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A B S T R A C T 

 

Oil and gas production forecasting has always been a hot topic in the petroleum industry. 
Production forecasting in this sector aims to estimate future production rates, facilitating 
operational planning, production optimization, and resource allocation for companies. 
Scientists have traditionally attempted to forecast oil and gas production using methods such 
as Numerical Reservoir Simulation (NRS) and Decline Curve Analysis (DCA). However, these 
methods present challenges including time-consuming processes lasting hours or even days, 
uncertain accuracy, reliance on accurate static models, and uncertainty in dynamic model 
parameters. In this research, aim to address these limitations by leveraging machine learning 
models for production forecasting. These models enable faster and more precise decision-
making by accurately predicting future outcomes based on historical data. Our study employs 
three models: Decision Trees (DTR), Random Forest (RFR), and XGBoost. In this reserch utilize 
the Python programming language and a dataset from wells in New York State, USA. 
Experimental results demonstrate that the RFR model achieves the highest accuracy (99%) for 
oil and gas production compared to the XGBoost and DTR models.  

 

 

MSC. 
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1. Introduction 

Oil is a significant component in numerous industrial processes and the principal fuel source. It is critical to operating 
countless vehicles, aircraft, trucks, ships, and machinery [1]. Oil production refers to extracting Oil from wells and 
transforming these raw materials into final petroleum products that customers can purchase and utilize. Oil 
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production involves a series of systematic stages, beginning with exploring the site, continuing extraction, and 
distributing goods to enterprises and the general public [2]. During the process of creating a field development plan, 
the prediction is crucial because it provides data on production that may be applied to facility capacity design, makes 
a drilling timetable or sequence, and evaluates economics. Considerable demand exists for a production estimate 
based on past data from active and nonactive wells [3]. Production forecasting is a crucial process for governmental 
and organizational entities, enabling them to formulate requisite economic strategies [4]. Forecasting output in the 
oil and gas sector requires a complicated numerical simulation of reservoirs and their engineering study [5]. The 
precise prediction is a substantial and different undertaking aimed at monitoring and enhancing Oil reservoirs. When 
it comes to estimating Oil reservoir production, the petroleum industry makes use of a variety of traditional 
techniques, Such as NRS and DCA [6].  
The NRS approach has conventionally been employed for Oil production forecasts. However, NRS models possess 
limitations, including their labor-intensive and time-consuming nature, as well as their requirement for an accurate 
static model and several dynamic model parameters [7]. The DCA  is a traditional method to predict future Oil and 
Gas output  [8]. This method takes a long time because much computing power is needed. Propose an alternative 
way by making this step much more accessible and using less computing power. ML is the solution to forecast Oil 
and Gas production with high precision and speed; it can use the dataset's features to estimate how much Oil and 
Gas will be produced [9]. According to the World Energy Report, an estimated 30% of the world's energy came from 
fossil fuels and natural Gas in 2020. The topic's significance has drawn numerous writers who have studied Oil 
producing processes using Machine Learning[10]. ML techniques have recently garnered interest in the Oil and Gas 
business, particularly in the areas of rapid evaluation and production forecasting. During the past several years, 
researchers have utilized ML [11]. 
AI is the subfield of computer science that combines computers' processing power using human Intellect to provide 
intelligent and dependable solutions to extremely nonlinear and highly complex issues. AI allows computers to think 
and decide for themselves [12] . Machine learning aims to find solutions to real-world problems using large datasets 
and statistical models built using algorithms [13].  Machines could improve and learn their abilities through 
repetition and error, much as people do. Prediction, grouping, extraction, and decision-making are ML's primary 
outputs from a particular set of data [14]. The versatility of machine learning extends to classification and regression 
[15]. Machine learning methodology has emerged as a promising approach for modeling production methods, owing 
to the availability of high-performance computing resources and comprehensive datasets[16]. There are many 
potential benefits to using machine learning techniques for Oil and Gas production forecasting. These techniques 
can help to improve accuracy, reduce uncertainty, and provide insights into the factors driving production. As the 
energy industry evolves and quality improves, machine learning plays an increasingly important role in production 
forecasting[17]. Machine learning can be carried out in several different ways. It employs a supervised learning 
technique and an unsupervised one, where each sample in the dataset has been labeled to produce results that can 
be used to infer a label for newly obtained data[13]. 

2. Related works 
 

The Oil and Gas production industry has started utilizing a range of algorithms that leverage machine learning. This 
article will review several recent studies that use ML in the Oil and Gas industry.  

