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Introduction:

The notion of converge is one of difference
converge theorems used ingeneral the basicnotion
inanalysis. There're two topologies that lead to
equivalent results. One of them base on the notion of
anet in 1922 due to Moore and Smith [1], another one,
which going back to work of Cartan [2] in 1937 is
based on the notion of a filter. Al-Janabi S. H. and Al-
Ysaary F. J. Provided a new concepts of minimal
continuous, minimal open and minimal closed function
also concepts of minimal proper function in [3] .
Alimohammady M. and Roohi M. in [4] give the
definition of minimal closed set (m-closed set) and give
the definition of minimal continuous function (m-
continuous function) and study the properties of it. Ravi
O., Ganesan S., Tharmar S. and Balamukugan in [5] give
the definition of minimal closed function (m-closed
function) and study some properties of it. Also Al-Janabi
S. H. and Al-Ysaary F. J. in [3] used it to construct a
definition of minimal proper function and certain types
of it (m,-proper, .m-proper and ,m_-proper functions) .
For asubset E of X, the minimal structure closure and

the minimal structure interior of E in X are denoted by
ms

E and E respectively [4],[6],[7] . Now, In this
paper (S, Ms)
which not separation axiom are assumed unless
otherwise mentioned. For a non empty set S the T,

represent minimal structure space on

I'm denoted the topology on S induced by minimal
structure. Finally, we give some properties of the ms-
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proper, ms..-proper functions by using the concept of
minimal structure exceptional (msEy) set. I'm use T, to
denote the usual topology. In this paper every word
(minimal) is mean (minimal structure).

1. Basic definitions and notations:

We introduce some elementary concept which we need
in our work.

Definition 1.1 [4]: Let S be a non-empty setand P(S)
the power set of X . A subfamily Mg of P(S) is
called aminimal structure (briefly m-structure) on S if
$,SeMg. In this case (S,Mg) is said to be
minimal structure space (briefly ms-space) . Aset
E €P(S) is said ms-open set if Ee Mg . CeP(S) is

an ms-closed setif C* e Mg .
Remark 1.2 [3]: If (S,Mg) is ms-space then there's
always asubfamilies T, of M satisfies the conditions

of topological spaces (at least the family {#,S}) and the
intersection of these families represent the indiscrete
topology on S. Ty, called induced topology from
minimal structure M, . If E is open setin S is mean

EeT,, . Also if C isclosed set in S mean that

c’ €Ty, .
Remark 1.3 [3]:

i. Forall open set is anms-open set;
ii. Forall closed set is anms-closed set.

The converse isn't true in general and we show that
from the following next example.
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Example 1.4: Let S={ab,c} such that
Mg :{¢,S,{a},{b},{b,c}} is m-structure onS and
Tiw, ={#,S.{b}} be one of the topological space
induced by the minimal structure, then the set {a} is ms-
open (also ms-closed) set, but {a},{a}* ={b,c}eT,,_.

Definition 1.5 [8]: Let S be a non-empty set and Mg

an m-structure on S. For asubset E of S, the
ms

minimal closure of E (briefly E ) and the minimal
interior of £ (briefly E ), defined by:

_ms c

E =({C:EcC,C M}

E™ =U[0:0cE,EeM,)}

Definition 1.6 [3]: An ms-space (S,Mg) is said to be

an:

(i) ums-space if the arbitrary union of ms-open sets
is an ms-open set.

(if) ims-space if any finite intersection of ms-open
sets is an ms-open set.

Definition 1.7: Let S be an ms-space and H =S . An

ms-neighborhood of H is any subset of S which contains

ms-open set containing H . The ms-neighborhod of asubset

{s} is also called ms-neighborhod of the points .

Definition 1.8 [9]: An ms-space S is called ms-

Hausdorff (ms-T,) if for any two points s,teS

distinction between it's there are two ms-open sets K, L

of S distinction between it such that seK and teL.

Definition 1.9: If f:S —V be afunction of aspace S

into aspace V then f is called:

i. ms-continuous if f*(H)e M, forever H € M, [8].

iil. ms_ -continuous if there is non-indiscrete topology Ty,

sothat f*(H)eMg,VH T, [3].

Now, we review some basic definitions, theorems and
remarks about a net.
Definition 1.10 [10]: Aset X is said to be adirected if
there's arelation < on X satisfy:

i. x<xforall xeX.

ii. If X, <X,and x, < xzthen x, <x,.

iii. If X,X,€X, there's some x; € X with X, <X,
and X, < X;.

