Some Separation Axioms Via D-Set in Bitopological Space

Hadeel Husham Kadhim

College of education , Department of Mathematics , Al-Qadissiya university, Al-Diwaniyah , Iraq , Email: hiadeel.husham@qu.edu.iq

ARTICLEINFO

Article history:

Received: 12 /1/2024
Rrevised form: 4 /2/2024
Accepted : $3 / 3 / 2024$
Available online: $30 / 3 / 2024$

Keywords:

D-set , D_{k}-bitopological spaces, pairwise D_{k}-bitopological spaces and weak pairwise D_{k}-bitopological spaces for $k=0,1$.

ABSTRACT

In this paper, notions of some separation axioms by using D-set in bitopological space. We studied some of the fundamental properties and relations among types of D_{k}-bitopological spaces where $k=0,1$.

MSC..

https://doi.org/10.29304/jqcsm.2024.16.11444

1. Introduction:

Kelly In 1963 [3] defined bitopological spac . In 1966[4] Murdeshwar studied the concepts of pairwise- $\boldsymbol{T}_{\boldsymbol{o}}$ and weak pairwise $\boldsymbol{T}_{\boldsymbol{o}}$ spaces. In [5] 1982 Tong introduced definition of D-set. Tallafha In [1] studied continuous and pairwise continuous functions of bitopological spaces. In [6] O.Ravi investigated open set in bitopological space . Rupaya in [7] presented defined $\boldsymbol{T}_{\boldsymbol{o}}$-bitopological space . In [2] Khadiga investigated defined subbitopological spaces. In this paper we introduce and study the definition of D-set in bitopological space and some types of $\boldsymbol{D}_{\boldsymbol{k}}$-bitopological spaces for $\boldsymbol{k}=0,1$.

2. D-set in bitopological space

Definition (2.1)[5]

Let ($\mathrm{X}, \boldsymbol{\tau}$) is topological space. The subset H of X is said to be difference set (D-set) if there exist two open sets M and N in X such that $M \neq X, H=M-N$.

Definition (2.2)[3]

[^0]Email addresses: : hiadeel.husham@qu.edu.iq

If X non-empty set and σ_{1}, σ_{2} are two Topologies on X . A space $\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right)$ is called bitopological space .

Definition (2.3)[6]

In bitopological space $\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right)$ the subset K is said to be $\sigma_{1} \sigma_{2}$-open set if $\mathrm{K}=\mathrm{U} \cup V$ where $\mathrm{U} \in \sigma_{1}$ and $\mathrm{V} \in \sigma_{2}$. The complement of $\sigma_{1} \sigma_{2}$-open is called $\sigma_{1} \sigma_{2}$-closed.

Definition (2.4)

A subset W of bitopological space ($\mathrm{X}, \sigma_{1}, \sigma_{2}$) is called $\sigma_{1} \sigma_{2}$-difference set ($\sigma_{1} \sigma_{2}$ - D -set) if $\mathrm{W}=U_{1} \cup U_{2}$ where U_{1} is D set in (X, σ_{1}) and U_{2} is D-set in (X, σ_{2}).

Remark (2.1)

Every $\sigma_{1} \sigma_{2}$-open (is not equal to X) is $\sigma_{1} \sigma_{2}$-D-set.
But the converse is not true for example

Example (2.1)

Let $\mathrm{X}=\left\{\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{~h}_{3}, \mathrm{~h}_{4}\right\}$ and $\sigma_{1}=\left\{\varnothing, \mathrm{X},\left\{\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{~h}_{3}\right\},\left\{\mathrm{h}_{2}, \mathrm{~h}_{3}\right\}\right\}, \sigma_{2}=\left\{\varnothing, \mathrm{X},\left\{\mathrm{h}_{2}, \mathrm{~h}_{4}\right\},\left\{\mathrm{h}_{4}\right\}\right\}$ are two topologies on X . Since $\mathrm{A}=\left\{\mathrm{h}_{1}, \mathrm{~h}_{2}\right\}=\left\{h_{1}\right\} \cup\left\{h_{2}\right\}$. Since $\left\{h_{1}\right\} \notin \sigma_{1}$ and $\left\{h_{2}\right\} \notin \sigma_{2}$ hence $\left\{h_{1}, h_{2}\right\}$ is not $\sigma_{1} \sigma_{2}$-open. But $\left\{h_{1}\right\}$ is σ_{1}-D-set and $\left\{h_{2}\right\}$ is σ_{2}-D- set then A is $\sigma_{1} \sigma_{2}$-D-set

Definition (2.5)[1]

