated information about the observations of the original explanatory variables. The original explanatory 
variables is (x1,x2,x3…xP) a linear combination of these variables can be formed for each principal component, as 
shown in the following equation. 

F=XD                   (2) 

where F_((n×p) matrix of principal component ,and D It is an orthogonal matrix of eigenvectors corresponding to the 
eigenvalues of the matrix, X^Tr X  this matrix has rank P×P. The matrix D is the diagonal matrix , where (𝐷𝐷𝑇𝑟 =
𝐷𝑇𝑟𝐷 = 𝐼𝑃) where,𝐹𝐷𝑇𝑟 = 𝑋𝐷𝐷𝑇𝑟 , 𝐷𝐷𝑇𝑟 = 𝐼𝑃 therefore 𝑋 = 𝐹𝐷𝑇𝑟 . 

By using dependent variable y, By considering the principal components as independent variables, we obtain the 
principal component regression model. 

𝑦 = 𝐹𝐷𝑇𝑟𝛽 + 𝜀 … … … . . (3) 

Let  𝐷𝑇𝑟𝛽 = 𝛾: The principal component regression model takes the following form: 

y=Fγ+ε                 (4) 

Therefore, the estimation of Lasso principal component regression can be defined according to the following formula: 

𝛾𝐿𝑃𝐶𝑅   = ‖𝑦 − 𝐹𝛾‖2 +  𝜆‖𝛾‖         (5)       

where 𝜆 is shrinkage parameter, 𝜆 ≥ 0. Equation (5) is not  differentiable at zero, and 𝛾 is parameters of principal 
component regression, the estimation theses parameter by liner programming    of  But, in current paper, we will used 
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the Bayesian approach which is a useful technique for estimating the parameters because of a number of its 
advantages. 

1.2. Bayesian Principal Component Regression with Lasso Approach  

Using a Bayesian approach, the Laplace distribution must be used as a prior distribution in order to estimate the 
parameters of the model given in quation (5). To guarantee the procedure for choosing variables ,( Tibshirani, 1996) 
: 

𝑝{𝛾𝑗|𝜆} =
𝜆

2
𝑒−𝜆|𝛾𝑗|                   (6) 

  where 𝜆 is ship parameter and 𝛾𝑗  is scale parameter  

Directly using the Laplace distribution as described in Equation (6) is considered a very challenging problem. 
Therefore, most researchers working in the field of variable selection opt for alternative formula (You and  Hong 
2012)(Alhamzawi 2013). 

The alternative formula of Laplace distribution that proposed by(Andrews and Mallows  1974), which assumes that 
the Laplace distribution is Scale Mixture Normal. According to the alternative formula  , the Laplace distribution can 
be expressed as a mixture distribution, where the first part is γj distributed according to normal distribution with 
mean 0 and variance sj  is a variance or estimated standard error, and second part is sj  which distributed as 
exponential distribution with a parameter λj. 

p{γj|s1
2, s2

2,    sp
2, σ2} =

1

√2πσsj

e
−

γj
2

2σ2sj  

where  𝛾𝑗  has Unknown variance sj is a variance or estimated standard error is exponential distribution with ship 
parameter λj. 

𝑝{𝑠𝑗|𝜆𝑗} =
𝜆𝑗

2
 𝑒

𝜆𝑗𝑠𝑗

2  

𝜆𝑗  is the ship parameter responsible for controlling the degree of shrinkage towards zero, which are distributed 
according to Gamma distribution 

𝑝{𝜆𝑗|𝜃, 𝑘} =
𝜃𝑘

Γ(𝑘)
 𝜆𝑗

𝑘−1 𝑒−𝜃𝜆𝑗  

where θ,k are fix  hyperparameters are takes very small values (θ=0.1,k=0.1),see (2010  (Li et al and ( Hashem et al    
2015). 

The Bayesian hierarchical our proposed method  given by. 