Definition 1.11 [10]: Anet in aset s is afunction
7. X =S, where X is directe set. The point y(x) is

denoted by y, .
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Definition 1.12 [10]: Asubnet of anet y: X — S is the
composition yo@, where ¢:M —->X and M is
directed set, sothat:

(i) (m) <ep(m,), where m <m,.
(i) Forever xeX there's some

m e M suchthat

X<e@(m). For meMthepoint  yop(m)is
often written y,. .
Definition 1.13 [11]: Let (x,),.x be anet in

atopological space S and Ec S,s€S thus:

(1) (xy)ux is called eventual in E if there's x, € X
sothat y, € E forever x>x,.

(i) (xy)4x I1s called frequentin E if forever xe X
there's x, € X with x, > x suchthat y, €E.

(i) (x,)yx be said to be convergence to s if (y,)..x
eventually in each neighborhood of s (written
¥, — X ). Thepoint x is said tobe alimit point of

(ZX)XEX .

(iv) (xy)ix Dbesaidtobehas s as acluster pointif
(7)wx Is frequent ineach neighborhod of s
(written y, «cs).

2. ms-Converge of Nets:
In this part, I'm introduce other types of converge
namely  minimal  structure  convergence  (ms-
convergence) of net and study some properties of the
concept of ms-limit point and ms-cluster point of the net
in a given space. Also, we give some properties, remarks
and examples about this subject.

Definition 2.1 [12]: Let (y,),.x IS anetin ms-space S,

seS, then (x,),x is:
i. anms-converge to s. If (y,),.x IS eventual for

ever ms-neighborhod of S (written y, ———s).
The point s is said ms-limitpoint of (y,),.x -

ii. said tohave s as ms-cluster point if (y,) it's

xeX

frequent in each ms-neighborhod of s ( written

ms

X ES).
Remark 2.2: Let S be an ms-space and let EcCS, y,
isanetin S, seS then the following holds If:
i x,——=—>sin (5T ) then y, —sin (S,My).
ii. y,——>s then y,—>s in (S,My).

ms

iii. y,ocsin(s,T, ) then y, o«cs in (S,My).

iv. g,csin (ST, ) forever T, in S then y, ocs
in (S,My)
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Note that If y, isanetin S, seS sothat y: X —S
in (S,My) then x, is not necessary be y, ——=—S in
(S,Ty,) - And we see that from next example.

Example 2.3: If S={1-1}, Mg ={¢,S,{8,{-13} be an
ms-structure on S, and let T,, ={¢,S}(indiscrete

topology on S), and let {(-1)"} be a net in S then
{(-1D)"} eventually in every neighborhood of 1
(supposing that the open set is only ¢,S) but {(-1)"} is
not eventually in every ms-neighborhood of 1, Since {1}
is an ms-neighborhood of 1 but {(-1)"} is not eventually

in {1}

Theorem 2.4: An ms-space S is ms-T, ms-space iff
each ms-convergent netin S has aunique ms-limit point.
Proof: Let S is ms-T, ms-space and (y,),.x be anet in

xeX
S suchthat y,—=—s, y,—=—>t and s=t. Since
S Dbe an ms-T, ms-space. There're Ke N, (s) and

L € N,,,(t) suchthat K n L = ¢. Since y, s s, there's
m.

X, € X suchthat y, € K for all x > x,. Since y, = t,
there is x; € X such that x, €L forall x = x, . Since
X is directed set and x;,, x; € X, then there's x, € X
suchthat x, >x,andx, =2 x;. Then y,€K for
everx = x, and y, € L forall x = x,,thus K n L # ¢,
this is a contradiction. So s = t.

Conversely: Suppose that Sis not ms — T, ms-space,
there are s,t€Sand s=+t, for ever K € N,,(s),
L €Ny (t)sothat KNL#¢. Pt Ne={KNL:KE€
N,s(s)and L € N,,,.(t)}, where N is directed set. Thus
for all X € N{ there's x, € X then (x,) e nt isanetins.

To prove)(xriisand )(xriit, let G € N,,,,(s) thus
GENLGNS 0. Thus yx,e€G for all X=>gG,

SO Xx 5. Also, letB € N,s(t) thenB € N;,BNS *#

@. Thus y, €Y forallX > G, so ergt- This is a
contradiction.
Theorem2.5: If S be an ims-space and E < S, then:

i. Apoint s € S is ms-limit point of E iff there's anet in

E — {s} ms-convergence to s.

ii. Aset Eis ms-closed in Siff nonet in E ms-
convergence to apoint in E€.

Aset Eis ms-openin Siff nonet in E°
convergence to apointin E.

