Math Page 7 - 12 Noori .F / Karrar .S

On Fuzzy Measure on Fuzzy sets

Noori F. Al-Mayahi Department of Mathematics College of Computer Science and IT University of Al-Qadisiya Email: nfam60@yahoo.com Karrar S. Hamzah
Department of Mathemat
College of Computer Science and IT
University of Al-Qadisiya
Email: karrar638@gmail.com

Recived: 2\\\2017 Revised: 14\\5\\2017 Accepted: 29\\5\\2017

Abstract: In this paper, we study the fuzzy measure on fuzzy sets and prove some new properties. **Keywords:** Fuzzy measure, semi continuous fuzzy measure, null additive fuzzy measure, fuzzy measure accountably weakly null-additive fuzzy measure.

Mathematics subject classification: 20CXX.

1. Introduction

The fuzzy measure, defined on σ -field, was introduced by Sugeno [4]. Ralescu and Adams [10] generalized the concepts of fuzzy measure and fuzzy integral to the case that the value of a fuzzy measure can be infinite, and to realize an approach from Subjective.

Wang [7,11] and Kruse [17] studied some structural characteristics of fuzzy measures and proved several theorem about fuzzy measure.

Wang [7, 11] introduced the concept of 'autocontinuity of a set function', used it with regard to the above-mentioned researches, and obtained a series of new results.

The notion of fuzzy measure was extended by Avallone and Barbieri, Jiang and Suzuki [14] Narukawa and Murofushi [8] , Ralescu and Adams [10] as a set function which was defined on $\sigma\text{-field}$ with values in $[0,\infty]$. After that, many authors studied the fuzzy measure and proved some results about it as Guo and Zhang [8] Kui [13], Li and Yasuda [6] Lushu and Zhaohu [15] Minghu [16].

In this paper, we mention the definition of Fuzzy Measure on Fuzzy
Set with some Properties, and prove some new relations deal with fuzzy measure.

Definition (1): [18, 19]

Let Ω be anon empty set, a fuzzy set A in Ω (or a fuzzy subset in Ω) is a function from Ω into I, i.e. $A \in I^{\Omega}$. A(x) is interpreted as the degree of membership of element x in a fuzzy set A for each $x \in \Omega$. a fuzzy set A in Ω is can be represented by the set of pairs:

$$A = \{(x, A(x)) : x \in \Omega \}$$

Note that every ordinary set is fuzzy set, i.e. $P(\Omega) \subseteq I^{\Omega}$.

Definition (2): [1, 2]

A family \mathcal{F} of fuzzy sets in a set Ω is called a fuzzy σ —field on a set Ω If,

- 1. $\phi, \Omega \in \mathcal{F}$.
- 2. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.
- 3. If $\{A_n\} \subset \mathcal{F}, n = 1,2,3,...$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

Evidently, an arbitrary σ -field must be fuzzy σ -field.

A fuzzy measurable Space is a pair(Ω, \mathcal{F}), where Ω is a set and \mathcal{F} is a fuzzy σ —field on Ω . a fuzzy set A in Ω is called fuzzy measurable (fuzzy measurable with respect to the fuzzy σ —field) if $A \in \mathcal{F}$, i.e. any member of \mathcal{F} is called a fuzzy measurable set.

Definition (3) [3]:

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty]$ is said to be

- (1) Finite if, $\mu(A) < \infty$ for each $A \in \mathcal{F}$.
- (2) Semi-finite, if for each $A \in \mathcal{F}$ with $\mu(A) = \infty$, there exists $B \in \mathcal{F}$ with $B \subseteq A$ and $0 < \mu(B) < \infty$.

(3) Bounded, if $\sup\{|\mu(A): A \in \mathcal{F}|\} < \infty$

(4) σ -finite, if for each $A \in \mathcal{F}$, there is a sequence $\{A_n\}$ of sets in \mathcal{F} such that

$$A \subset \bigcup_{n=1}^{\infty} A_n$$
 And $\mu(A_n) < \infty$ for all n .

Additive if, (5) $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A, B \in \mathcal{F}$ and $\mathbf{A} \cap \mathbf{B} = \emptyset$.

Finitely additive if, (6)

$$\mu(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} \mu(A_k)$$
 whenever A_1, A_2, \dots, A_n are disjoint sets

in \mathcal{F} .