   M. A. M. Fadzil et al. (2021)[18] In this research, an alternative strategy is proposed for reducing Oil production 
losses by employing ML supervised regression models “XGBoost, RFR, DTR, and SVR”, which are constructed and 
examined to make predictions regarding the plant's operating circumstances. The highest effectiveness and 
consistency throughout the validation process have been demonstrated by the XGBoost model. Limitations of the 
research include less frequent lab data and fewer samples for analysis. Presumably, consistent feed data qualities 
will be maintained, and continual communication within the project upheld. Due to the possibility of lost historical 
data due to intermittent transmitter failures, operating condition values are determined by linear interpolation. 

   G. Hui et al. (2021) [19] In this study, a comprehensive approach based on machine learning was developed to 

evaluate shale gas production in the Fox Creek area of Alberta. Four methods were utilized: “linear regression, neural 

networks, XGBoost, and DTR.” The Extra Trees strategy emerged as the top performer, with a coefficient of 

determination of 0.809, the highest among the methods evaluated. However, according to a case study the 
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limitations of the research, it is difficult to definitively state that these are the best results achieved after running 

experiments with the dataset and examining the outcomes for every approach used. Trying new approaches or 

combining existing ones certainly improves upon the current outcomes. Nevertheless, given the complexity of the 

problem, continued exploration of new methods is deemed crucial.  

   C. Tan et al (2021) [20] In this research, various techniques were employed by the authors, including six machine 

learning algorithms: “random forest (RF), back propagation (BP) neural network, support vector regression (SVR), 

extreme gradient boosting (XGBoost), light gradient boosting machine (Light GBM), and multivariable linear 

regression (MLR).” Evaluation results indicate that the production prediction model of the XGBoost algorithm was 

found to be the most effective, with an R2 value of 0.90. The authors utilized data from the 'WY shale gas block in 

Sichuan, China.' The limitations of this study pertain to its applicability, as it is based solely on a single shale gas 

block in Sichuan, China, and its objective is to optimize fracturing productivity in shale gas wells. Additionally, the 

limitations of the dataset, which includes only 137 wells, could affect the robustness of the model. 

    N. M. Ibrahim et al. (2022)[9] In this study, the process of estimating Oil and Gas production was attempted to 

be expedited by the authors. Eight experiments involving machine learning and deep learning techniques were 

conducted: DTR, PLR, SVR, MLR, RFR, RNN, XGBoost, and ANN. The dataset was supplied by Saudi Aramco, and it 

was found that the best results were yielded by RNN, XGBoost, and ANN, with R2 values of 0.926, 0.9012, and 0.9627 

for Oil, Gas, and water, respectively. However, the potential ethical implications of employing machine learning and 

deep learning models in the Oil and Gas industry, such as their environmental impact or potential displacement of 

workers, were not addressed in the study. 

X.-y. Wang el al.( 2023) [21] In this study used a daily Oil production data from 62 Oil wells over ten years. 
The authors propsed a method involving two models Multiple polynomial regression technique, and random forest 
, were chosen based on their minimal inaccuracy in predicting outcomes compared to other models. The prediction 
results using random forests showed a lower error margin than Multiple polynomial regression. The limitations 
include the study's narrow data scope, potential data quality issues, and potential oversights of external factors for 
data. 

3. Machine learning models (ML) 
 

  Machine learning is a subfield of AI that has become an integral part of popular digitalization solutions 
[22]. “Supervised learning, unsupervised learning, and reinforcement learning” are three main classes of 
machine learning issues that can be usefully described to gain a general notion of the problems that 
machine learning can handle [23]. In this research used three different types of supervised machine 
learning included: 

3.3.1 Decision Tree Regressor (DTR) 

  A strong ML model for classification and regression tasks was named DTR. Decision trees show decisions and their 

outcomes as a tree. The edges represent decision rules, while the nodes represent events or choices. Trees have 

nodes and branches. Each node represents qualities in a group to be categorized, and each branch represents a value 

for the node [24]. First, the training data is used to build a tree. Then, using a binary split method, the original data 

is split into two parts. The separation process is done on the new growth branches, and it keeps going until a new 

branch cannot be separated and the node next to it reaches the minimum size and changes into an end node [25]. 