Proof: (i) Let sis ms-limit point of E. To prove that
there is anet (y,),.x in E — {s} so that x, X s. since s
is ms-limit point of E, for each K € N;,,;(s), K N E{s} #
¢. Then (MV,,4(s), S) is directed set by inclusion. Since
KNE—{s}+#¢, for all K€ M,(s) then there is
xx E KNE—{s}. Define y:N,()—->E—{s} by
(K) = xx forall K € N;s(s), then (xx) ke, (s) 1S anet
in E—{s}. To prove it )(Knis, let K € V,,(s) to
finder x, € & so that y, € K for all x > x,. suppose
xo = K thenforall x = x4 ,x = L € N;5(s), i.e,,

iii. ms-
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L=KoeLcK. Then y,=x(x)=x(L)=yx,€Ln
E—{s}cLc K then y, € K forall x = x,. Thus yx
ms

—S.
Conversely: Suppose that there is a net (y,)

in

xeX
E — {s} so that y, s To prove s is ms-limit point of
E. Let K € NV;,;(s), since y, s s, then there is x, € X
such that y, € K for all x> x,. But y, € E—{s}
foreach x € X, then KNE—{s} =@ for all K€
N;s(8). Thus s is ms-limit point of E.

(ii) Let E is ms-closed set in S and there's anet (xy)xex

in E when y, B sandseEC. Thens € E™S since E is
ms-closed set, then E =E™S, hence s €E, then
E N E€ # @, this's acontradiction. Thus not net in E ms-
convergence to apoint in E€.

Conversely: Let not net in E ms-convergent to apoint in

E°. Let s € E™ then there is a net in 4 so that y, i s.

By hypotheses, given each net in E ms-convergence to

apoint in E. Thus s € E, so E = E™ implies that E is

ms-closed.

(iii) By using (i).

Remark 2.6:

i. Let f:S — V be afunction from ms-space S into ms-
space V. if(y,),.x is anet in S, then {f(x,) }rex IS
anetinV.

ii. Let f:S — V be afunction from an ms-space S onto
an ms-space V and (yy)xex be a net in V. Then
there's a net (y,) in S so that f(x,) = ¥
for ever x € X.

Theorem 2.7: If S and V be ms-spaces. A function

f:S =V is ms-continuous if and only if whenever

(7 )¢ex 15 @ netin S so that y, =z s, thenf (x,) = f(s).

Proof: Suppose f:S — V is ms-continuous and (y,)

xeX

xeX

is anet in S so that y, Zs. To prove f(xx)"iff(s) .
Let L € Nus(£(s)) in V. Then f~1(L) € Ny5(s), for
some x, € X, x = x, implies that y, € f~1(L) . Thus,
showing that f(x,) = f(s), since (y,).x iseventual in
each ms-neighborhod of s, then (f (Xx))xex iSanetinV
which is eventually in each ms-neighborhood of f(s).
ms

Therefore f(x,) — f(s).

Conversely: To prove f:S -V is ms-continuous .
Supposenot. Then there is L € N;,,(f(s)) so that
f(K) ¢ L forever K € N,.(s). Thus for ever
K € NV,,s(s) we can yx € K such that f(xx) € L.
BUt (Xi)ken,,os) 1S @ Net in S with xx —s while

(f Otx)) kens(s) doesn't ms-converge to f(s). This is
acontradiction, then f is ms-continuous function.

Definition 2.8 [13]: Let (S,M,) be an ms-space. S is
called ms-compact if for ever cover of S by sets of M
has afinite subcover. A subset K of S is called ms-
compact if for all cover of K by asubsets of Mg has
afinite subcover.
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Note that S is an ms-compact iff for all ms-open cover

of S has afinite subcover.

Remark 2.9: If the ms-space (S, Ms) is ms-compact

then the space (S, Ty, ) is compact for all T, induced

by M; . But the converse isn't true in general. As the

following example shows.

Example 2.10: Let S=R, Mg ={A: A=[a,a+1) such

that a is odd integer number}. Then

Tim, ={¢, X,[i,i+2)} is topological space induced by

Mg for all ieA so that A={i:i is odd integer

number} . Then T, is compact for all i e A and Mj

is not ms-compact since U[i,i +2) is ms-open cover

ieA
for R but there is not finite subcover.
Theorem 2.11: Let (S,Mg) be an ms-space. Then:
i. If S isan ms-compact and S —-K € Mg, then K
is an ms-compact in S .
i. |If f:(S,Mg)>V,M,) is an

continuous and E is an ms-compact subset of
S ,then f(E) isacompactinV .

ms,-

Proof:

(i) Let (S,Mg) be an ms-compact and S—K e M.
Let{U;, e Mg :iel} be an ms-opencover of K,
then (S—-K)n{U,eMy:iel}=S. Since S is
an ms-compact, there exists a finite subset 1_of 1

such that (S-K)n{U,eM;:iel }=S then
KcUU, eMg:iel } and so K is an ms-
compactin S.