{𝑦|𝜇, 𝐹, 𝛾, 𝜎2}~𝑁𝑃(𝜇𝐼𝑛 + 𝐹𝛾, 𝜎2𝐼𝑛), 

{𝛾𝑗|𝜎2,𝑠1  … … . . 𝑠𝑝}~𝑁𝑝(0𝑝, 𝜎2𝐷𝑠), 

𝐷𝑠 = 𝑑𝑖𝑎𝑔(𝑠1  … … . . 𝑠𝑝),                                                       (7) 

(𝑠1  … … . . 𝑠𝑝)~𝐸𝑥𝑝 (
𝜆𝑗

2
), 

𝜎2~𝜋(𝜎2)𝑑𝜎2, 𝜎2 ∝ (𝜎2)−𝑎−1𝑒
−𝑏

𝜎2⁄  

𝑝{𝜆𝑗|𝜃, 𝑘} =
𝜃𝑘

𝛤(𝑘)
 𝜆𝑗

𝑘−1 𝑒−𝜃𝜆𝑗  

 

a,b and d are fix hyper parameters 

From the above Bayesian hierarchical model ,shown in (7). The   posterior distribution are : 



30 Mohammed H. AL-Sharoot, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 15(4) 2023 , pp  Stat.   32–38

 

-  The full conditional distribution for γ is multivariate normal  with 𝐴−1𝐹𝑇𝑦,and variance 𝜎2𝐴−1. The 
value of A−1  is A−1 = FTF + Ds

−1. 

 

 The full conditional distribution for σ^2  is inverse Gamma distribution as following  

  

(𝜎2)
−(𝑛−1)(2−𝑎−1)

2−𝑝 ⁄
   𝐸𝑥𝑝 {

−1

𝜎2

((𝑦 − 𝐹 𝛾)𝑇(𝑦 − 𝐹 𝛾))
2

⁄ + 𝛾𝑇𝐷𝑠
−1 𝛾

2⁄ + b. }. 

 

 

       The Full conditional distribution for  s_j, j=1,2……p is the inverse Gaussian with shape parameter√
𝜆𝑗

𝛾2 

 and scale parameter λ_j 

 The full conditional distribution for λ_j,j=1,2,……p is the is the gamma distribution  with shape parameter θ+1  
and scale parameter    (k+s_j)⁄2 

The distribution of the parameters of the original regression model can be obtained by utilizing the relationship 
between estimatorsβ ̂ and estimation of principal component regression. 

𝐷𝑇𝑟𝛽 = 𝛾 

(𝐷𝑇𝑟𝛽 = 𝛾) ∗ 𝐷 

𝑤ℎ𝑒𝑟 

𝐷𝐷𝑇𝑟 = 𝐷𝑇𝑟𝐷 = 𝐼𝑃 

�̂� =   𝐷𝛾 

-  

  

 The full conditional distribution of  β ̂ is is multivariate normal  with mean 𝐷𝐴−1𝐹𝑇𝑦 and variance 𝐷2𝜎2𝐴−1. 

Where 𝐷2 = 𝑑𝑖𝑎𝑔(𝜆1
2, … … 𝜆𝑝

2 ) .is 𝜆1
2, … … 𝜆𝑝

2  is Egan value  information matrix  

Our proposed method will yield good posterior distributions. our algorithm will run for 12,000 iterations, discarding 
the first 2,000 iterations as burned in.. 

 

2.  Simulation  Approach   

A simulation approach is required in order to more clearly demonstrate the superiority of our proposed method 
Bayesian lasso principal component (BLPCReg)) over other approaches in the context of principal component 
regression. By building an algorithm that is efficient and easy to use. Our proposed method  will be compared with 
two other methods: The principal component regression(PCReg) method proposed by Alibuhtto et al. (2015), 
employing the PLS package, and the Bayesian principal component regression (BPCReg)method proposed by Junttila 
et al. (2017). Three sample size levels will be considered. The first is when the sample sizes are small (n = 10, n = 20), 
the second when the sample sizes are medium (n = 50, n = 60), and the third when the sample sizes are large (n = 100, 
n = 150). The independent variables are distributed normally and are highly correlated. 