DTR uses MSE to subdivide nodes. The technique chooses the value and splits the data with a binary tree. Any 

subgroup can be measured individually for MSE. The tree picks a low MSE value. The MSE for nodes n with N 

observations and y as the expected value follows this relation in the equations(1) 
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𝑬(𝒏) =
𝟏

𝑵
∑[𝒚𝒊(𝒏) − 𝒚 ̅(𝒏)]𝟐                                                   

𝑵

𝒊=𝟏

(𝟏) 

 

The ideal split is found by maximizing the MSE difference between "the root node E(n) and the left E(nl) and right 

child E(nr)" nodes. The mean of all node data is used for prediction [26]. Fig. 1 shows the structure of DTR. The first 

node in the tree serves as a root node, defining the total sample and allowing for further subdivision into other nodes. 

 

Fig. 1. Illustrate the structure of the Decision Tree Regressor[26]. 

3.3.2 Random Forest Regressor (RFR) 

  The Random Forest algorithm has demonstrated efficacy in addressing classification and regression problems. It 

starts with input data, trains many models, gathers predictions from each model, and finally employs a voting 

process to choose the best solution[27]. This method depends on the decision tree. It takes the average of results 

from multiple DTR to arrive at the final forecast. The prediction outcome is determined by computing the mean of 

the outputs generated by each tree [28]. It was first introduced in 2001 by University of California, Berkeley 

professor Leo Breiman. Random Decision Forests is another name for this method [29]. The model is constructed by 

splitting the input into several samples based on how many trees there are, then constructing an easy forecasting 

model inside each section, and finally merging the results of these models using a bagging method to arrive at the 

final forecast [30]. There is no requirement to reduce processing speed in the Random Forest because each decision 

tree has fully matured. With more trees, it can avoid overfitting the data and get more accurate results[31]. Fig.2 

shows Random forest architecture. 
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       Fig.2. Random forest architecture[28]. 

Important parameters for the RFR model include the expected number of trees (N), the number of predictor 

variables to be tested at each splitting node, the node size, or the bare minimum of samples present at a leaf node 

[32]. A random forest of simple trees estimates a dependent variable in a regression issue. The method generates K 

separate regression trees ℎ𝐾(𝑥) based on the input variable x. The model forecasts the average of the predictions 

made by each tree in the forest for the inputs (x), (k = 1,.., K). It can improve the variety of the trees so that their 

agregated findings are less likely to be correlated with those of other trees by using a method called bootstrapping 

[33],[34], displayed in Equation (2) : 

𝐑𝐅𝐑 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧 =
𝟏

𝐊
∑ 𝐡𝐊(𝐱)                                          (𝟐)

𝐊

𝐊=𝟏

 

3.3.3 Extreme Gradient Boosting (XGBoost) 

XGBoost is an ML methodology for regression and classification tasks, producing a predictive model represented 

as a decision tree [35]. XGBoost, developed by" Chen and Guestrin in 2016", is a widely used technique for solving 

ML problems among the different implementations of Tree Gradient Boosting. [36]. XGBoost is a boosting 

technique that falls under the category of supervised learning. It is an ensemble approach based on gradient-

boosted trees [37]. The purpose of the boosting method is to train subsequent learners using updated versions of 

the training specimen that have been adjusted based on the training effect of the preceding learner. In this way, we 

may drastically reduce how much the model's forecast deviates from the actual value, and the model's final forecast 

is just the weighted vote of all the analysts. Negative gradients quantify errors from the previous iteration, and 

subsequent corrections are made by gradient descent in the Gradient Boosting Model [38]. The XGBoost is 

illustrated in Fig. 3 and consists of branches, internal nodes, several root nodes, and leaf nodes. 
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Fig.3: Shows the topology of XGBoost[39]. 

The i-th parameter, 𝑥𝑖 , is inputted into Classification and Regression Trees (CARTs) for initial decision-making. 

Internal nodes make subsequent decisions, while branch points indicate future decisions. Leaf nodes contain single 

CART model predictions aggregated for XGBoost model prediction. The mathematical expression 𝑦𝑖  of the XGBoost 

represents the actual value of the experiment. Equation (3) demonstrates that the estimated score 𝑦�̂� is obtained by 

summing all 𝑓𝑘 values. 

𝐲�̂�  =∝ ∑ 𝐟𝐤(𝐱𝐢)                                      (𝟑)

𝐤

𝐤=𝟏

 

 In this context, 𝑦�̂� represents the predicted value associated with the input 𝑥𝑖. The symbol ∝ denotes the learning rate of the 

individual regression tree, while K represents the total number of Regression Trees. Additionally, 𝑓𝑘 signifies the output of 

the k-th regression tree. [39]. 