(i) Let {L :iel} be acover of f(E). Then

EcU{f *(L):iel}, where f *(L;) e M. Since

E is an ms-compact, there exists a finite subset

I, of 1 so that EcU{f™(L)eM :iel}.

Then f(E)c kL eMg:iel }andso f(E) isa
compactin V .

Theorem 2.12 [11]: A spaces S

every netin S has acluster pointin s.

Theorem 2.13: Let S be an ms-space, then S is ms-
compact then ever net in S has anms-cluster pointin S.

Proof : Let (S, Mg) be an ms-compact space and

is compact iff

(Zx)ex beanetins, then (S, T, ) is acompact space
for all T, in S. Then by Theorem (2.12), the net

(Zx)xex has cluster point s in (S, Ty, ) then s is ms-

ms
clusterpoint of the net (y,),.x - (i.e. g, «<s) Hence for
all net in S has ms-clusterpoint in S.
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Corollary 2.14: If S be ms-space. Then S is ms-
compact iff every net in S has asub net which ms-
convergence to a pointin S.

Theorem 2.15 [9]: Let (S,Mg) and (V,M, ) be two
ms-spaces then Mg, ={KxL:KeMgandLeM,} is
an m-structure on SxV .

Remark 2.16: Let (S;,M ) be an m-structure Vi e A

then its clear to show that the projection function

Pr, :}1‘/[\8i — S, isan ms-continuous VA€ A .

Theorem 2.17: A net (yx,),., in a product ims-space
[1S;, 4 € A is ms-convergence to s € [[S,, if and only

if Pr, (re) — Pry(s) for all 1 € 4 (where Pr; is the A -
th projection function).

Proof: If y, TES in [ xa, since Pryare ms-continuous
function, then by the theorem (2.7) we have Pr

ms

() = Pra(s). -

Conversely: Suppose that Pry (x,) — Pry(s) for all
A€ A. Let Prit(Ky,) N Prit(Ky,) N ....n Pri(Ky,)
be a basis ms-neighborhood of s in []S;. Then for all
i=1,2,...,n, there is x; so that whenever x > x;,
Pry, € Ky,. Then x, greater than for all x;, i=
1,2,...,n, we have Pry, € K;, for all x = x,. It follows
that for all x = x,, xx € N Pry'(Ky),i=1,2,..,n.S0

ms
Xx —S.

Corollary 2.18: If (y,),.x be anetin a product ims-
space [1S; having s € [1S; as ms-cluster point, then for
each 1 € A, (Pry(xx))xex has Pry(s) for ms-cluster
point.

Now, we give the definition of ms-proper functions and

some results which are related to this concept.

Definition 2.19: Afunction f:(S,Mq)—(V,M,) is

called:

i. ms-closed if foreach ms-close set H of S, f(H)is
ms-closed in V. [5]

ii. ms,-closed if there is non-indiscrete topology T,
such that for each ms-closed set H of S, f(H) is
closed in V . [3]

Definition 2.20: Let f be a function of an ms-space S

into an ms-space V then f is said to be an:

i. ms-proper function if f is an

and the function
is an ms-closed for ever

ms-
continuous function
fxi, :SxZ >V xZ
space Z . [12]

ii. ms,-proper function if f is an ms, continuous

function and the function f xi, :SxZ 5>V xZ is

an ms_-closed for ever space Z . [3]
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Recall that a sub set E of f(S) is called exceptional set of
f which defined by:
Er = {t € f(S): there is anet (Yy)xex in S with
Xx — % and f(x,) — t}, where f is a function from an
ms-space S into an ms-space V. We shall introduce a new
characterization, which is very useful for ms-proper
function by using a special set namely, ms-exceptional (for
brief msEy) setof f.
Definition 2.21: Let f be afunction from an ms-space
S into an ms-space V, the ms-exceptional set of f (for
brief msEy) set is a subset of f(S) which defined by
msE; = {t € f(S) : ther’s anet (¥, )xex in S with

ms ms
Xx—ooand f(),) =t}
Now, we shall use msE to characterize ms-proper and
ms, -proper functions.
Theorem 2.22: If f:S—V be an ms-continuous
function ,where Sis an ms-compact , Sand Vbe an
ms-Hausdorff im-spaces. Then thefollowing statements
are equivalent:

i. fisms -proper function .

ii. If (r)x iSanetin Sand teV is ms -
cluster point of  f{(x)}, then ther's ms -
cluster point s € S of (xy)xex SO that f(s) =t .