𝑐𝑜𝑟𝑟 (𝑋𝑖 , 𝑋𝑗) = (0.5)𝑖+𝑗            𝑖 = 1,2, … … 𝑛,   𝑗 = 1,2, … . . 𝑝      

As for the model errors, they are generated according to four different types of errors: standard normal distribution 
ε~N(0,1), normal distribution with mean 2 and variance 2 ε~N(2,2), standard Laplace distribution with mean zero 
and variance 1 ε~Lap(0,1)), and also a mixture Laplace distribution ε~Lap(1,1)+Lap(2,2). Each simulation is 
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performed with different sample sizes, The first when the sample sizes are small (n=10, n=20), the second when the 
sample sizes are moderate (n=50, n=60), and the third when the sample sizes are large (n=200, n=250), All methods 
involved in the experiment are evaluated using the Median of Mean Absolute Deviation (MMAD) criterion, which is 
calculated using the following mathematical equation. 𝑀𝑀𝐴𝐷 = |𝑥𝑖

𝑡𝑟�̂� − 𝑥𝑖
𝑡𝑟𝛽𝑡𝑟𝑢𝑒|and the second is mean square 

error (MSE) In our current study, we will utilize two simulation methods. 

2.1. First Simulation Approach  

In the first simulation method, a 'very sparse' case will be used, where the true parameters take the following form 
β=(1,0,0,0,0,0,0), where the model takes the following form: 

𝑦 = 𝑥𝑖1 + 𝜀𝑖 

After conducting 100 simulations, (this simulation not iteration ) , in our current study, the results are summarized in 
Table 1. 

Table 1 presents the values of the MMAD (Median of Mean Absolute Deviation) and MSE (Mean Squared Error) in the 
very sparse case. 

𝒆𝒊~𝑳𝒂𝒑 (𝟏. 𝟎) 𝒆𝒊~𝑳𝒂𝒑(𝟏, 𝟏) + 𝑳𝒂𝒑(𝟐, 𝟐) 𝒆𝒊~𝑵(𝟐, 𝟐) 𝒆𝒊~𝑵(𝟎, 𝟏))             Comparison  

            Methods   

Sample  

Size 

1.5403 (0.7820) 1.4289 (0.8664) 1.6582  

(0.8334) 

1.7645 

 ( 0. 8603) 

PCReg   

 

n=10 

Small 

sample 

1.7832 (0.8403) 1.7302 (0.6941) 1.4532 

(0.7405) 

1.5469 ( 0. 8562) BPCReg 

1.3241 (0.4520) 1.1383 (0.2062) 1.2218 

(0.5324) 

1.0576 

(0.4563) 

BLPCReg 

 

1.7882 

( 0. 6740) 

1.8734 ( 0. 7430) 1.782 ( 0. 8439) 1.3857 ( 0. 5020) PCReg  

 

n=20 1.3979 (0.7835) 1.5620 (0.7648) 1.8926 

(0.8934) 

1.8452 (0.7834) BPCReg 

1.1263 (0.2408) 1.0563 (0.3222) 1.2384 

(0.2372) 

1.0723 (0.2306) BLPCReg 

1.6458 ( 0. 6747) 1.6078 (0.6704) 1.7806 

( 0. 8432) 

1.5493 ( 0. 7830) PCReg  

 

n=50 

 

 

 

Meddle 

Sample  

 

1.6033 ( 0. 6739) 1.5944 ( 0. 6894) 1.5896 

( 0. 6840) 

1.7805 ( 0. 5693) BPCReg 

1.1099 (0.5625) 1.3103 (0.3006) 1.3832 

(0.2354) 

