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A B S T R A C T 

This article analyzes and compares conical curve creation methods using algorithms. The four 
methods investigated were linear interpolation, Bézier curve, geometric form approximation, 
and numerical differential equation solutions. Using mathematics, this research dissects these 
strategies to understand their underpinnings. Comparisons of accuracy, computing efficiency, 
and adaptability reveal each method's strengths and drawbacks. This article hopes to help 
practitioners and academics choose conical curve building techniques based on their 
construction applications. 

 

MSC. 

https://doi.org/10.29304/jqcsm.2023.15.41367

1.Introduction 

In practically every sector, conical curves are used in computer graphics [1], geometric modeling [2], and engineering 
designs. Conical curves are being explored due to the need for efficient portrayal [3]. This article will compare four 
techniques to understand their computational difficulties and assess their advantages. Simple linear interpolation 
methods for real-time applications are prioritized. Bézier curve approaches employ cubic and quadratic formulae to 
regulate conical curves subtly. 

         The comparative assessment underpins unbiased study of approaches. Researchers and practitioners may 
understand each methodology's trade-offs by methodically considering accuracy, computational economy, and 
flexibility. By explaining linear interpolation, Bézier curve adaptability, realistic approximation methods, and 
numerical techniques, this article helps readers choose conical curve construction methods wisely.   

2. Conical Curve Construction Methods: An In-Depth Exploration 

Engineering design, computer graphics, and geometric modeling employ conical curves [4][5]. This portion explains 
the mathematical foundations and real-world applications of common conical curve generation methods. 
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2.1. Linear Interpolation-Based Methods   

Construction of conical curves is simple using linear interpolation. Given 𝑃1 at the base and 𝑃2 at the cone tip, the 
linear interpolation formula may construct intermediate points along the curve. Linear interpolation expressed 
generally:   

𝑃(𝑡) = (1 − 𝑡) ⋅ 𝑃1 + 𝑡 ⋅ 𝑃2 (1) 

Interpolated points 𝑃(𝑡) along the curve are represented by 𝑡 from 0 to 1. This formula produces a straight line 
between the endpoints and may provide intermediate positions by modifying 𝑡 . Its simplicity makes it 
computationally efficient and easy to implement. However, certain conical curves may be difficult to reproduce. 

2.1.1 Applications and Interpretation   

Where simplicity and accuracy are required, linear interpolation techniques are often used [6]. Smooth animation 
keyframe transitions are achieved by using linear interpolation, as stated by Igarashi et al. [5]. When a simple and fast 
approximation is sufficient, conical curve fabrication benefits from this technique. 

Create a traffic cone-shaped conical curve. Using the linear interpolation formula, the conical curve P(t) may be 
created at any point along the curve given the base 𝑃1 coordinates (𝑥1, 𝑦1, 𝑧1) and the apex 𝑃2 coordinates, (𝑥2, 𝑦2, 𝑧2). 
Its simplicity and real-time manipulation make it excellent for computer-aided design. 

2.1.2 Limitations and Trade-offs   

While simple and efficient, linear interpolation has constraints [7]. Some conical curves have intricate shapes and 
curvatures that it cannot accurately record [8]. More intricate geometries may seem too simple in the resulting 
curves. 

Inability to preserve derivative continuity in linear interpolation might cause a rapid curve slope change. This 
constraint is obvious when constructing aerodynamic surfaces or modeling biological processes in three dimensions, 
which need smooth curves. 

2.1.3 Enhancements and Hybrid Approaches   

A hybrid technique may use linear interpolation to approximate the initial form before using more complicated 
algorithms [9]. Numerical methods or Bézier curves may improve the curve [10]. To balance simplicity, precision, 
and application-specific objectives, several methods are utilized.  

First and foremost, linear interpolation-based methods are vital for purposes of establishing conical curves that give 
a quick and simple way to perform calculations. On one part, these methods have been found useful in some 
applications while on the other side, there are certain restrictions associated with them especially when more 
intricate and precise geometries are necessary. In effect, the mere use of few interpolations with other approaches 
yields better results most of the time since it balances simplicity and accuracy of construction of conical curves. 

2.2. Bézier Curve-Based Approaches   

Bezier curves enable conical curves. Bézier curves may be tweaked to generate smooth conical shapes by adding 
control points within the conical space. 

2.2.1 Mathematics Foundation   

A Bézier curve has control points that alter it. The quadratic and cubic Bézier curves have three (four for the cubic 
curve) control points, and their parametric equation is: 

𝑃(𝑡) = (1 − 𝑡)2 ⋅ 𝑃1 + 2 ⋅ (1 − 𝑡) ⋅ 𝑡 ⋅ 𝑃2 + 𝑡2 ⋅ 𝑃3 (2) 

𝑃(𝑡) = (1 − 𝑡)3 ⋅ 𝑃1 + 3 ⋅ (1 − 𝑡)2 ⋅ 𝑡 ⋅ 𝑃2 + 3 ⋅ (1 − 𝑡) ⋅ 𝑡2 ⋅ 𝑃3 + 𝑡3 ⋅ 𝑃4 (3) 
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These equations interpolate between control points 𝑃1 , 𝑃2, and 𝑃3 as 𝑡 from 0 to 1. With careful form control, the curve 
is a seamless combination of these control points. 