4. Evaluation metrics 
 

The performance of a regression model is assessed using data, often known as testing data, using the following 

measures. 

 

 4.1 Mean Absolute Error (MAE) 
 

     The usage of MAE is applicable in cases when outliers within the data are indicative of tainted values. Indeed, the 

mean absolute error does not excessively penalize training outliers, thereby offering a comprehensive and limited 

performance metric for the model. Conversely, the model's performance will improve if the test set contains many 

outliers. Represented in the Equation (4). The best value is 0, while the worst value is positive infinity [40]. Using 

Equation: 

𝐌𝐀𝐄 =
𝟏

𝐍
∑ |𝐲𝐫𝐞𝐚𝐥𝐢

− 𝐲𝐩𝐫𝐞𝐝𝐢
|

𝐍

𝐢=𝟏
                        (𝟒) 

 

4.2 Mean Square Error (MSE)   
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The utilization of MSE is applicable in cases where the identification of outliers is necessary. Indeed, mean squared 

error is highly effective at assigning greater importance to data points. When the model produces an abysmal 

forecast, the MSE function's squaring component amplifies the error's magnitude [40] by using Equation (5). 

 

                                            𝐌𝐒𝐄 =
𝟏

𝐍
∑ (𝐲𝐫𝐞𝐚𝐥𝐢

− 𝐲𝐩𝐫𝐞𝐝𝐢
)

𝟐
                                 (𝟓)𝐍

𝐢=𝟏  

 

4.3 Coefficient of determination (R-squared or 𝐑𝟐) 
 

   Linear regression models employ a well-defined statistic called the coefficient of determination (R2) to quantify 

the extent to which the observed variation in the dependent variable can be attributed to known predictors [41] with 

the following Equation (6). 

 

    R ²= 1−
∑ (𝐲𝐫𝐞𝐚𝐥𝐢

−𝐲𝐩𝐫𝐞𝐝𝐢
)

𝟐
𝐍
𝐢=𝟏

∑ (𝐲𝐫𝐞𝐚𝐥𝐢
−𝐲)

𝟐
𝐍
𝐢=𝟏

                                         (𝟔) 

 

5.  The proposed system  
 

   In this research used three machine learning models. DTR, RFR, and XGBoost are widely utilized in forecasting 

due to their adaptability, capability to model non-linear relationships, and ensemble learning technique. These 

algorithms provide valuable insights into feature importance and can efficiently handle complex datasets, including 

those in the petroleum sector. Their capacity to deliver precise predictions and interpret results enhances decision-

making regarding production optimization and resource allocation. Fig. 4 illustrates the architecture of the 

fundamental system construction procedures. The suggested framework consists of a series of stages, which 

include Dataset, data preprocessing (data cleaning, data processing, data normalizing), Machine Learning models, 

and Evaluation stage.  
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Fig 4. Flowchart for the General Proposed System. 

5.1 Datasets Description 
 

    The first and most crucial stage of the research is collecting data. The dataset is from USA wells in New York State 

and contains production information from (1967 -1999)[42]. The dataset included county, town, field, and location 

operators. It is represented in 30.1K rows and 20 columns. Figure (5) provides part of the Oil and Gas dataset, 

specifically showcasing the data trends for active oil wells, inactive oil wells, active Gas wells, injection wells, and 

disposal wells.  

 

 
 

       Fig. 5.  Illustrated the data trends in the Period time (1967 -1999). 

 



17    Mays A. Al shabaan & Zainab N. Nemer, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 16(1) 2024,  pp  Comp. 9–21 

 

 

 

 

5.2   DATASET PREPROCESSING 
 

The data needs to be preprocessed before manipulation. This research used Google Collab online as an 

environment for programming in Python. This stage contains three steps for preprocessing data: cleaning, 

processing, and normalizing. One of the most essential steps in data preprocessing is data cleaning, which is the first 

step. It is essential to check that the dataset contains all correct information. Second, process the data features like 

location, each well location will be assigned an index that indicates and split it into two individual sets, X and Y. 

Finally, Normalizing the dataset. The data normalized by used L2 scaler to transforms numerical values into a range 

from (0 to 1). 

5.3 METHODOLOGY  

   The most critical and initial step before training a model is determining the parameters for ML models to provide 

the greatest results. Due to the difficulty of the parameter selection, we attempted all the possible values for each 

model until we found the optimal values, as shown in Table (1). 