1.2306 (0.3542) BLPCReg 

1.8932 (0.8393) 1.6789 (0.6947) 1.6870 

(0.7833) 
1.6743 (0.6731) PCReg  

n=60 

1.9452 (0.4582) 1.8790 (0.6741) 1.4931 

(0.7841) 
1.6739 (0.8939) BPCReg 

1.2066 (0.3005) 1.3530 (0.2307) 1.5682 

(0.1042) 

1.1247 (0.5646) BLPCReg 

1.8657 1.8656 (0.7685) 1.8564  1.7694  PCReg   
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(0.5645)  (0.8768) (0.6758)  

n=100 

 

 

 

 

 

 

 

 

Large  

Sample  

(1.7839) (0.6792) (1.7839)(0.8621) 
(1.5682) 

(0.6792) 

(1.7837) 

(0.7832) 

BPCReg 

1.3461 (0.452) 1.4521 (0.2361) 
1.2672 

(0.2899) 
1.3468 (0.3401) 

BLPCReg 

 

1.6878 (0.5629) 1.8722 (0.6726) 1.7839 (0.282) 1.6822  

(0.332) 

PCReg  

 

 

n=150 

 

(1.8923) 

(0.5892) 

(1.8399)(0.7923) 

(1.7800) 

(0.6437) 

(1.4572) 

(0.3896) 

BPCReg 

 

1.1220 (0.3405) 1.4521 (0.3067) 
1.6562 

(0.1012) 
1.3462 (0.0252) 

BLPCReg 

 

Note : the values within parentheses represent (MSE) 

The estimated values of MMAD and MSE utilizing our proposed method are substantially lower than the principal 
component regression (PCR) and Bayesian principal component regression methods, according to the data shown in 
the above table. Consequently, when compared to the other two methods, our suggested approach performs well in 
feature estimation and variable selection. We observe that our proposed method exhibited superior performance 
across different different sample sizes and different distribution of random error . 

2. 2 Second Simulation Approach  

in the second simulation method,  dense (all the initial parameters are not zero  )case will be used, 
where the true parameters take the following form 𝛽 = (0.85,0.85,0.85,0.85,0.85,0.85,0.85) 
(because dense case), where the model takes the following form: 
 

𝑦 = 0.85𝑥𝑖1 + 0.85𝑥𝑖2+ + 0.85𝑥𝑖3 + +0.85𝑥𝑖4 + +0.85𝑥𝑖5 + +0.85𝑥𝑖6 + +0.85𝑥𝑖7 + 𝜀𝑖 

 

After conducting 100 simulations, in our current study, the results are summarized in Table 2. 

Table 2 presents the values of the MMAD (Median of Mean Absolute Deviation) and MSE (Mean Squared Error) in 

the dense case. 

𝑒𝑖~𝐿𝑎𝑝 (1.0) 𝑒𝑖~𝐿𝑎𝑝(1,1) + 𝐿𝑎𝑝(2,2) 𝑒𝑖~𝑁(2,2) 𝑒𝑖~𝑁(0,1))             Comparison  

            Methods   

Sample  

Size  

1.4645 (0.3420) 1.7340 (0.5634) 1.4547  

(0.2401) 

1.4543 

 ( 0. 3460) 

PCReg   

 

n=10 
Small 

sample 

1.3461 (0.3405) 1.4533 (0.3068) 1.4532 

(0.3426) 

1.2748 

( 0. 3416) 

 

BPCReg 

 
1.2302 (0.1242) 1.3875 (0.0673) 1.1194 

(0.0733) 

1.0052 

(0.0461) 

BLPCReg 
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1.4231 

( 0. 2305) 

1.4530 ( 0. 1295) 1.5630 

( 0. 0532) 

1.4531 

( 0. 0343) 

PCReg  

 

n=20 1.5634 (0.4561) 1.2352 (0.6450) 1.6734 

(0.5473) 