(7) σ -additive (sometimes called Completely additive, or A counably additive) if,

$$\mu(\bigcup_{k=1}^{\infty}A_k)=\sum_{k=1}^{\infty}\mu(A_k)$$
 , whenever $\{A_n\}$ is a sequence of disjoint

sets in \mathcal{F} .

- (8) Measure, if μ is σ - additive and $\mu(A) \ge 0$ for all $A \in \mathcal{F}$.
- (9)Probability, if μ is a measure and $\mu(\Omega) = 1.$
- (10)Continuous from below at $A \in \mathcal{F}$, if $\lim_{n\to\infty} \mu(A_n) = \mu(A)$, whenever

 $\{A_n\}$ is a sequence of sets in \mathcal{F} , and $A_n \uparrow A$.

- Continuous from above at $A \in \mathcal{F}$, (11)if $\lim_{n\to\infty} \mu(A_n) = \mu(A)$, whenever $\{A_n\}$ is a sequence of sets in \mathcal{F} , and $A_n \downarrow A$.
- Continuous at $A \in \mathcal{F}$, if it is (12)continuous both from below and from above at A.

Definition (4): [4]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty]$ is said to be a fuzzy measure on (Ω, \mathcal{F}) if it satisfies the following properties:

(1) $\mu(\emptyset) = 0$

(2) If $A, B \in \mathcal{F}$ and $A \subseteq B$, then $\mu(A) \leq$ $\mu(B)$

Definition (5): [5]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty]$ is called:

Upper semi continuous fuzzy measure if and only if

$$\lim_{n \to \infty} \mu(A_n) = \mu(\bigcup_{n=1}^{\infty} A_n)$$

whenever $\{A_n\}$ is increasing sequence.

(2) Lower semi continuous fuzzy measure if and only if

$$\lim_{n\to\infty}\mu(A_n) = \mu(\bigcap_{n=1}^{\infty}A_n)$$

whenever $\{A_n\}$ is decreasing sequence.

- Semi continuous fuzzy measure (3)if it is both upper and lower semi continuous fuzzy measure.
- (4) Regular if and only if $\Omega \in \mathcal{F}$ and $\mu(\Omega) = 1$.

Definition (6): [5]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is said to be

- 1. Exhaustive if $\mu(A_n) \to 0$ whenever $\{A_n\}$ is infinite sequence of disjoint sets in \mathcal{F}
- 2. Order-continuous if $\mu(A_n) \to 0$, whenever $A_n \in \mathcal{F}$, n = 1,2,... and $A_n \downarrow \emptyset$.

Definition (7): [6]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is said to be additive, if $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A, B \in \mathcal{F} \text{ and } A \cap B = \emptyset.$

Definition (8): [6, 7]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is said to be Null-additive, if $\mu(A \cup B) = \mu(A)$ whenever $A, B \in \mathcal{F}$ such that $A \cap B = \emptyset$, and $\mu(B) =$ 0.

Definition (9): [8]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is said to be weakly null-additive, if for any $A, B \in \mathcal{F}$,

$$\mu(A) = \mu(B) = 0 \Rightarrow \mu(A \cup B) = 0$$

Remark (10):

The concept of null-null additive stems from a wings textbook which the book[8] derived from, in which it is said to be weak null additive. But we consider that it is more precise and vivid to call it "null- null additive".

Definition (11):

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is said to be finitely weakly null-additive, if for any $\{A_i\} \subset \mathcal{F}$, $\mu(A_i) = 0$

, for all
$$i = 1, ..., n \Rightarrow \mu\left(\bigcup_{i=1}^{n} A_i\right) = 0$$

Definition (12): [6]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is said to be Countably weakly null-additive, if for any $\{A_n\} \subset \mathcal{F}, \mu(A_n) = 0$

, for all
$$n \ge 1 \Longrightarrow \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = 0$$

Definition (13): [6]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is said to be null-continuous, if $\mu(\bigcup_{n=1}^{\infty} A_n) = 0$ for every increasing sequence $\{A_n\}$ in \mathcal{F} such that $\mu(A_n) = 0$, for all $n \ge 1$.