Afunction $\mathrm{f}:\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(\mathrm{Y}, \rho_{1}, \rho_{2}\right)$ is called continuous if $\mathrm{f}:\left(\mathrm{X}, \sigma_{1}\right) \rightarrow\left(\mathrm{Y}, \rho_{1}\right)$ and $\mathrm{f}:\left(\mathrm{X}, \sigma_{2}\right) \rightarrow\left(\mathrm{Y}, \rho_{2}\right)$ are continuous where ($\mathrm{X}, \sigma_{1}, \sigma_{2}$) and ($\mathrm{Y}, \rho_{1}, \rho_{2}$) be two bitopological spaces

Theorem (2.1)

If $\mathrm{f}:\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(\mathrm{Y}, \rho_{1}, \rho_{2}\right)$ is continuous therefore the inverse image of $\rho_{1} \rho_{2}$-D-set is $\sigma_{1} \sigma_{2}$-D-set .

Proof

Suppose G is $\rho_{1} \rho_{2}$-D-set in Y.Then $G=A \cup B$ suchthat A is ρ_{1}-D-set and B is ρ_{2}-D-sets in Y thus $A=U-V$ and $B=0-S$ where $U, V \neq Y$ and $\left(U, V \in \rho_{1}\right)$ and $\left(0, S \in \rho_{2}\right)$. Since $f:\left(X, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(Y, \rho_{1}, \rho_{2}\right)$ is continuous hence $f:(X$, $\left.\sigma_{1}\right) \rightarrow\left(\mathrm{Y}, \rho_{1}\right)$ and $\mathrm{f}:\left(\mathrm{X}, \sigma_{2}\right) \rightarrow\left(\mathrm{Y}, \rho_{2}\right)$ are continuous. Thus $f^{-1}(\mathrm{U}), \mathrm{f}-1(0) \in \sigma_{1}$ and $f^{-1}(\mathrm{U}), f^{-1}(\mathrm{~V}) \in \sigma_{2}$. And $f^{-1}(\mathrm{U})$,$f^{-1}(\mathrm{O}) \neq \mathrm{X}$. Therefore $f^{-1}(\mathrm{U})-f^{-1}(\mathrm{~V})=f^{-1}(U-V)=f^{-1}(A)$ hence $f^{-1}(A)$ is σ_{1}-D-set and $f^{-1}(0)-$ $f^{-1}(S)=f^{-1}(O-S)=f^{-1}(B)$ is σ_{2}-D-set in X. Thus the inverse image of $\rho_{1} \rho_{2}$-D-set is $\sigma_{1} \sigma_{2}$-D-set

3. D_{k}-bitopological spaces

Definition (3.1)[7]

Bitopological space ($\mathrm{X}, \sigma_{1}, \sigma_{2}$) is said to be $\boldsymbol{T}_{\boldsymbol{o}}$ if and only if for each different points in X there exists U is $\boldsymbol{\sigma}_{1} \sigma_{2}$-open set containing one not containing other.

Definition (3.2)

A bitopological space $\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right)$ is called D_{o} if and only if for each different points in X there exists $\sigma_{1} \sigma_{2}$-D- set containing one but not containing other .

Theorem (3.1)

Every T_{o} bitopological space is D_{o}.

Proof:

Let $\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right)$ is T_{o} and x, y in X such that $x \neq y$.Then there exist A is $\sigma_{1} \sigma_{2}$-open set suchthat $x \in A, y \notin \mathrm{~A}$. Thus A is $\sigma_{1} \sigma_{2}$ - D -set we have ($\mathrm{X}, \sigma_{1}, \sigma_{2}$) is D_{o}

Theorem (3.2)

If $\left(\mathrm{X}, \sigma_{1}\right)$ and $\left(\mathrm{X}, \sigma_{2}\right)$ is D_{o} then $\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right)$ is D_{o}.
Proof:
Suppose $x \neq y$ in X . Thus $\exists G_{1}=\left\{x \in G_{1}, y \notin G_{1}\right\}$ is σ_{1}-D-set in (X, σ_{1}) and $G_{2}=\left\{x \notin G_{2}, y \in G_{2}\right\}$ is σ_{2}-D-set in (X, σ_{2}) because $\left(\mathrm{X}, \sigma_{1}\right)$ and $\left(\mathrm{X}, \sigma_{2}\right)$ are D_{o}. Let $\mathrm{G}=G_{1} \cup G_{2}$ then $x \in \mathrm{G}$ and $y \notin \mathrm{G}$ then $\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right)$ is D_{o}.