1.1584 

(0.4521) 

 

BPCReg 

 
1.1273 (0.1855) 1.1834 (0.2406) 1.2343 

(0.2372) 

1.0067 

(0.2306) 

BLPCReg 

 

1.67451 

( 0. 7404) 

1.8657 (0.4532) 1.5634 

( 0. 6734) 

1.4536 

( 0. 5434) 

PCReg  

 

n=50 

 

 

 

 

 

 

Meddle 

Sample  

 

1.4583 ( 0. 5746) 1.4638 ( 0. 5604) 1.6732 

( 0. 5431) 

1.5637 

( 0. 4530) 

BPCReg 

1.4530 (0.6574) 1.2404 (0.2064) 1.3832 

(0.4537) 

1.1547 

(0.2267) 

BLPCReg 

1.5648 (0.3429) 1.5646 (0.2273) 1.4682 

(0.2323) 
1.5634 

(0.2351) 
PCReg  

n=60 

1.9452 (0.4582) 1.3495 (0.3595) 1.5603 

(0.3421) 
1.4541 

(0.45351) 
BPCReg 

1.3486 ( 0. 0745) 1.0533 (0.1183) 1.2682 

(0.1042) 

1.1247 

(0.5646) 

BLPCReg 

1.5637 

(0.4793)  

1.7923 (0.5620) 1.6732  

(0.6892) 

1.5364  

(0.7632) 

PCReg  

 

n=100 

 

 

 

Large  

Sample  

(1.4535) 

(0.45734) 
(1.6742)(0.5649) 

(1.4585) 

(0.4394) 

(1.5642) 

(0.5643) 
BPCReg 

1.2845 (0.3420) 1.3495 (0.2729) 
1.3956 

(0.1856) 
1.2350 

(0.2745) 

BLPCReg 

 

1.6751 (0.5643) 1.7869 (0.5674) 1.3432 

(0.6573) 
1.5649  

(0.2345) 

PCReg  

 

 

n=150 

 

(1.5649) 

(0.2348) 
(1.6750)(0.6573) 

(1.6754) 

(0.5695) 

(1.5643) 

(0.8767) 

BPCReg 

1.1267 ( 0. 1415) 1.5640 (0.4632) 
1.3460 

(0.2320) 
1.2363 

(0.0453) 
BLPCReg 

 

Note : the values within parentheses represent (MSE) 

The estimated values of MMAD and MSE utilizing our proposed method (BLPCReg)are substantially lower than the 
principal component regression (PCR) and Bayesian principal component regression methods, according to the data 
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shown in the above table. Consequently, when compared to the other two methods (PCReg and BPCReg  ),, our 
suggested approach performs well in feature estimation and variable selection. We observe that our proposed method 
exhibited superior performance across different sample sizes and different distribution of random error . 

After obtaining the results from the simulation method, we find that our proposed method performs well, and the 
behavior of the estimated features can be observed through Figures (1) and (2). 

 

Figure (1) show the histograms  of BLPCReg in density case and sample size is 50 

From the above figure, which Is the shape is histogram of the estimated parameters in the density case at a sample 
size of 50, we can clearly observe that the estimated parameters  follow a normal distribution and match the 
underlying distribution of the model's parameters perfectly. This figure demonstrates that the estimated parameters 
align perfectly with the true distribution of the model's parameters. 
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Figure (2) show the trace plot of BLPCReg in density case and sample size is 50 

From the above figure, which represents trace plots of the estimated parameters in the density case at a sample size 
of 50, we can clearly observe that the estimated features exhibit convergence and stability across all iterations. This 
indicates that the MCMC samples for the posterior distribution of the estimated parameters are consistently stable 
throughout the iterations. This implies that our proposed algorithm is stable, easy to implement, and efficient. 