Definition (14):[9]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is said to be null-subtractive, if we have

 $\mu(A \cap B^c) = \mu(A)$, whenever $A, B \in \mathcal{F}$ and $\mu(B) = 0$.

Definition (15):[9]

Let $A \in \mathcal{F}$, $\mu(A) < \infty$. μ is called pseudo-null-subtractive with respect to A, if for any $B \in A \cap \mathcal{F}$, we have

 $\mu(B \cap C) = \mu(B)$, whenever $C \in \mathcal{F}$, $\mu(A \cap C) = \mu(A)$.here

 $A \cap \mathcal{F} = \{A \cap D : D \in \mathcal{F}\}.$

Definition (16):[9]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is said to be

auto continuous from above (resp. autocontinuous from below), if $\mu(B_n) \to 0$ implies $\mu(A \cup B_n) \to \mu(A)$ (resp.

 $\mu(A\cap B^c{}_n)\to \mu(A))$

, whenever $A \in \mathcal{F}, \{B_n\} \subset \mathcal{F}$, μ is called autocontinuous if it is both autocontinuous from above and autocontinuous from below.

Definition (17): [9]

Let $A \in \mathcal{F}$, $\mu(A) < \infty$, μ is called pseudo-autocontinuous from above with respect to A (resp. from below with respect to A), if for any $\{B_n\} \subset \mathcal{F}$, when

 $\mu(B_n \cap A) \to \mu(A)$, then $\mu(B_n^c \cap A) \cup C) \to \mu(C)$,

(resp. $\mu(B_n \cap C) \to \mu(C)$ whenever $C \in A \cap \mathcal{F}$.

 μ is called pseudo-autocontinuous with respect to A, if it is both pseudo-autocontinuous from above with respect to A and pseudo-autocontinuous from below with respect to A.

2. Main results

Theorem (1):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space, if μ is σ – additive then

 $\mathcal{F}^* = \{A\Delta B, A \in \mathcal{F}, B \subseteq \Omega \text{ and } \mu(B) = 0\}$ is fuzzy σ –field on Ω .

Proof:

(1) Since
$$\Omega \Delta \emptyset = \Omega$$
, $\Omega \in \mathcal{F}$
, $\emptyset \subseteq \Omega$ and $\mu(\emptyset) = 0$
, we have $\Omega \in \mathcal{F}^*$

(2) Let
$$V \in \mathcal{F}^*$$
, we have $V = A\Delta B$, $A \in \mathcal{F}$, $B \subseteq \Omega$ with $\mu(B) = 0$ $\Rightarrow V^c = (A\Delta B)^c = [(A/B) \cup (B/A)]^c$ $= (A^c \cap B^c) \cup (A \cap B)$ $= (A^c/B) \cup (B/A^c)$

= $A^c \Delta B$, where $B \subseteq \Omega$ with $\mu(B) = 0$ Since $A \in \mathcal{F}$ and \mathcal{F} is a fuzzy σ –field, we have

$$A^c \in \mathcal{F}$$
 and $B \subseteq \Omega$ with $\mu(B) = 0$
 $\Rightarrow V^c = A^c \Delta B, A^c \in \mathcal{F}$ and $B \subseteq \Omega$ with $\mu(B) = 0$
 $\therefore V^c \in \mathcal{F}^*$

(3) Let $\{V_n\}$ be a sequence of sets in \mathcal{F}^* with

 $V_n = A_n \Delta B_n$, $A_n \in \mathcal{F}$, $B_n \subseteq \Omega$ and $\mu(B_n) = 0$ for all n.

We have

$$\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$$

$$\mathcal{F} \text{ is fuzzy } \sigma - \text{field}$$

$$\bigcup_{n=1}^{\infty} B_n \subseteq \Omega \text{ and } \mu \left(\bigcup_{n=1}^{\infty} B_n\right) = \sum_{n=1}^{\infty} \mu(B_n) = \mathbf{0}$$

$$\bigcup_{n=1}^{\infty} V_n = \bigcup_{n=1}^{\infty} (A_n \Delta B_n)$$

$$V_{n} = \bigcup_{n=1}^{\infty} (A_{n} \Delta B_{n})$$

$$= \bigcup_{n=1}^{\infty} [(A_{n} / B_{n})]$$

$$= \bigcup_{n=1}^{\infty} A_{n} \Delta \bigcup_{n=1}^{\infty} B_{n}$$

$$\Rightarrow \bigcup_{n=1}^{\infty} V_{n} \in \mathcal{F}^{*}$$

Consequently \mathcal{F}^* is fuzzy σ —field on Ω .