The following example shows the opposite of Theorem (3.2) is not true

Example (3.1)

Suppose $\mathrm{X}=\{\mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{p}\}, \sigma_{1}=\{\emptyset, \mathrm{X},\{\mathrm{m}, \mathrm{o}\},\{\mathrm{o}\}\}$ and $\sigma_{2}=\{\emptyset, \mathrm{X},\{\mathrm{n}, \mathrm{p}\},\{\mathrm{p}\}\}$. It is clear that $\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right)$ is D_{o}. But $n \neq p$ and there is no σ_{1}-D-set containing n not containing p thus $\left(\mathrm{X}, \sigma_{1}\right)$ is not D_{o}. And $\mathrm{m} \neq \mathrm{o}$ and there is no σ_{2}-Dset containing 1 not 3 thus (X, σ_{2}) is not D_{o}.

Theorem (3.3)

If f: $\left(\mathrm{M}, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(\mathrm{N}, \rho_{1}, \rho_{2}\right)$ is continuous and one to one and N is D_{o}-space then $\mathrm{M} D_{o}$-space.

Proof:

Let N is D_{o} and $x \neq y$ in M. Then there exist a, b in Y and $a \neq b,(\mathrm{f}(\mathrm{x})=\mathrm{a}, \mathrm{f}(\mathrm{y})=\mathrm{b})$. Since f is one to one hence $f(x) \neq f(y)$. Since Y is D_{o} then there exist U is $\rho_{1} \rho_{2}$ - D-set in N such that $a \in U$ and b D U. we have the inverse image of U is $\sigma_{1} \sigma_{2}$-D-set in M containing x not y. Therefore $\left(\mathrm{M}, \sigma_{1}, \sigma_{2}\right)$ is D_{o}.

Definition(3.3)[2]

For a bitopological space $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ and $\mathrm{A} \subseteq \mathrm{X} .\left(\mathrm{A}, \sigma_{1_{A}}, \sigma_{2_{\mathrm{A}}}\right)$ is said to be subspace of $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ when $\sigma_{1_{A}}=\left\{U_{1} \cap \mathrm{~A}\right.$: $\left.U_{1} \in \sigma_{1}\right\}$ and $\sigma_{2 A}=\left\{U_{2} \cap \mathrm{~A}: U_{2} \in \sigma_{2}\right\}$.

Theorem(3.4)

If $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is D_{o} and A subset of X then $\left(\mathrm{A}, \sigma_{1_{\mathrm{A}}}, \sigma_{2_{\mathrm{A}}}\right)$ is D_{o}
Proof:
Suppose a and b are two distance points in A thus a and b in Y . Since Y is D_{o} then there exist G is $\sigma_{1} \sigma_{2}$-D-set in Y and G containing a not b . Hence $\mathrm{G}=V_{1} \cup V_{2}$ where V_{1} is σ_{1}-D-set and V_{2} is σ_{2}-D-set in Y . Then $V_{1}=O_{1}-S_{1}$ and $V_{2}=O_{2}-S_{2}$ such that $\left(\mathrm{O}_{1}, \mathrm{~S}_{1} \in \sigma_{1}\right),\left(\mathrm{O}_{2}, \mathrm{~S}_{2} \in \sigma_{2}\right)$ and $\mathrm{O}_{1}, \mathrm{O}_{2} \neq \mathrm{Y}$.
$\mathrm{A} \cap \mathrm{G}=\mathrm{A} \cap\left[\left(O_{1}-S_{1}\right) \cup\left(O_{2}-S_{2}\right)\right]$

$$
=\left[\left(\mathrm{A} \cap O_{1}\right)-\left(\mathrm{A} \cap S_{1}\right)\right] \cup\left[\left(\mathrm{A} \cap O_{2}\right)-\left(\mathrm{A} \cap S_{2}\right)\right]
$$

Since $\left(\mathrm{A} \cap O_{1}\right),\left(\mathrm{A} \cap S_{1}\right) \in \sigma_{1_{A}}$ and $\left(\mathrm{A} \cap O_{1}\right) \neq Y$
$\left(\mathrm{A} \cap O_{2}\right),\left(\mathrm{A} \cap S_{2}\right) \in \sigma_{2_{A}}$ and $\left(\mathrm{A} \cap O_{2}\right) \neq Y$
Let $O_{1}^{*}-S_{1}^{*}=\left(\mathrm{A} \cap O_{1}\right)-\left(\mathrm{A} \cap S_{1}\right)$ and $O_{2}^{*}-S_{2}^{*}=\left(\mathrm{A} \cap O_{2}\right)-\left(\mathrm{A} \cap S_{2}\right)$
Hence $O_{1}^{*}-S_{1}^{*}$ is $\sigma_{1_{A}}$-D-set and $A_{2}^{*}=O_{2}^{*}-S_{2}^{*}$ is $\sigma_{2_{A}}$ - D-set in A
Then $\mathrm{A} \cap \mathrm{G}=A^{*}=A_{1}^{*} \cup A_{2}^{*}$ is $\tau_{A} \sigma_{A}$-D-set in A . Since $x \in \mathrm{G}, x \in \mathrm{~A}$ thus $x \in \mathrm{~A}^{*}$ and $\mathrm{y} \notin \mathrm{G}, \mathrm{y} \in \mathrm{A}$ thus $\mathrm{y} ⿴ \mathrm{~A}^{*}$. we have hence $\left(\mathrm{A}, \sigma_{1_{A}}, \sigma_{2_{A}}\right)$ is D_{o}.