Proof: (i — ii) Since f be an ms-proper function. Then
fisanms- closed functionand  f~{t} isan ms-
compact, vt € V. If (y,),.x beanetin S and teV
be an ms-cluster point of a net f(x,).ex iN V. Claim
s} =0, if f7{t}=0, then tef(S)>te€
(£(5)) since S is an ms-closed set in S and £ is an ms-
proper (ms -closed ), then f(S) is an ms-closed setin V.
That (f(S))C is an ms-open set in V. Ther efore

fOt)xex s frequently in (£(S))°. But f(xx) € (S,
forall xe X. Then £(S)N(f(S)) #@, and thi s
is a contradiction. Thus f~1{t} # @ ,is't frequently.
Now, suppose that the statements (ii) isn't true, that
me ans for s € f~1{t} there's ms-open set K, in S
contains s so that (y,)..x ist frequently in K .

Notice that £ ~1{t} = Uses-11{s}-

Therefore the  family {K, : s € f71{t}}is ms-
open cover of f£~1{t}, but f~1{t} is ms- compact set.
Therere  s3,85,....,8, SO that f~'{t} € U, K,

then f~{t}n (UL,K,,) =@. Then f- 1{t}n
(N, KE) = 0. But (7,).xis not frequently in
K foreach i=1,2,..,n . Thus is not frequently in

=1 K, but Ui, K is ms-openset in S, so
(NL,KE) is  ms-cleedsetin S Th us by
ass umption f(n" KS) is ms-closed setinY.
Claime ¢ f(N/L, KS), if t € f(N,K) then there's
s € N, Ky, s0 that f(s)=t , thus s & UK
buts € f~1{t}, therefore f~1{t} isn't subset of
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i=1 Ks;, this is a contradiction. Then there is ms-open
set E in S so that teE and
N F(NILKE). Thatis F~1(E) 0 £~ (F(NIL KE)) = 0,
also f~1(E) N (N7, K$) =@ . So fH(E) € UL, K,
But  f{(x,)} is frequently in , then (xy).ex is
frequently in f~1(E) and then it is freq uently in

i=1 Ks;- Thisis a contradiction, there's ms-cluster
points € S sothat f(s) =t.
(ii > i) To prove that fXI;:SXZ >V XZ isms
closed for any space Z. Let F be ms-closed subset of
SxZ and (f xXI;)(F) =G . To prove G is ms-closed
subset of V x Z . Let (t,z) € G™ , then there's a net
{(Ve) Zx) }xex In G 50 that {(y,, z,)™s(t, 2)}. Thus there's
a net {(Xx,Zx)}xex IN F 50 that (f X I)({(xx, 2x)}) =

{(yy,2,)} for ever x e X Since {(yx, z,)"™(t,z)} by
corollary (2.18) then y, ™5y andz, ™5z and f(s) =t .

Since {(xx,Zy)}xex I F and F is ms-closed. So
F=Fm™s, then (t,z) = (f X I;)(s,2z) € G. Then
G = G™hence G is ms-closed subset of V' x Z . Then
f % I;is ms-closed function , thus f x I, is ms-proper
function.

Theorem 2.23: Let f is function from ms,-space S into
ms-space V. Then f is ms-proper if and only if msEr = ¢.
Proof : Let msE; = @. To see that f X [;:SXZ -
V x Z is ms-closed function for all space Z. suppose F
is a closed subset of § X Z and let (f X I;)(F) = G.To
prove that G is ms-closed subset of V x Z let (t,,z,) €
G™s, then there's anet {(t,,z,)} in G so that (t,,z,)
= (to, o). Therfore there's anet {(¥y, 2,)}ex in SO
that (f X I;){(xxr 22)}) = {(tx, Zx)} for everx e X,
by theorem (2.17), thus f()(x) i to and I;(z,) i Z.
Since msE; = ¢, then y, —>so for some s, € S, thus

by theorem (2.17) (xy, z) s (S0, 29). Since F is closed
(ms-closed) then (sy,z,) € F. By ms,-continuous

of f X 1g, we has (f X I ) {200} =
(f()(x)' IZ(Zx)) - ((f X IZ(SO'ZO)) = (f(s0), I2(Z,)),

also we have f(sy,) = t, which implies to (t,,z,) € G
which means that G is ms-closed set.
Conversely: Let f is ms-proper function. To show that

msE; = ¢.If not, then there is a point t, € msEy,

there's anet (y,) in S with )(S"—lioo so that f(x,

xeX

)71)5 t,. By remark (2.6.ii),
S so that y, = s, and f(s,) =t,. Thus we have the

net(y,).x IS ms-convergent, this is a contradiction.
Therefore msE; = ¢.