Remark (2):

The union of a collection of fuzzy σ –field need not be fuzzy σ –field as in the following example.

Example (3):

Let A, B, C, D are fuzzy sets and $\Omega = \{A(x), B(x), C(x), D(x)\}$, such that

$$A(x), B(x), C(x), D(x), \text{ such that}$$

$$A(x) = \begin{cases} 2x & 0 \le x \le 1/2 \\ 0 & 1/2 < x \le 1 \end{cases}$$

$$B(x) = \begin{cases} 0 & 0 \le x \le 1/4 \\ 2x & 1/4 < x \le 1/2 \\ 1 & 1/2 < x \le 1 \end{cases}$$

$$C(x) = \begin{cases} 1 - 2x & 0 \le x \le 1/2 \\ 1 & 1/2 < x \le 1 \end{cases}$$

$$D(x) = \begin{cases} 1 & 0 \le x \le 1/4 \\ 1 - 2x & 1/4 < x \le 1/2 \\ 0 & 1/2 < x \le 1 \end{cases}$$

$$\mathcal{F}_1 = \{\emptyset, A(x), C(x), \Omega\} , \quad \mathcal{F}_2 = \{\emptyset, A(x), C(x), \Omega\}$$

Let $\mathcal{F}_1 = \{\emptyset, A(x), C(x), \Omega\}$, $\mathcal{F}_2 = \{\emptyset, B(x), D(x), \Omega\}$ are two fuzzy σ –fields, but $\mathcal{F}_1 \cup \mathcal{F}_2$ is not fuzzy σ –field.

Solution:

First we must prove that \mathcal{F}_1 and \mathcal{F}_2 is fuzzy σ -field.

 \mathcal{F}_1 Is fuzzy σ -field

- (1) $\emptyset, \Omega \in \mathcal{F}_1$.
- (2) (i) Let $A(x) \in \mathcal{F}_1$, to prove $A^c(x) \in \mathcal{F}_1$

From Definition (1.1.6) we get on

$$A^{c}(x) = 1 - A(x)$$

$$= 1 - \begin{cases} 2x & 0 \le x \le 1/2 \\ 0 & 1/2 < x \le 1 \end{cases}$$

$$= \begin{cases} 1 - 2x & 0 \le x \le 1/2 \\ 1 & 1/2 < x \le 1 \end{cases}$$

$$= C(x)$$

But $C(x) \in \mathcal{F}_1$ $\Rightarrow A^c(x) \in \mathcal{F}_1$.

(ii) Let $C(x) \in \mathcal{F}_1$, to prove $C^c(x) \in \mathcal{F}_1$

$$C^{c}(x) = 1 - C(x)$$

$$= 1$$

$$-\begin{cases} 1 - 2x & 0 \le x \le 1/2 \\ 1 & 1/2 < x \le 1 \end{cases}$$

$$= \begin{cases} 2x & 0 \le x \le 1/2 \\ 0 & 1/2 < x \le 1 \end{cases}$$

$$= A(x)$$

But $A(x) \in \mathcal{F}_1$

$$\Rightarrow C^c(x) \in \mathcal{F}_1$$

(iii) It is clear that $\emptyset^c = \Omega \in \mathcal{F}_1$

And $\Omega^c = \emptyset \in \mathcal{F}_1$

(3) (i) if
$$0 \le x \le 1/2$$

 $\Rightarrow (A \cup C)(x) = \max\{A(x), C(x)\}$
 $= \max\{2x, 1 - 2x\} = 2x$

(a) If
$$x = 0$$

$$\Rightarrow (A \cup C)(x) = 0$$

$$= \emptyset(x) \in \mathcal{F}_{1}$$

$$(A \cup C)(x) = \emptyset$$

$$(A \cup C)(x) = 1 = \Omega(x) \in \mathcal{F}_1.$$

(ii)
$$1/2 < x \le 1$$

 $\Rightarrow (A \cup C)(x) = \max\{A(x), C(x)\}$
 $= \max\{0,1\} = 1$

 $\therefore A \cup \mathcal{C}(x) = 1 = \Omega(x) \in \mathcal{F}_1 \ .$

 $\therefore \mathcal{F}_1$ Is fuzzy σ —field

In the same way we can prove that \mathcal{F}_2 is fuzzy σ —field.