The following example shows that converse of Theorem(3.4) is not true

Example (3.2)

Let $\mathrm{Y}=\{\mathrm{i}, \mathrm{g}, \mathrm{h}, \mathrm{k}\}, \sigma_{1}=\{\varnothing, \mathrm{X},\{\mathrm{g}\}\}$ and $\sigma_{2}=\{\varnothing, \mathrm{X},\{\mathrm{g}, \mathrm{h}\}\}$. Let $\mathrm{A}=\{\mathrm{i}\}$ then $\sigma_{1_{A}}=\sigma_{2_{A}}=\{\emptyset, \mathrm{X}\}$. It is clear that (A , $\sigma_{1_{A}}, \sigma_{2_{A}}$) is D_{o}. But $\mathrm{i} \neq \mathrm{k}$ and $\nexists \mathrm{U}$ is $\sigma_{1} \sigma_{2}$-D-set and $\mathrm{i} \in \mathrm{U}, \mathrm{k} \notin \mathrm{U}$ hence ($\mathrm{Y}, \sigma_{1}, \sigma_{2}$) is not D_{o}.

Definition (3.4)

Bitopology ($\mathrm{Y}, \sigma_{1}, \sigma_{2}$) is said to be D_{1} if and only if for each distance points m and n there are H and $\mathrm{K} \sigma_{1} \sigma_{2}$ - D sets such that $m \in H, n \notin H$ and $m \notin K, n \in K$.

Theorem (3.5)

If $\left(\mathrm{Y}, \sigma_{1}\right)$ and $\left(\mathrm{Y}, \sigma_{2}\right)$ are D_{1} then $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is D_{1}.

Proof:

Suppose $\mathrm{i} \neq \mathrm{j}$ in X . Since $\left(\mathrm{Y}, \sigma_{1}\right),\left(\mathrm{Y}, \sigma_{2}\right)$ are D_{1} then there exist U_{1} and U_{2} are σ_{1}-D-sets such that ($i \in U_{1}, \mathrm{j} \notin U_{1}$ and $i \notin U_{2}, \mathrm{j} \in U_{2}$) and V_{1} and V_{2} are σ_{2}-D-sets such that ($i \in V_{1}, \mathrm{j} \notin V_{1}$ and $i \notin V_{2}, \mathrm{j} \in V_{2}$). Let $\mathrm{U}=U_{1} \cup U_{2}$ and $\mathrm{V}=$ $V_{1} \cup V_{2}$. Hence U and V are $\sigma_{1} \sigma_{2}$-D-sets and $i \in \mathrm{U}$, j 回,$i \square \mathrm{~V}$ and $j \in V$. Thus ($\mathrm{Y}, \sigma_{1}, \sigma_{2}$) is D_{1}.
The following example converse of Theorem(3.4) is not true for

Example (3.3)

Suppose $\mathrm{Y}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}\}, \sigma_{1}=\{\varnothing, \mathrm{Y},\{\mathrm{u}, \mathrm{v}\},\{\mathrm{u}\}\}$ and $\sigma_{2}=\{\varnothing, \mathrm{Y},\{\mathrm{v}, \mathrm{w}\},\{\mathrm{w}\}\}$. It is clear that $\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is D_{1}. But $\mathrm{u} \neq \mathrm{w}$ and $\nexists C_{1}, C_{2}$ are σ_{1}-D-sets as $\mathrm{u} \in C_{1}, \mathrm{v} \notin C_{1}, \mathrm{u} \notin C_{2}, \mathrm{v} \in C_{2}$. Thus (Y, σ_{1}) not D_{1}. Similarity we have (Y, σ_{2}) is not D_{1}.