Table (1): Machine Learning models parameters   

 

 

 

 

 

 

 

After determining the oil and gas parameters, the dataset separated into two independent sets: the training and 

testing sets.  

Training set: This is the most important part of learning datasets to teach machine learning models. It takes up the 

most space, 75% of data, and (partitioned into a validation and training set). When a model has been trained, it needs 

a distinct dataset to evaluate performance and adjust hyperparameters, then hyperparameter tuning with the 

assistance of the validation data; this is called a validation set). 

Testing Data: This dataset estimates how the model will perform on fresh data that it has not experienced before in 

the real world. It takes 25% of the dataset.  
   

6. Experimental results  
 

   The same producer was used for three machine learning models with different parameters. The model's results 

were obtained after the data had been cleaned, normalized, and processed. To determine the most effective model,  

using metrics such as MAE, R2, and MSE. Table (2) presents performance metrics for three machine learning models 

(RFR, DTR, XGBoost) across two types of data (Oil and Gas). RFR consistently performs strongly, with slightly higher 

overall scores than DTR and XGBoost across both Oil and Gas datasets. Meanwhile, XGBoost and DTR exhibit similar 

mean performance scores, albeit with slightly higher variability in XGBoost's scores Interestingly, Gas data 

consistently yields higher mean and overall performance scores than Oil data for all models, suggesting potential 

Model Parameters 

DTR max_depth = 500, random_state = 33 

RFR n_estimators = 50, max_depth =15, random_state = 33 

XGBoost objective =”reg:linear”,    n_estimators = 30 
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differences in predictive accuracy between the two datasets. Overall, the findings suggest that RFR is the most 

consistent performer among the models evaluated. At the same time, Gas data offers slightly better predictive 

performance than Oil data across all models. The best performance for Oil and Gas production forecasting was 

achieved with the RFR model, with an average R2 value of 0.9936 for Oil and 0.9982 for Gas. 

 

 

 

Tabel (2): illustrated Machine Learning Models result. 

 

 

 

 

 

 

 

 

In the Fig. 6 shows the result of the correlation coefficient score (R2 𝑣𝑎𝑙𝑢𝑒) for RFR, DTR, and XGBoost. 

 

 

Fig. 6. Illustrated 𝐑𝟐 values for Oil and Gas in ML models. 

 

Fig. 7 shows the matching between the result of predicted Oil produced using machine learning models (RFR, DTR, 
and  XGBoost ) and the actual Oil produced. The results indicate perfect alignment between the predicted oil 

ML 

MODELS 

OUTPUT MAE MSE 𝐑𝟐 

RFR 
Oil 0.0014 0.0002 0.9936 

Gas 0.0017 0.0002 0.9982 

DTR 
Oil 0.0017 0.0003 0.9892 

Gas 0.0016 0.0003 0.9972 

XGBoost 
Oil 0.0020 0.0002 0.9921 

Gas 0.0020 0.0004 0.9969 
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production and the actual oil production. Also,  Fig. 8  shows the matching between the result of predicted Gas 
produced using machine learning models (RFR, DTR, and  XGBoost ) and the actual Gas produced.                     

 

                

 

Fig.7.  illustrates the matching between the predicted and actual Oil production for machine learning 
models (a) using DTR models, (b) using the XGBoost models, and (c) using the RFR model. 

                                               

 

Fig.8. illustrates the matching between the predicted and actual Gas production for machine learning 
models (a) using DTR models, (b) using the XGBoost models, and (c) using the RFR model. 
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Conclusion  
 

      Precisely predicting how much oil and gas will be extracted is crucial in the petroleum sector, as it enables 

businesses to better organize their resources, maximize output, and confirm the benefits of forecasting production 

of oil and gas. Methods and models are utilized to estimate the amount of oil and gas that may be recovered from 

existing and prospective reserves over a given time period. This research aims to provide a prediction model for 

oil and gas production in the petroleum sector, facilitating improved resource organization and output 

maximization for businesses. Oil and gas production forecasts use machine learning models like DTR, RFR, and 

XGBoost. These models trained and tested the data, then assessed with metrics MSE, MAE, and R2. The 

experimental result shows the highest accuracy, with the RFR model achieving the highest R2value of 99%. The 

objective is to improve and evaluate different sets of procedures. In future projects, develop a system that 

integrates Machine Learning and deep learning models. Then, compare and select the best model based on dataset 

type, characteristics, and other relevant criteria. 
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