Examples 2.24:
i. If f is function from ms-space (R, Mpg) such that

My = Ty into itself defined by f(x) =e*, for all x €
X. It's clear f is ms,-continuous function and for each net

there's apoint s, €

R . ms ms
(Xmnew In Rwith x, — oo, then f(x,) = e*n — oo
therefore msE; = ¢, hence f is ms.. -proper function.
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ii. Let Z and Rare m-structure such that M,, M,
denoted indiscrete and discrete m-structure respectively
and f:Z — R is afunction defined by f(x) =§ for all
x € Z. Clear that f isn't ms,-continuous and the net

(Mpen In Z has ms-limit, since f(n) =%ri>s 0,0€R
thus 0 € msEy. Also, it's clearthat if (x,)ney is anetin
Z with y, s oo, then f(x,) = i"j 0 € f(2), therefore
msE; # ¢ and f is not ms_-proper.

Now, we give some results on ms-proper functions, new
proofs by using our exceptional set msE; which makes
the proofs much simpler.

Remark 2.25: Clear that if S is ms-compact, then an ms-
continuous function f:S — V is ms-proper, when S and
V are ms-Hausdorff spaces. This follow from thefact that
all net in ms-compactness space has ms-convergent
subnet, therefore msEy = @.

3. ms-ConvergenceOf Filters:

In that section, I'm introduce anew type of
converge namely, ms-converge of filter. Also, we given
examples and theorem about this concept.

Now, we review some basic definitions, theorems and
remarks about a filter.

Definition 3.1 [14]: Let & be a nonempty collection of a
nonempty subset of a non-empty set S. We say that ¢ is
afilter on S if :

i.If F,F, €& thenF, NF, €é.

ii. If F, efand F, € F,thenF, €¢.

Definition 3.2 [10]: A sub collection &, of a filter £ on a
non-empty set S is called afilter base if and only if each
element of ¢ contains some element of &,.i.e. each
F € &thereis Fy € &such that Fy C© F.
Remark 3.3 [10]: If &, is a filter base for a filter £ on a
non-empty  set S. Then ¢={FcS:F,CF,
for some F,, € &,} is called filter generated by &, .
Definition 3.4 [10]: A filter £ on a space S is called be
converge to apoint s € S (written & — s ) if and only if
N(s) € & The point is s € Scalled a limit point of
&. Also, we said s € S is acluster point of & and it is
denoted by (éuxs)iff FNK=@¢for all F e€é
and K € V' (x).
Remark 3.5 [10]: Let be f afunction from aspace S into
aspace V , then:

i. If isafilteronS. Then f(&) is a filter on V having

for a base the sets f(F), F € ¢.

ii. If &,is afilter base on S. Thenf (&,)is a filter base on V.
Definition 3.6: A filter £ on an ms-space S is called be
ms-converge to apoint s € S (written & Zs ) if and only
if M,s(s) € &. Also, a filter & on an ms-space s has
s € Sas ms-cluster point (written £™s s) if and only if
F € & meets each K € V. (s).
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Theorem 3.7: A filter & on an ms-space S hass € S as
i , forever E € ¢.

i o for all K € M,,(s) and
S forallEeé

—m
ms-cluster point iffs € E

—m
Proof: {™ s seNE

—m
forall E €¢ KNE+@0oseE
—ms
seE
Remark 3.8: If ¢ be a filter on an ms-space S and s € S,
ms
then its clear to show that If §—s(&™s) then
ms
& -5 (& xs)andifé - sthené&™ s,
The converse in this remark isn't true in general and see
that from nextexample:

Examples 3.9:

i If s={123}, M, ={0,51{2},(3(23}}
Tus = {0,5,{2,3}}, let &£ = {5,{2,3}} and W' (3) =
{s,{23}}. Since N(3)c¢&  then £ - 3.
But Vs (3) = {S,{3},{2,3},{1,3}} then
Nps(3) & €. Thus & does not ms-convergence to 3.

ii. let $=1{123} such that M,T, are discrete

and

topology then there is =P(S). Let &=

{S,{1,3}}be a filter on S,N(2) =S then & x 2.
SinceN,s(2) = {S,{2},{1,2},{2,3}}, then{1,3} €
&, {2} € Ny (2), then{1,3} n {2} = @. Thus 2 does
not ms-cluster point at €.

letS=R Mg=T, andé ={ECSR:[-1,1] S E}

ms
be a filter on R, then £ oc O but & does not ms-convergence

t00,since (-1,1) € M,,5(0),but (-1,1) ¢ ¢.