Now to prove that $\mathcal{F}_1 \cup \mathcal{F}_2$ is not fuzzy σ –field

$$A_{1}, \quad B(x) = \begin{cases} 0 & 0 \le x \le 1/4 \\ 2x & 1/4 < x \le 1/2 \\ 1 & 1/2 < x \le 1 \end{cases}$$

(i) if
$$0 \le x \le 1/4$$

 $\Rightarrow (A \cup B)(x) = \max\{A(x), B(x)\} = \max\{2x, 0\} = 2x$

(a) If
$$x = 0 \implies A \cup B(x) = 0 = \emptyset(x) \in \mathcal{F}_1$$
.

(b) If
$$x = \frac{1}{4} \Longrightarrow (A \cup B)(x) = 1/2 \notin \mathcal{F}_1$$
.

 $\therefore \mathcal{F}_1 \cup \mathcal{F}_2$ is not fuzzy σ -field

Theorem (4):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space, suppose that \mathcal{F}^* is σ -field and μ^* is a measure on (Ω, \mathcal{F}^*) , for any $A \in \mathcal{F}$ such that $\mu(B) = \mu^*(A \cap B)$ For any $B \in \mathcal{F}^*$ is fuzzy measure on (Ω, \mathcal{F}) .

Proof:

- (1) Since \mathcal{F}^* is σ -field $\Longrightarrow \emptyset \in \mathcal{F}^*$
- $\therefore \mu(\emptyset) = \mu^*(A \cap \emptyset) = \mu^*(\emptyset) = \emptyset.$
- (2) Let $A_1, A_2 \in \mathcal{F}$, if $A_1 \subseteq A_2$, then $\mu(A_1) = \mu^*(A_1 \cap B) \le \mu^*(A_2 \cap B) = \mu(A_2)$

 $\therefore \mu$ is fuzzy measure on (Ω, \mathcal{F}) .

Theorem (5):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space such that there is $B \in \mathcal{F}$ with

 $0 < \mu(B) < \infty$, define $\mu^* : \mathcal{F} \to [0, \infty]$ by $\mu^*(A) = \mu(A \cap B) / \mu(B)$, then $(\Omega, \mathcal{F}, \mu^*)$ is fuzzy measure space.

Proof:

(1)

(2)

$$\mu^*(\emptyset) = \mu(\emptyset \cap B)/\mu(B) = 0.$$

let $A, B \in \mathcal{F}$, if $A \subseteq B$, we have $\mu(A) \le \mu(B)$

Since
$$A \subseteq B$$
, hence $A \cap B = A$
 $\Rightarrow \mu(A \cap B) = \mu(A)$
 $\Rightarrow \mu(A \cap B) = \mu(A) \le \mu(B)$
 $\Rightarrow \mu(A \cap B)/\mu(B) \le \mu(B \cap B)/\mu(B)$
 $\Rightarrow \mu^*(A) \le \mu^*(B)$.

Consequently μ^* is a fuzzy measure.

Theorem (6):

Let (Ω,\mathcal{F}) be a fuzzy measurable space, μ,ν be a fuzzy measures on Ω , then $\mu+\nu$ which denoted by

$$(\mu + \nu)(A) = \mu(A) + \nu(A)$$

is fuzzy measure on Ω .

Proof:

- (1) Since μ, ν be two fuzzy measures $\Rightarrow (\mu + \nu)(\emptyset) = 0$.
- (2) let $A, B \in \mathcal{F}$, if $A \subseteq B$, we have $(\mu + \nu)(A) = \mu(A) + \nu(A) \le \mu(B) + \nu(B) = (\mu + \nu)(B)$.

So $\mu + \nu$ is fuzzy measure.