Theorem (3.6)

If $\mathrm{f}:\left(\mathrm{Y}_{1}, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(Y_{2}, \rho_{1}, \rho_{2}\right)$ is continuous and one to one and Y is D_{1}-space then $\mathrm{Y}_{1} D_{1}$-space .

Proof:

Let Y_{2} is D_{1} and $x \neq y$ in Y_{1}. Then there exist $a, b \in Y_{2}$ where $a \neq b \mathrm{f}(\mathrm{x})=\mathrm{u}, \mathrm{f}(\mathrm{y})=\mathrm{v}$. Since f is one to one hence $f(x)$ is not equal to (y). Since Y_{2} is D_{1} then there exist E and H are $\rho_{1} \rho_{2}$-D containing in Y and $u \in \mathrm{E}, v \notin \mathrm{E}, u \notin \mathrm{H}$ and $v \in \mathrm{H}$. The inverse image of E and H are $\sigma_{1} \sigma_{2}$ - D -sets in Y_{1} because f is continuous. And the inverse image of E containing u not v.We have ($\mathrm{Y}_{1}, \sigma_{1}, \sigma_{2}$) is D_{1}.

Theorem(3.7)

Every subspace of D_{1}-bitopological space is D_{1}-bitopological space

Proof:

Suppose (A, $\sigma_{1_{A}}, \sigma_{2_{A}}$) is subspace in $\left(M, \sigma_{1}, \sigma_{2}\right)$. Let u and v are two different points in A thus $u, v \in M$. Since M is D_{1} then there exist G and W are $\sigma_{1} \sigma_{2}$-D-sets in M and $(u \in \mathrm{G}, v \notin \mathrm{G}, u \notin \mathrm{~W}$ and $v \in \mathrm{~W})$. Since $\mathrm{A} \cap \mathrm{G}$ and $\mathrm{A} \cap \mathrm{W}$ are $\sigma_{1_{A}} \sigma_{2_{A}}$-D-sets in A. Let $\mathrm{G}^{*}=\mathrm{A} \cap \mathrm{G}$ and $\mathrm{W}^{*}=\mathrm{A} \cap \mathrm{W}$. Therefore G^{*} containing u not v and W^{*} containing v not u then (A , $\sigma_{1_{\mathrm{A}}}, \sigma_{2_{\mathrm{A}}}$) is D_{1}

Theorem (3.8)

Every D_{1}-bitopological space is D_{o}.

Proof:

Let $a \neq b$ in X . Since $\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right)$ is D_{1} then then there exist $\mathrm{G}=\{\in \mathrm{G}, \mathrm{b} \notin \mathrm{G}\}$ and $\mathrm{W}=\{\mathrm{a} \notin \mathrm{W}, b \in \mathrm{~W}\}$ are $\sigma_{1} \sigma_{2}$-D .Then ($\mathrm{X}, \sigma_{1}, \sigma_{2}$) is D_{o}.

4. Pairwise and weak pairwise D_{k} - bitopological spaces

Definition(4.1)

($\mathrm{N}, \sigma_{1}, \sigma_{2}$) is said to be
1- pairwise T_{o} if and only if $\forall \mathrm{c}, \mathrm{d} \in \mathrm{N}$ and $\mathrm{c} \neq \mathrm{d} \exists K_{1}$ is σ_{1}-open $\left(\mathrm{c} \in K_{1}, \mathrm{~d} \notin K_{1}\right)$ or $\exists K_{2}$ is σ_{2}-open $\quad\left(d \in K_{2}\right.$, $\mathrm{c} \notin K_{2}$). [4]
2- pairwise D_{o} if and only if $\forall \mathrm{u}, \mathrm{v} \in \mathrm{N} u \neq \mathrm{v} \exists G_{1}$ is σ_{1}-D-set $\left(\mathrm{u} \in G_{1}, \mathrm{~d} \notin G_{1}\right)$ or $\exists G_{2} \sigma_{2}$ - $\mathrm{D}\left(v \in G_{2}, \mathrm{u} \notin G_{2}\right)$.

Theorem (4.1)

Bitopological ($\mathrm{X}, \sigma_{1}, \sigma_{2}$) pairwise T_{o} if and only if pairwise D_{o}

Proof:

Let $x \neq y$ in X and $\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right)$ is pairwise T_{o} then there exist either A is σ_{1}-open A containing x not y. Or there is B is σ_{2}-open set containing x not y thus σ_{1} - D -set containing x not y. Therefore X is pairwise D_{o}.