Ty,

Definition 3.10: A filter base £,0n an ms-space S is

called be ms-convergence to s € S ( written &, rﬁs) if
and only if the filter generated by &, ms-convergent to s.
Also, we say that a filter base &, has s € S as ms-cluster
point ( written &, s ) if and only if each F, € &, meets
each K € V;,5(s).

Definition 3.11: Let &, be a filter base on an ms-space
S,s € S.Then:
i. A point s is called be ms-accumulattion point of &, if

—ms
senF, foreveryF; € &,.
ii. A point sis called be ms-adherent point of &, if

SE FomS , for every F, € &,.
Remark 3.12: Every ms-adherent
accumulation point.

Theorem 3.13: A filter base &,on an ms-space S is ms-
convergence to a point s € Siff foreach K € N, (s),
there's F, € &, so that is such that F, € K.

point is ms-
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Proof: Given ¢, i s, then a filter £ generated by &, and

'3 = s. Then N (s) € &, hence for each K € ;.5 (s),
K € & thusthereis F, € ¢, suchthat F, € U.

Conversely: To prove that ¢, Bs i.e., & beafilteron$S

generated by ¢, Withfrifs. Let K € V,,s(s) then by
hypotheses, there isF, € &, such that F, € K, since ¢ is a
filter onS, then K e€é&. Hence K € ¢andNV,,(s) S

& therefore &, Zs.

Theorem 3.14: A filter £ on an ms-space S has s € S as
an ms-cluster point if and only if there's a filter &' finer
than & which ms- convergence tos.

Proof: Suppose that £ s, then by definition (3.10) each
F €&  meets each K € N,,;(s). Then & =
{KNF:K€N,,(s)Feé&}is a filter base for some
filter &’ which is finer than & and ms-convergence to s.

Conversely: Give Ecé’ and &' i X, then
m.
& ™ sand Ny (s) € &', Hence eachF € & and each

K € NV,,;(s) belongto &'. Since ¢'isafilter,then K N F = @.

Theorem 3.15: LetSbhe an ms-space, ECS, s€
ms

S.Then s € E iff there's afilter EonSsothat E€é
ms
and & —s.
—ms
Proof: Ifse E ,thenENK # @ forall K € NV,,5(s).

Then & ={ENK:K € N,(s)} it's afilter base for
ms
somefilter &. The result filter contain E and & — s.

Conversely: Let E € ¢ and ETE s, then V,s(s) € €.
Since &is afilter and ENn K # @ for all K € M,,(s).

ms

Thuss € E
Corollary 3.16: Let Sbhe an ms-space, EC S, s €S.
—ms
Then s € E iff there's afilter base &, on Sso that
ms

E€e & and & —s.

Theorem 3.17: Let f: S — V is afunction and ¢ is afilter
on, s € S.Thenfis ms-continuous if and only if

whenever & Zsin S, then £ (&) Tiif(s) inv.
Proof: Supposethat fis ms-continuous function and

£ 5. To prove f(§) = f(s) in V. Lets € N, (f(s)),
since f be ms-continuous, then there's K € N,;(s) so

that f(K) € L Since & — s, then K € &. But L € £(&),
ms

thus £(§) = f(s).

Conversely: Suppose that the condition is holds, to

prove that f is ms-continuous. Let { ={K:K €

Nyps(s)}is a filter on S and & Zs. By hypotheses f(£)
ms

— f(s), for each L € M,,(f(s)), we have L € f(§) .
There is K € N,,4(s) so that f(K) S L. That f is ms-
continuousfunction.

Theorem 3.18: Let S be an ms-space, E € S. Apoints €
S is ms-limitpoint of E iff E-{s}belong to somefilter &
which ms-convergence to s.

Proof: Suppose that s is ms-limit pointthen K N E-{s} #
@ forevery K € Ny, (s).
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& ={KnNE-{s}: K€ N,;(s)} be afilter base forsome

filkeré&.  The result  filter  contain  e-{s} with
13 = s.

ms
Conversely: If E-{s}eé&withé —>s, thenE-{s}€

& N;s(s) € €. Sincee € is afilter. Then K N E-{s} # @ for
all K € 7, (s). Hence s is ms-limitpoint of aset E.
Definition 3.19 [15]: Let (xx)xex IS anetin aspace S, &
is afilter generate by afilterbase &, consist of the
sets By, = {Xx : X = X0,% EX }is called a filter
generated by (Xx)xex - ie.,
§o = { By, €S Xy iseventually in B, } is a filter base,
& is a filter on S and it is called a filter associated with
the net (xy)xex -

Theorem 3.20: A net (x,)xex IN an ms-space S ms-
convergence to s € S iff a filter & generated by (xy)yxex
ms-convergent to s.