Noori .F / Karrar .S

Corollary (1):

Let (Ω, \mathcal{F}) be a fuzzy measurable space, μ be a fuzzy measure on Ω , and $\alpha > 0$, define a set function($\alpha\mu$)(A) = $\alpha\mu$ (A), then $\alpha\mu$ is fuzzy measure on Ω .

Proof:

Since μ be a fuzzy measure, we have (1) $(\alpha \mu)(\emptyset) = \alpha \mu(\emptyset) = 0$.

(2) let
$$A, B \in \mathcal{F}$$
, if $A \subseteq B$, we have $\mu(A) \le \mu(B)$ $\Rightarrow (\alpha \mu)(A) = \alpha \mu(A) \le \alpha \mu(B)$ $= (\alpha \mu)(B)$.

So $\alpha\mu$ is fuzzy measure.

Remark (7)

The points (1) and (2) from Definition (5) explain fuzzy measure is upper semi continuous and lower semi continuous; the following results take us to the converse direction.

Theorem (8)

Let (Ω, \mathcal{F}) be a fuzzy measurable space and let μ be a function $\mu: \mathcal{F} \to \mathbb{R}_+$, if μ is additive, non-decreasing and upper semi continuous, then μ is fuzzy measure.

Proof:

(1) Since
$$A = A \cup \emptyset$$

Also μ is additive we have

$$\mu(A) = \mu(A \cup \emptyset) = \mu(A) + \mu(\emptyset)$$

$$\Rightarrow \mu(\emptyset) = 0$$
(1) Let $A, B \in \mu$, if $A \subseteq B$, we have
$$B = A \cup (B \setminus A)$$
and $A \cap (B \setminus A) = \emptyset$

Since μ is additive we have, we obtain

$$\mu(B) = \mu(A) + \mu(B \setminus A)$$

Consequently

$$\mu(B \setminus A) = \mu(B) - \mu(A)$$

In addition, $\mu(B \setminus A) \ge 0$

Hence

$$\mu(A) \leq \mu(B)$$

Then μ is fuzzy measure.

Theorem (9):

Let (Ω, \mathcal{F}) be a fuzzy measurable space, let $\{A_n\}$ be a sequence of disjoint fuzzy set in \mathcal{F} and it is decreasing , if $\mu(A_n) < \infty$ and μ is lower semi continuous fuzzy measure at \emptyset , then $\lim_{n\to\infty} \mu(A_n) = 0$.

Proof:

Since $\{A_n\}$ is lower continuous fuzzy measure at Ø, we have

$$\lim_{n\to\infty}\mu(A_n)=\mu(\emptyset)$$

But

$$\mu(\emptyset) = 0$$

Consequently, we have

$$\lim_{n\to\infty}\mu(\mathbf{A}_n)=0.$$

Theorem (10):

Let (Ω, \mathcal{F}) be a fuzzy measurable space, and for any $A \in \mathcal{F}$, $\mu(A) \neq 0$, then μ is null additive.

Proof:

If there exists some set $B \in \mathcal{F}$ that $\mu(B) = 0$, then $B = \emptyset$.

Consequently, for any $A \in \mathcal{F}$, have $\mu(A \cup B) = \mu(A)$.

Theorem (11):

Let (Ω, \mathcal{F}) be a fuzzy measurable space, if μ is autocontinuous from below, then it is nullsubtractive.

Proof:

Let
$$A, B_n \in \mathcal{F}$$

Since if μ is autocontinuous from below, we have

$$\lim_{n\to\infty}\mu(B_n)=0$$

Also we have

$$\mu(A \cap B_n^c) \to \mu(A)$$

Consequently μ is null-subtractive.

Theorem (12):

Let (Ω, \mathcal{F}) be a fuzzy measurable space, if μ is pseudo-autocontinuous from below with respect to A, then it is pseudo-nullsubtractice with respect to A.

Proof:

Let
$$A, B_n \in \mathcal{F}$$

Since if μ is pseudo-autocontinuous from below, we have

$$\mu(A) < \infty$$
. And $C \in A \cap \mathcal{F}$

$$\mu(B_n\cap C)\to \mu(C)$$

Consequently μ is pseudo-null-subtractice with respect to A.

Theorem (13):

Let (Ω, \mathcal{F}) be a fuzzy measurable space, if μ is upper semi continuous fuzzy measure and ccountably weakly null additive then μ is exhaustive.