2.2.2 Applications and Interpretation 

For conical curve creation, Bezier curves' adaptability in many disciplines is helpful. Fundamental curves and 
complex surfaces are replicated by Bézier curves in computer graphics. In the case of conical curves, they extremely 
helpful for accuracy and refinement of curve shape. 

Imagine an occasion which may demand a precise description of the profile of a cone-like structure like the creation 
of a special nozzle. To make sure that the curvature is sufficiently smooth and presents well, designers might modify 
it by utilizing Bézier curves through control points. Such a degree of control is necessary when conical curvature 
significantly affects the functionality or aesthetics of the design. 

2.2.3 Advantages of Bézier Curve-based Approaches   

Bézier curve-based methods have many advantages, but one of the most important is that a designer can easily 
change the form of a curve simply by screwing around until they find something they like [11]. Because they are so 
easy to handle, Bézier curves are often used as tools of iteration in the design process. This makes possible quick 
changes for another go, then perhaps one more after that. 

Second, Bézier curves feature the properties of interpolation of end points and convex hull in data visualization by 
nature. These same qualities make for very smooth and predictable cone-shaped curves. The local control property 
guarantees that if a segment of the curve is changed, only that segment will change. Thus, it offers predictable and 
local modification. 

2.2.4 Limitations and Considerations   

Despite its advantages, Bézier curves have downsides. When there are few control points, designers have trouble 
matching complex conical shapes. One shortcoming of Bézier curves is their ability to accurately describe complicated 
geometries in conical curves [11]. Continuity of curvature between nearby Bézier curves may need precise control 
point adjustment, adding to the complexity. 

2.2.5 Hybrid Approaches   

Designers often employ hybrid methods to overcome Bézier curve-based restrictions. Integrating Bézier curves with 
linear interpolation or numerical techniques improves accuracy and flexibility [12]. Bézier curves may shape conical 
curves, and linear interpolation can control their characteristics and segments. 

2.3. Approximation Methods   

Approximation techniques may also create conic curves. They converge on the curve by combining tiny geometric 
shapes. For instance, circles may approximate conic curves. A circle's three-dimensional equation: 

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2                                                                    (4) 

The center of the circle, denoted as (a, b); the radius is. When combined with a scaling equation, the equations of 
circles can be used to resemble conical sections.  

Equation for Circle Scaling: 𝑃𝑖
′ = 𝑃𝑖 ⋅ 𝑠𝑖  (5) 

Finding out appropriate parameters for every circle involves a method that balances representational accuracy 
against simplicity. 
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2.3.1 Applications and Interpretation   

Approximation techniques are good particularly when there is an attempt to balance complex characteristics with 
simplicity. Approximating a complex conical curve using simpler forms like circles can significantly minimize 
computational complexity in situations where it is not necessary to have accurate representations. 

Consider for example that someone needs to simulate traffic cones in real time but only wants something simple for 
this purpose. Instead of using complex geometry of conical curve, it can be approximated by sets of circles. This 
method works best where either computing efficiency or real-time rendering becomes an important consideration. 

2.3.2 Advantages of Approximation Methods   

Approximation methods are widely used because of their simplicity and computational efficiency. As compared to the 
circles and other geometric shapes, complex conical curves are difficult to compute and handle. This simplicity is 
particularly important in instances where processing capabilities or responsiveness in real-time are limited. 

Furthermore, through approximation techniques, some level of generalization may be achieved. One technique can 
be used to approximate conical curves of different forms and sizes such as drawing circles. Approximation techniques 
tend to be versatile in various contexts. 

2.3.3 Limitations and Considerations   

Approximation methods are good for computing, but they have their limits. When perfecting conical curves by 
substituting simpler forms, however, the question generally arises whether the precision will still be the same when 
attempting to capture the subtleties of the curves. Sometimes approximation techniques won't do in cases where the 
precision counts, such as in the design of aircraft with specific aerodynamic forms. 

While approximating conical curves with a sequence of smaller forms, another factor to consider are sudden 
appearances of discontinuities in shape or changes in curve form. It depends on the application; we need to think 
carefully about how this trade-off affects computational efficiency and symbolic precision. 

2.3.4 Enhancements and Hybrid Approaches   

Designers often make creative use of half-breed methods, or give these entire approximation methods an "extreme 
makeover" to overcome their limitations. Normally, a combined type of approach might use approximation techniques 
to give an initial shape approximation, and then improve the curve with more advanced techniques such as Bézier 
curves or numerical methods. 

In order to approximate the circular conic curve more closely in the case of circle-based approximations, designers 
can add more control factors. This might mean changing the radii or placements of the circles. Inflexible hybrids have 
been proposed as appendages so multi-part cases will correspond rather than all parts. 