Let $m \neq n$ in X and $\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right)$ is pairwise D_{o} then either A is σ_{1} - D -set, $m \in \mathrm{~A}$ and $n \notin \mathrm{~A}$. Thus $\mathrm{A}=A_{1}-A_{2}$ such that $A_{1} \neq \mathrm{X}$ where $\mathrm{A}_{1}, \mathrm{~A}_{2}$ are σ_{1}-open hence $m \in A_{1}$ and $y \notin A_{1}$. Or B is σ_{2}-D-set such that $m \notin \mathrm{~B}$ and $n \in \mathrm{~B}$ thus $\mathrm{B}=B_{1}-$ B_{2} such that $B_{1} \neq \mathrm{X}$ and B_{1}, B_{2} are σ_{2}-open hence $m \notin B_{1}$ and $n \in B_{1}$. Therefore X is pairwise T_{o}.

Theorem (4.2)

Every D_{o} is pairwise D_{o}.

Proof:

Let $x \neq y$ in X and $\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right)$ is D_{o} thus $\exists \mathrm{G}$ is $\sigma_{1} \sigma_{2}$-D-set where $\mathrm{G}=\{m \in \mathrm{G}$ and $n \notin \mathrm{G}\}$. Thus $\mathrm{G}=\mathrm{A} \cup \mathrm{B}$ such that A is $\sigma_{1}-\mathrm{D}$-set and B is $\sigma_{2}-\mathrm{D}$-set thus x containing in A or not containing in B and y not containing in A . Thus there exist A is σ_{1}-D-set, $\mathrm{A}=\{x \in \mathrm{~A}$ and $y \notin \mathrm{~A}\}$ or there exist B is σ_{2} - D -set, $\mathrm{B}\{x \notin \mathrm{~B}$ and $y \in \mathrm{~B}\}$. Hence ($\mathrm{X}, \sigma_{1}, \sigma_{2}$) is pairwise D_{o}.

Theorem(4.3)

If $\left(M, \sigma_{1}, \sigma_{2}\right)$ is pairwise- D_{o} and A subset of X therefore ($\mathrm{A}, \sigma_{1_{A}}, \sigma_{2_{A}}$) is pairwise- D_{o} proof
Suppose c, d are different points in A thus $x \neq y$ in M. Since M is pairwise- D_{o} then either G is (σ_{1}-D-set or is σ_{2}-D) in M where $G=\{c \in G$ and $d \notin G\}$ or $G=\{c \notin G$ and $d \in G\}$. It is clear that $G \cap A$ is $\sigma_{1_{A}}$-D-set or is $\sigma_{2_{A}}$ - D-set in A, let G^{*} $=\mathrm{G} \cap \mathrm{A}$. We have that $c \in \mathrm{G}^{*}$ and $\mathrm{d} \notin \mathrm{G}^{*}$ or $c \notin \mathrm{G}^{*}$ and $\mathrm{d} \in \mathrm{G}^{*}$. Therefore $\left(\mathrm{A}, \sigma_{1_{\mathrm{A}}}, \sigma_{2_{\mathrm{A}}}\right.$) is pairwise- D_{o}.

Definition (4.2)[1]

A function $\mathrm{f}:\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(\mathrm{Y}, \rho_{1}, \rho_{2}\right)$ said to be pairwise continuous if $f^{-1}(\mathrm{~A}) \in \sigma_{1} \cup \sigma_{2}$ for all $\mathrm{A} \in \rho_{1} \cup \rho_{2}$

Theorem (4.4)

If $\mathrm{g}:\left(\mathrm{N}, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(\mathrm{H}, \rho_{1}, \rho_{2}\right)$ is pairwise continues and one to one and Y is D_{o}-space then $\mathrm{X} D_{o}$-space.

Proof:

Let H pairwise- D_{o} where $x \neq y$ in X. We have $\exists \mathrm{a}, \mathrm{b}$ in $\mathrm{Y}, a \neq b$ and $\mathrm{g}(\mathrm{x})=\mathrm{a}, \mathrm{g}(\mathrm{y})=\mathrm{b}$. Since g is one to one hence $g(x) \neq g(y)$. Since N is pairwise- D_{o} then there exist G is (ρ_{1}-D-set suchthat $a \in G$ and $b \notin \mathrm{G}$) or (G is ρ_{2}-D-set suchthat $a \notin \mathrm{G}$ and $b \in G$. Hence then there exist S_{1}, S_{2} are ρ_{1} open or ρ_{2}-open suchthat $S_{1} \neq \mathrm{H}$ and $\mathrm{G}=S_{1}-S_{2}$. We have $S_{1}, S_{2} \in \rho_{1} \cup \rho_{2}$. Since f is pairwise continuous thus the inverse image of S_{1}, S_{2} are σ_{1}-open or σ_{2}-open sets in N . Therefore the inverse image of S_{1}, S_{2} containing in $\tau_{1} \cup \sigma_{1}$ suchthat $f^{-1}(G)=f^{-1}(U)-f^{-1}(V)$ thus $f^{-1}(G)$ not equal to N thus $f^{-1}(G)$ is (σ_{1}-D-set suchthat $f^{-1}(G)=\left\{x \in f^{-1}(G)\right.$ and $\left.y \notin f^{-1}(\mathrm{G})\right\}$ or (G is σ_{2}-D-set suchthat $x \notin$ G and $y \in G$). Hence Let X is pairwise- D_{o}.