Proof:

Let $\{A_n\}$ be a disjoint of sequence of sets in \mathcal{F} Since μ is countably weakly null additive

$$\mu(A_n) = 0$$
, for all $n \ge 1$

$$\Rightarrow \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = 0$$
 Also μ is upper semi continuous

$$\Rightarrow \lim_{n \to \infty} \mu(A_n) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right)$$
$$\Rightarrow \lim_{n \to \infty} \mu(A_n) = 0$$

 $\therefore \mu$ is exhaustive.

Theorem (14):

Let (Ω, \mathcal{F}) be a fuzzy measurable space, if μ is ccountably weakly null additive then μ is nullcontinuous.

Noori .F / Karrar .S

Proof:

Let $\{A_n\}$ be a increasing sequence of sets in \mathcal{F} , such that

 $\mu(A_n) = 0$, for all $n \ge 1$ Since μ is countably weakly null additive

$$\Longrightarrow \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = 0$$

 $\therefore \mu$ is null-continuous.

References

- [1] Qiao Zhong,"Riesz's theorem and Lebesgue's theorem on the fuzzy measure space", busefal 29, (1987), 33-41.
- [2] E. P. Klement, "Fuzzy u-algebras and fuzzy measurable functions", Fuzzy *Sets and Systems* 4, (1980), 83-93.
- [3] Ash, R.B, "Probability and Measure Theory" Second edition, 2000, London.
- [4] Sugeno, .M" Theory of Fuzzy Integrals and Its Applications", Ph.D. Dissertation, Tokyo Institute of Technology, 1975.
- [5] G. J. Klir, "Convergence of sequences of measurable functions on fuzzy measure space", fuzzy set and system 87, (1997),317-323.
- [6] Jun Li, Radko Mesiar and Endre Pap, "Atoms of weakly null- additive monotone measures and integrals", Information Science 257, (2014), 183-192.
- [7] Wang Zhenyuan, "The Autocontinuity of Set Function and the Fuzzy Integral", journal of mathematical analysis and application, 99, (1984), 195-218.
- [8] Z. Wang and G. J. Klir, "Fuzzy measure theory" Plenum Press, New York, 1992.

- [9] QIAO Zhong," On Fuzzy Measure and Fuzzy Integral on Fuzzy Set", Fuzzy Sets and Systems 37,(1990),77-92 North -Holland.
- [10] D.Ralescu, G.Adms, "The fuzzy integral", J.Math.Anal.Appl.75, (1980), 562-570. [11] Wang Zhenyuan, "Asymptotic structural characteristics of fuzzy measure and their applications", Fuzzy Sets and Systems 16, (1985), 277-290.
- [12] Kruse, R., "on the construction of fuzzy measures", Fuzzy Sets and Systems, 8, (1982), 323-327.
- [13] L. Y. Kui, "The completion of fuzzy measure and its applications", Fuzzy sets and Systems 146, (2001), 137-145.
- [14] Q. Jiang, H. Suzuki, "Lebesgue and Saks decompositions of σ –finite fuzzy measure", Fuzzy Set and Systems, 75, (1995), 181-201.
- [15] L. Lushu and S. Zhaohu, "The fuzzy setvalued measures generated by fuzzy random variables", Fuzzy Set and Systems, 97, (1998), 203-209.
- [16] H. Minghu, W. Xizhao and W. Congxin, "Fundamental convergence of sequence of measureable functions on fuzzy measure space", Fuzzy Sets and Systems, 95,(1998), 77-81.
- [17] Kruse, R., "on the construction of fuzzy measures", Fuzzy Sets and Systems, 8, (1982), 323-327.
- [18] L. A. Zadeh, Fuzzy sets, Information and Control, 8, (1965), 338-353.
- [19] H. J. Zimmerman, "fuzzy set theory and Its Application", Kluwer Academic Publisher, 1991.

حول القياس الضبابي على المجموعات الضبابية

نوري فرحان المياحي كرار سعد حمزه جامعة القادسية / كلية علوم الحاسوب وتكنولوجيا المعلومات / قسم الرياضيات

المستخلص:

في هذا البحث، سندرس القياس الضبابي على مجموعات ضبابية ونبر هن بعض الخصائص الحديدة