2.4. Numerical Methods   

With regard to engineering and in particular conical curve geometry, construction predominantly depends on 
numerical techniques such as finite element analysis [13]. In these numerical techniques, the conical curve's 
curvature and form are described by differential equations, the solution to which must be found. A circular cone's 
differential equation is given below, representing the relationship in three dimensions among the coordinates 
𝑥 and 𝑦, at height 𝑧, and the radius 𝑟:  

𝑟2 = 𝑥2 + 𝑦2 (6) 

The formula demonstrates geometrical constraints of a circular conic curve. Some means of numerical solution to 
these equations must repeat spaced; values are being computed continually in isolated groups. 
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2.4.1 Applications and Interpretation   

Some also use perfect methods regardless of their precision: in engineering models and simulations [14] that demand 
absolute accuracy. Conical curves are often typical in aerodynamics for representing surfaces with such precision as 
is needed to predict air flow patterns and aid in designing shapes. 

For example, suppose you design the nozzle of a rocket engine in the shape of a cone. To get accurate shapes for these 
curves from conical geometries, one solves the governing equations by computer technique. At this juncture, 
considerations such as orientation with the hustler general should be included. For instance, in engineering 
applications, precision at this level is critical as it directly affects the performance and efficiency of a system with 
conical curve. 

2.4.2 Advantages of Numerical Methods   

Numerical methods have one significant advantage; they enable highly accurate solutions to complex mathematical 
models. Consequently, numerical methods solve those differential equations which govern conical curves and provide 
a level of accuracy that may be hard to achieve through other less computationally expensive methods. 

Also, by its nature, numerical techniques can handle more complicated forms including conic sections. These curves 
are adaptable because they can be tailored to stringent design specifications or exhibit complex behaviors. 

2.4.3 Limitations and Challenges   

Although numerical methods are quite precise, they have some drawbacks, particularly related to computing 
complexity. Numerical solutions of differential equations may consume much time and resources which 
correspondingly pushes the demand for higher processing power. 

Another difficulty is that initial conditions can be sensitive to such differences. Even small adjustments in input 
parameters can lead to quite different calculations for the cone curve or its first numerical approximation; 
Furthermore, computational sensitivities like these must be recognized by designers, who want their numbers 
represented at an acceptable numerical accuracy level. 

2.4.4 Enhancements and Hybrid Approaches   

Designers often make creative use of half-breed methods, or give these entire approximation methods an "extreme 
makeover" to overcome their limitations. Normally, a combined type of approach might use approximation techniques 
to give an initial shape approximation, and then improve the curve with more advanced techniques such as Bézier 
curves or numerical methods. 

In order to approximate the circular conic curve more closely in the case of circle-based approximations, designers 
can add more control factors. This might mean changing the radii or placements of the circles. Inflexible hybrids have 
been proposed as appendages so multi-part cases will correspond rather than all parts. 

2.4.5 Practical Implementation   

Finite element or finite difference methods are commonly used to realize numerical algorithms. These techniques 
allow some iterative calculations of numerical values to converge on an accurate curve representation when the 
conical space has been discretized. 

For example, in the finite element method, the cone surface is subdivided into smaller parts where governing 
equations are solved independently for each part and assembled later to give the complete conical curve. This is a 
systematic method used for complicated geometries that is reliable too. 

2.4.6 Hybrid Approaches   

Designers often go for hybrid techniques in bid to stay correct while addressing computational problems. In a hybrid 
approach, such as with Bézier curves or linear interpolation, one may use approximation methods at less important 
sections of the conical curve and numerical solutions in the most crucial parts requiring high precision [15]. The result 
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is that numerical approaches are restricted only to areas where they can have their maximum effect and helps to 
strike a balance between computing efficiency and accuracy. 

3. Practical Considerations 

According to the particular application requirements [5], the choice of best construction method can vary. Because 
numerical methods give accurate results, but require expensive computations, real-time applications benefit from 
the computational efficiency provided by linear interpolation.  

In actual implementations, it's common practice to combine such methods to get what the conical curve demands. 
One instance of this is through linear interpolation [9] as the initial shape for approximation and then refining it with 
Bézier curves [16] or numerical methods [17] for better precision.  

In brief, the micro-cantilever structure is subjected to a microscopic and elastic bending mode. Because of this, micro-
cantilever design methods are still widely used in computer science departments at most major universities. A 
conical curve - type structure can actually be light and thin, or thick and heavy, and makes use of characteristics 
which promote actualizing function. 

4. Conclusion 

There are a range of mathematical techniques for creating conics using many different kinds of geometries. A simple 
way, like linear interpolation, gets the job done when you need to do real computations rapidly. On the contrary, 
quadratic and cubic Bezier approaches to the conical curve are very flexible tools. The use of approximation methods, 
based on geometric forms such as circles, is a kind of compromise between being accurate and simple, so it suits well 
for situations when computing speed is paramount. Finally, numerical methods used in computational geometry and 
engineering have high precision and are extremely useful. They are based on solving differential equations and using 
finite element techniques. Conical curves may be made to satisfy the many requirements of their intended uses by 
designers by carefully selecting one strategy, or even combining approaches, by knowing the advantages and 
disadvantages of each. 
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