3. Real Data 

After demonstrating the efficiency of our proposed method through simulation compared to a set of methods in the 
same field, it is essential to test the effectiveness of our proposed method with real-world data. Medical data was 
collected from the Obstetrics and Gynecology Hospital in Al-Hilla city. The data under study consists of a dependent 
variable, y_i, representing 'neonatal jaundice,' and 15 independent variables that directly or indirectly affect 
neonatal jaundice. These variables are as follows: 

 

1- x1 : Maternal weight during pregnancy. 
2- x2: Number of hours of sleep for the mother during pregnancy. 
3- x3: Level of bilirubin in the mother's blood during pregnancy 
4- x4 :blood sugar level in the mother during her pregnancy. 
5- x5: Number of working hours for the mother during pregnancy 
6- x6: Blood pressure level during pregnancy. 
7- x7: Number of visits to prenatal care clinics. 
8- x8 : Hemoglobin level in the mother's blood during pregnancy. 
9- x9: Whether the mother is a smoker during pregnancy. 

 
10-x10 : Age of the mother during pregnancy. 
11-x11: Birth order of the current child. 
12-x12: Blood group of the mother. 

13-x13: Type of delivery (natural birth, cesarean section). 
14- x14: Blood type of the child. 
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15-x15: Level of blood sugar in the child's blood. 

 

After obtaining the data, a regression model was built consisting of one dependent variable and 15 independent 
variables. The performance of our proposed method will be tested compared to the PCReg (Principal Component 
Regression) and BPCReg (Bayesian Principal Component Regression) methods. The evaluation criteria used will be 
Mean Squared Error (MSE) and Standard Error (S.E). 

1. Table 3 -present the values of Mean Square Error (RMSE) and Standard Error (S.E).for the real-world 
data. 

S E MSE Methods 

8.5654 11.4239 PCReg 

5.0067 9.4825 BPCReg 

1.7832 3.4239 BLPCReg 

 

Based on the results displayed in Table 3, we find that the values of the evaluation criteria, namely Mean Square Error 
(MSE) and Standard Error (S.E), obtained using our proposed method (BLPCReg) are significantly lower than the 
values obtained using the comparison methods (PCReg and BPCReg). This result indicates that our proposed method 
is superior to the comparison methods in terms of variable selection and parameters estimation. 

From the figure, we can observe that variables 𝑥2 , 𝑥5 , and 𝑥9   are independent variables that do not significantly 
influence the dependent variable (neonatal jaundice). On the other hand, the remaining independent variables have 
a clear impact on the dependent variable (neonatal jaundice.)This implies that variables 𝑥2, 𝑥5, and 𝑥9 may not be 
important predictors of neonatal jaundice, while the other independent variables have a significant effect on neonatal 

jaundice. 

 

Figure -4- Shown confidence interval for independent variables according to three methods 

 

4. Conclusions and Recommendations 

4.1 Conclusions 
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Through simulation and real data analysis, we can conclude that our proposed method performs well in estimating 
the parameters and selecting variables compared to other methods. This is evident from the calculated values of the 
comparison criteria used in our current study, where the values of MMAD (Mean Magnitude of Absolute Differences), 
MSE (Mean Squared Error), and SE (Standard Error) obtained from the BLPCReg method are significantly smaller 
than the values obtained from the PCReg and BPCReg methods. This result clearly gives an advantage to our proposed 
method. 

In the analysis of real data, we found that three independent variables had a non-significant effect on the response 
variable (neonatal jaundice). However, the remaining twelve variables showed a clear impact on the response variable 
(neonatal jaundice). 

4.2 Recommendations 

Using our proposed method to estimate regression models that suffer from multicollinearity is beneficial because our 
method addresses the issue of multicollinearity in two stages. The first stage involves employing principal component 
regression, and the second stage involves utilizing the Lasso method. We can expand our current study to other 
regression models due to their good properties in parameter estimation and variable selection. This study can be 
extended to binary regression models, tobit regression models, quantile regression models, and so on. 
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