Definition(4.3)

A space ($\mathrm{K}, \sigma_{1}, \sigma_{2}$) is said to be
i) Weak pairwise T_{o} if and only if $\forall \mathrm{m}$ and n are distinct points in $\mathrm{k} \exists \mathrm{U}$ is σ_{1}-open set or σ_{2}-open, $\mathrm{m} \in \mathrm{U}$ and $\mathrm{n} \notin \mathrm{U}$. [4]
ii)Weak pairwise D_{o} if and only if $\forall \mathrm{m}$ and n are distinct points in $\mathrm{K} \exists \mathrm{U}$ is σ_{1}-D-set or σ_{2}-D-set $m \in U$ and $n \notin U$.

Remark(4.1)

Every pairwise D_{o} is weak pairwise D_{o}

Theorem(4.5)

A bitopological space $\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right)$ is weak pairwise T_{o} if and only if weak pairwise D_{o}
Proof:
Similarity to Theorem (4.1)

Remark(4.2)

Every D_{o} is Weak pairwise D_{o}.

Theorem (4.6)

If $\left(\mathrm{M}, \sigma_{1}\right)$ or $\left(\mathrm{M}, \sigma_{2}\right) D_{o}$ then $\left(\mathrm{M}, \sigma_{1}, \sigma_{2}\right)$ is waek pairwise- D_{o}.
Proof:
Suppose x and y are different points in X . Since $\left(\mathrm{M}, \sigma_{1}\right)$ or $\left(\mathrm{M}, \sigma_{2}\right)$ are D_{o} thus there exist W is σ_{1}-D-set or σ_{2}-Dset such that $x \in \mathrm{~W}$ and y ? . Therefore $\left(\mathrm{M}, \sigma_{1}, \sigma_{2}\right.$) is weak pairwise- D_{o}.

But the converse is not true for example

Example (4.1)

Let $\mathrm{M}=\{\mathrm{c}, \mathrm{d}, \mathrm{e}\}$ such that $\sigma_{1}=\{\emptyset, \mathrm{M},\{\mathrm{c}\}\}$ and $\sigma_{2}=\{\varnothing, \mathrm{M},\{\mathrm{d}\}\}$. It is clear that M is weak pairwise- D_{o} but $\left(\mathrm{M}, \sigma_{1}\right)$ and (M, σ_{2}) not D_{o}

Theorem(4.7)

If $\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right)$ is waek pairwise- D_{o} and A subset of X then $\left(\mathrm{A}, \sigma_{1_{\mathrm{A}}}, \sigma_{2_{\mathrm{A}}}\right)$ is weak pairwise- D_{o}
Proof: Clear

Remark (2.1)

If σ_{1} or σ_{2} discrete then $\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right)$ is weak pairwise- D_{o}

Definition(4.4)

(M, σ_{1}, σ_{2}) is said to be
i) pairwise D_{1}-space if and only if $\forall \mathrm{i}, \mathrm{j} \in \mathrm{M}$ where $\mathrm{i} \neq \mathrm{j} . \exists \sigma_{1}$-D-set U and σ_{2}-D-set V where $\mathrm{U}=\{\mathrm{i} \in \mathrm{U}, \mathrm{j} \notin \mathrm{U}\}$ and V $\{i \notin V, j \in V\}$
ii) Weak pairwise D_{1}-space if and only if $\forall \mathrm{i}, \mathrm{j} \in \mathrm{M}$ where $\mathrm{i} \neq \mathrm{j} . \exists \sigma_{1}$-D-set A and σ_{2}-D-set B such that either $\mathrm{i} \in \mathrm{A}$, $j \notin A$ and $j \in B, i \notin B$ or $i \in B, j \notin B$ and $i \notin A, j \in A$.
Theorem (4.8)

1) Every D_{1} is pairwise D_{o}.
2) Every pairwise D_{1} is weak pairwise D_{o}.
3) Every weak pairwise D_{1} is pairwise D_{o}.