Proof: A net (x,)xex Ms-convergent to seS iff
each K € N,,4(s) contains atail of (x,) ex, Sincethe
tailsof  (x,)rex are abase for afilter generate
by (xx)xex , the result follows.

Definition 3.21 [15]: Let &,be a filter base on a
space S.For all F,F, € &, we put F; > F, iff Ff € F,,
then (&,,>) is a directed set. For all F € &, define
x:& = UF,F € &;such that for all F € &, take (fixed)
xr € Fsothat y(F) = xp. Thus (xp)reg, isanetin$
and it is called a net associated with a filter base &;.
Theorem 3.22: Let ( xr)res, b€ a net associated with a

filter base &, on an ms-space S ands € S. Iffonjs,
ms
then yr — s.
ms
Proof: Let ¢, —s and K € Ns(s) . Thus there

is Fy €&, such that Fy S K, thenyp €K, so xrp €

K forallF = F, . Therefore xp Zs.

The converse of this theorem isn't true in general. See
that from nextexample:

Example 3.23: If S ={1,2,3}and M = {0,S,{1}} be
m-structure on S. Put & ={1,3} and ¢=
{1,335} W (1) = {5, {13, {1,2}, {1, 33}. Define
X:& {1 3} by y({1,3}) =1, theny is a net inS.

Thus y = 1out &, does not ms-convergence to 1,
since {1} € M,,;(s) but {1} € ¢.

Definition 3.24 [15]: Let &, be afilter base on aspace.
Put X ={(s,F):s€F,Feé&} (X,=)isadirected set
by relating, (s, F,) = (s,, F,) if and only if F; € F,, so
define a function y:X-S5, byy(x)=yx,€S,
where x = (s, F) . Then (x,)xex i called the canonical
net (net based) of &,.

Theorem 3.25: A filter base &, on an ms-space S is ms-
convergence to s € S iff the canonical net of &, ms-
convergence to s.

Proof: Let &, BsandK e Nys(s), then there's
Fy € &y so that Fy € K. Since Fy, # @, there's s, € F,.
Pick x, = (so, Fo) theny, € K for allx = x,.

Therefore y, Zs.
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Conversely: Let y, Zs andK € MV,,¢(s), there'sx, €
X so that y, € K for ever x > x,. Thus there's F, € &,
and s, € F, such that x, = (sy, F;). To proveF, €
K, lets, € F,. Then x = (s, Fy) = (so, Fy) = xo,

thus y,, € K. Hence F, € K, therefore &, 5.
Corollary 3.26: A filter base &, on an ms-space S has
s € § as an ms-cluster point if and only if the canonical
net on &, has s as an ms-cluster point.

Theorem 3.27: An ms-space S is ms — T, ms-space if
and only if every ms-convergefilter in S have aunique
ms-limitpoint.

Proof: If S be a ms — T, ms-space and ¢ be a filter on S
so that ¢ Bsand ETE t with s # t. Since be anms —
T, ms-space, then there's K € N,,5(s) and L € IV,,,4(t) so

thatK NL =@. Since¢ rgs, then M,s(s) € ¢ and

£ 5 ¢ then IV, (t) € &. Since be a filter, then K N L #
@. This is a contradiction, hence the result follows.
Conversely: To provethat S is anms — T, ms-space.
Supposenot, then there're s, t € S with s # t so that forever
K € N;,s(s) and forever L € N,,s(t),KNL # @. Then
§o={KNL :K €N, (s)and L € V,,,(t)} is a filter
base forsome filter &. The result filter ms-convergence at s
and t. This is a contradiction, thus S is ms — T, ms-space.
Theorem 3.28: An ms-space S be ms-compactness space
iff all filter base &, with ms-adherent point s € S ms-
convergence to s.

Proof: Suppose that S be an ms-compact and s € S be an
_ms
ms-adherent point of &,. Thens € E

then by corollary (3.16) we have &, Zs.

ms
Conversely: Suppose that &, — s, by theorem (3.22)
every net associated with a filter base &, ms-convergence

to s.Thus by corollary (2.14), every net has a subnet
which ms-convergence to s. Thus S is ms-compact space.

for allE € &,

Theorem 3.29: A filter & on a product ms-space []S;,
A€ A is ms-convergence to s € [[S; if and only if
Pry (&) s Pry(s)in S, forever 1 € A.

Proof: If EYE s in[IS;, A€ A. Since Pryare ms-
continuous, by theorem (3.17), Pry Q(x)rii Pry(s)in S,

for each 1 € A.
Conversely: By using theorem (2.17).
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