Proof:

1) Let $x \neq y$ in X . And $\left(\mathrm{X}, \sigma_{1}, \sigma_{2}\right)$ is D_{1} thus there exist A and B are $\sigma_{1} \sigma_{2}$-D-sets, A containing x not y , B containing y not $x, y \in \mathrm{~B}$. Then $\mathrm{A}=\mathrm{S} \cup \mathrm{O}$ and $\mathrm{B}=\mathrm{G} \cup \mathrm{W}$ such that S and G are σ_{1}-D-sets, O and W are σ_{2}-D-sets hence there exits S is σ_{1}-D-set such that $x \in \mathrm{~S}, y \notin \mathrm{~S}$ or O is σ_{2}-D-set such that $x \notin \mathrm{O}, y \in \mathrm{O}$. We have X is pairwise D_{o}.
2) Suppose $x \neq y$ in W . And $\left(\mathrm{W}, \sigma_{1}, \sigma_{2}\right)$ is pairwise D_{1} thus there exist A is σ_{1} - D -set and B is σ_{2} - D -set such that $x \in \mathrm{~A}$,$y \notin \mathrm{~A}$ and $x \notin \mathrm{~B}, y \in \mathrm{~B}$. We have W is pairwise D_{o}.
3) Let $x \neq y$ in X . And ($\mathrm{X}, \sigma_{1}, \sigma_{2}$) is weak pairwise D_{1} thus there exist K is σ_{1}-D-set and G is σ_{2} - D -set such that either $\mathrm{K}=\{x \in \mathrm{~K}, y \notin \mathrm{~K}\}$ and $\mathrm{G}=\{x \notin \mathrm{G}, y \in \mathrm{G}\}$ or $\mathrm{G}=\{x \in \mathrm{G}, y \notin \mathrm{G}\}$ and $\mathrm{K}=\{x \notin \mathrm{~K}, y \in \mathrm{~K}\}$. Hence there exist K is σ_{1}-D-set such that $x \in \mathrm{~K}, y \notin \mathrm{~K}$ or there exist G is σ_{2}-D-set such that $x \notin \mathrm{G}, y \in \mathrm{G}$. We have ($\mathrm{X}, \sigma_{1}, \sigma_{2}$) is pairwise D_{o}

Theorem (4.9)
If $\mathrm{h}:\left(\mathrm{M}, \sigma_{1}, \sigma_{2}\right) \rightarrow\left(\mathrm{N}, \rho_{1}, \rho_{2}\right)$ is pairwise continues and one to one and N is D_{1} then M is D_{1}.

Proof:

Similarity to Theorem (4.4)

Theorem (4.10)

If ($\mathrm{X}, \sigma_{1}, \sigma_{2}$) is waek pairwise- D_{1} and A subset of X then $\left(\mathrm{A}, \tau_{\mathrm{A}}, \sigma_{\mathrm{A}}\right)$ is weak pairwise- D_{1} Proof: clear

The following diagram explain the relations of types of D_{K} for $K=0,1$, as shown in Fig. 1.

Fig. 1. Relationship of types of D_{K}

References

[^1][3] Kelly . J.C. " Bitopological spaces " proc. London Math Soc. 3(13) (1963) 71-89.

21 Hadeel Husham Kadhim, Journal of Al-Qadisiyah for Computer Science and Mathematics, Vol.16.(1) 2024, pp. Math 16-22
[4] Murdeshwar. M. G and Naimpally. S. A, R1-Topological Spaces. Canad. Math. Bull 9 (1966) 521-523.
[5] Tong J. "A separation axioms between T_{o} and T_{1} " Ann. Soc . Sci. Bruxelles, $96: 85-90(1982)$
[6] O. Ravi, S. Pious Missier, and T. salai Parkunan, (May, 2011), A new type of homeomorphism in a bi-topological space, International Journal of math. Sci. and Application, Vol. 1 No. 2 .
[7] Rupaya Roshmi and M. S. Hossain " properties of separation axioms in bitopological spaces " Department of Mathematics university of Rajshahi Bangladesh Acad Sci , Vol 43. No 191-195 (2019)

[^0]: *Corresponding author: Hadeel Husham Kadhim

[^1]: [1] Tallafha Abdallah, Al-Bsoul Adnan and Fora Ali " Countable Dense Homogeneous Bitopological Spaces". TÜBİTAK, Tr. J. of Mathematics 23 (1999) 233-242.
 [2] Khadiga Ali Arwini and Hanan Musbah Almrtadi " New pairwise separation axioms in biotopplogical spaces " Department of Mathematics Tripoli university Libya 145(2020) 31-45.

